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Strict outerconfluent drawing is a style of graph drawing in which vertices are drawn on the boundary of a disk,
adjacencies are indicated by the existence of smooth curves through a system of tracks within the disk, and no two
adjacent vertices are connected by more than one of these smooth tracks. We investigate graph width parameters on
the graphs that have drawings in this style. We prove that the clique-width of these graphs is unbounded, but their
twin-width is bounded.
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1 Introduction
Confluent drawing is a powerful style of graph drawing that permits many non-planar and dense graphs to
be drawn without crossings (Dickerson et al., 2005; Eppstein et al., 2005; Hirsch et al., 2006; Hui et al.,
2007; Eppstein et al., 2007; Quercini and Ancona, 2010; Cornelsen and Diatzko, 2022). A confluent
drawing consists of a system of non-crossing smooth curves in the plane, called tracks, whose endpoints are
either vertices of the graph or junctions where several tracks meet, all having the same slope at that point.
Two vertices are adjacent whenever the union of some of the tracks forms a smooth curve connecting them.
In this way, each confluent drawing represents unambiguously a unique graph, unlike the bundled drawings
(Lhuillier et al., 2017) which they otherwise resemble. Applications of confluent drawing include the
automated layout of syntax diagrams (Bannister et al., 2015), and the simplification of the Hasse diagrams
of partially ordered sets (Eppstein and Simons, 2013). A constrained version of confluent drawing, called
strict confluent drawing, requires that each adjacency be represented by only one smooth curve (Eppstein
et al., 2016; Förster et al., 2021). In outerconfluent drawings, the tracks are interior to a disk whose
boundary contains the vertices. In this work we study strict outerconfluent graphs, the graphs that have
strict outerconfluent drawings.(i) If the vertex ordering along the drawing boundary is given, these graphs
may be recognized in polynomial time (Eppstein et al., 2016), but their recognition without this information,
and other algorithmic problems concerning them, remain mysterious.

In this work, following Förster et al. (2021), we study the width of strict outerconfluent graphs. There
are many graph width parameters, of which treewidth is perhaps the most famous. Treewidth is bounded
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(i) For the full definition of strict outerconfluent graphs, see Definition 1.
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2 David Eppstein

for some types of graph drawing with vertices on the boundary of a disk (outerplanar and outer-k-planar
drawings (Wood and Telle, 2007)), suggesting that, analogously, strict outerconfluent graphs might have
bounded width of some sort. However, graphs of bounded treewidth are sparse, and strict outerconfluent
graphs can be dense: for instance they include the complete graphs and complete bipartite graphs. Therefore,
a different concept of width is needed, one that can be bounded for dense graphs. Among these widths, we
focus on two, clique-width and twin-width.(ii)

For sparse graphs, clique-width is equivalent to treewidth, in the sense that if one of these two width
parameters is bounded, the other one is also bounded (Gurski and Wanke, 2000), but graphs of bounded
clique-width can also be dense. The strict outerconfluent graphs include the distance-hereditary graphs,
which are known to have bounded clique-width (Eppstein et al., 2005). Förster et al. (2021) defined a
sub-class of strict outerconfluent drawings, the tree-like outerconfluent drawings, in which the tracks that
are incident to junctions must form a single topological tree within the drawing, and proved that their
graphs also have bounded clique-width (Förster et al., 2021). We prove that, in contrast, there exist strict
outerconfluent graphs with unbounded clique-width.

To complement this result, we prove that another width parameter of these graphs, their twin-width, is
bounded. Twin-width is bounded for many classes of graphs of interest in graph drawing, including the
planar and k-planar graphs, and the graphs of bounded genus. It is also bounded for graphs of bounded
clique-width (Bonnet et al., 2021a). The algorithmic consequences of bounded twin-width include the
existence of a fixed-parameter tractable algorithm for testing whether a given graph models a given
formula of first-order logic, parameterized by the size of the formula (including as a special case subgraph
isomorphism) (Bonnet et al., 2022c), and better approximation algorithms for dominating set, independent
set, and graph coloring than the best approximations known for more general families (Bonnet et al., 2021b;
Bergé et al., 2023).

We prove the following results:

• The strict outerconfluent graphs do not have bounded clique-width (Theorem 1).

• The strict outerconfluent graphs have bounded twin-width. A twin-width decomposition of bounded
width can be constructed for these graphs in polynomial time, given their vertex ordering around the
boundary of a strict outerconfluent drawing.

The main idea of the first result is to find a recursive construction of a family of strict outerconfluent
drawings for which we can prove unbounded rank-width, a graph width parameter closely related to
clique-width. The main idea of the second result is to harness known results relating the growth rate of a
family of ordered graphs (pairs of a graph and a linear ordering on its vertices) to the twin-width of the
family, and to use the fact that strict confluent drawings have only linearly many junctions (Eppstein et al.,
2016) to show that they have a small growth rate.

2 Definitions
For completeness we repeat the following definitions, from previous work, of the main concepts considered
in our results. We assume familiarity with the basic concepts of graph theory and of two-dimensional
topology. By a graph we always mean a finite undirected graph, without multiple adjacencies or loops.

(ii) For definitions of these two width parameters, see Definition 2 and Definition 3.
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Definition 1. A strict outerconfluent drawing of a graph G consists of a system of finitely many smooth
curves in a topological disk, which we call tracks,(iii) disjoint except for shared endpoints. These endpoints
have two types: some are identified one-for-one with vertices of G, while others are called junctions. Each
vertex must lie on the boundary of the disk. At a junction, three or more tracks must meet, all having
the same slope. A smooth curve within the union of tracks, starting and ending at vertices and otherwise
passing only through tracks and junctions, is called an edge curve. Each two adjacent vertices of G must be
the endpoints of a unique edge curve. No edge curve may connect a vertex to itself, or connect non-adjacent
vertices. Each track must be part of at least one edge curve. A strict outerconfluent graph is a graph that
has a strict outerconfluent drawing.

Definition 2. The clique-width of an undirected graph is the minimum number of colors needed to construct
the graph by a sequence of the following four operations on (improperly) colored graphs:

• Create a single-vertex graph, with its vertex given any of the available colors.

• Take the disjoint union of two colored graphs.

• Recolor all vertices of one color to another color (possibly one that is already used by other vertices).

• Perform a color join operation that adds edges between all pairs of vertices of two specified colors.

Definition 3. Twin-width is defined through a type of graph decomposition in which clusters of vertices
are merged in pairs, starting with one cluster per vertex, until only one cluster is left. At each step of the
decomposition, two clusters are connected by a red edge if some but not all adjacencies exist between
vertices of one cluster and vertices of the other. The goal is to find a decomposition sequence that minimizes
the maximum degree of the resulting sequence of red graphs. The twin-width of a graph G is the minimum
value of d such that there exists a decomposition of G for which, after each pairwise merge, the red graph
has maximum degree at most d (Bonnet et al., 2022c).

3 Unbounded clique-width
In this section we prove that strict outerconfluent graphs can have unbounded clique-width. We were
unable to prove this using standard examples of graphs with high clique-width, such as grid graphs; indeed,
even a 3× 3 grid is not strict outerconfluent. (The outer induced 8-cycle has only one strict outerconfluent
drawing, because it has no 4-cycles to provide non-trivial confluence, and it is not possible to add the
central vertex of the grid to this drawing.) Instead, our proof is based on a family of drawings depicted in
Fig. 1, which we construct as follows:

Definition 4. Let Gk be the graph represented by a confluent drawing constructed as follows.

• It is convenient to shape the disk on which the graph is drawn as a half-plane above a horizontal
bounding line, to match the depiction in the figure. (This is merely a convention for describing the
drawing and does not affect its combinatorial structure.)

(iii) In some past work on confluent drawings these curves have been called arcs, but that terminology conflicts with standard
graph-theoretic terminology for directed edges.
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Fig. 1: Recursively constructed non-tree-like strict outerconfluent graph G4

• On the boundary line of the half-plane, place 3k vertices (the alternating blue and yellow vertices of
the figure), connected by tracks that directly connect consecutive pairs of vertices (drawn along the
boundary line). These are the only tracks incident to the ⌊3k/2⌋ yellow vertices. Additional tracks
will extend vertically from the ⌈3k/2⌉ blue vertices.

• The remaining tracks of the drawing are arranged into k levels, each of which is drawn within a slab
of the half-plane bounded between two horizontal lines. Number these levels from 0 to k− 1, bottom
to top. The bottom line of the ith level contains ⌈3k−i/2⌉ points (vertices on level 0, junctions at
higher levels) at which tracks extend with a vertical tangent into that level; number these points as
pi,j with 0 ≤ j < 3k−i/2.

• Within level i, connect each two consecutive points pi,j and pi,j+1 by a semicircle. If j is a multiple
of three, subdivide this semicircle by two junctions into three circular arc tracks; for other values of j,
this semicircle is itself a track. As a special case, for the top level (level k − 1) the single semicircle
connecting points pi,0 and pi,1 is not subdivided, and forms a track. In the figure, the arcs into which
the semicircles are subdivided span angles of π/3.

• For each level i except the top level, and each subdivided semicircle connecting points pi,j and pi,j+1

where j is a multiple of three, add tracks connecting the two subdivision points to the point pi+1,j/3

on the upper boundary line of the level. At the two junctions on the semicircle, these tracks should
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be oriented so that each one connects pi+1,j/3 downward by a smooth curve through the semicircle
to the two points pi,j and pi,j+1. In the figure, these upward tracks are also arcs of circles, congruent
to the arcs of the subdivided semicircle.

For instance, the figure depicts G4. By construction, Gk has exactly n = 3k vertices.

Observation 5. Any semicircular track at level i of Gk has smooth paths connecting it to 2i vertices, 2i−1

on its left and 2i−1 on its right. The track is used by edges of Gk that connect each of the vertices in the left
subset to each of the vertices in the right subset. These two subsets are separated by a gap of 3i−1 vertices,
wide enough that it cannot be spanned by any semicircular track at a lower level of Gk.

It follows that Gk has Θ(4k) edges, enough to make it not sparse. More precisely, the number of edges
can be calculated as

8 · 4k − 3 · 3k − 5

6
.

We omit the details as this calculation is not important for our results.

Lemma 6. Gk is strict outerconfluent.

Proof: Each smooth curve from vertex to vertex must go upward through the levels of the track, follow
a single semicircular track at some level, and then go back downwards through the levels, because there
are no tracks that smoothly connect downward-going curves to upward-going curves. A smooth curve
from vertex to vertex that uses a semicircular track at level i must connect two vertices that are at least
3i−1 + 1 steps apart and at most 3i − 1 steps apart. Because these numbers of steps form disjoint ranges
for disjoint levels, no two curves using semicircles from different levels can connect the same two vertices.
Two semicircular tracks at the same level that do not share a confluent junction have disjoint subsets of
vertices that they can reach. Two semicircular tracks at the same level that do share a confluent junction
cannot provide two paths between any pair of vertices, because one of the tracks connects vertices that can
reach the shared junction to other vertices to the left of the junction, while the other track connects only to
the right.

Rather than working directly with clique-width, it is convenient to use rank-width, a closely related
quantity derived from hierarchical clusterings of the vertices of a given graph.

Definition 7. Define a hierarchical clustering of a graph to be a ternary tree having the graph’s vertices as
its leaves. For each edge e of such a tree, removing e from the tree partitions it into two subtrees, and thus
defines a partition of the vertices into two subsets; call this partition the cut associated with e, and call the
two subsets the sides of the cut. For any of these cuts, we can form a binary biadjacency matrix whose
rows correspond to the vertices on one side of the cut, and whose columns correspond to the vertices on
the other side (choosing arbitrarily which side to use for which role). The coefficient of this matrix in a
given row and column is one if the corresponding two vertices are adjacent, and zero otherwise. (For the
purposes of defining rank-width, these coefficients are defined within the finite field Z2, rather than as real
numbers, but that makes little difference for our purposes.) The rank-width of the graph is the maximum
rank of any of the biadjacency matrices of these cuts, for a hierarchical clustering chosen to minimize this
maximum rank.

Lemma 8 (Oum and Seymour (2006)). Let G be any graph, let r be its rank-width and let c be its
clique-width. Then

r ≤ c ≤ 2r+1 − 1.
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Thus, the rank-width of a family of graphs is bounded if and only if the clique-width is bounded.

Definition 9. A balanced cut of an n-vertex graph is a partition of its vertices into two subsets that each
have at least n/3 vertices.

Lemma 10. Any graph of rank-width r has a balanced cut whose biadjacency matrix has rank ≤ r.

Proof: Let G be the given graph, and let n be its number of vertices. Let T be a ternary tree with the
vertices of G as its leaves, and with cuts whose biadjacency matrices have rank ≤ r, which exists by the
definition of rank-width. As in Definition 7, define the two sides of an edge e of T to be the two subsets
of vertices of G separated in T by e. Define a side to be small if it consists of fewer than n/3 vertices of
G, and large otherwise. If we can find an edge with no small side, it will define a balanced cut, which by
construction will have rank ≤ r.

To find an edge of T with no small side, start at any edge of T , and then construct a walk as follows. As
long as the walk has reached an edge e with a small side, consider the two edges of T that are incident to e
on its large side. The large side of e includes > 2n/3 vertices of G (because the other side is small), so at
least one of these two edges, e′, separates e from > n/3 vertices of G. Select e′ as the next edge in the
walk. The walk terminates when it reaches an edge of T that defines a balanced cut, but it remains to prove
that this always happens.

After each step of the walk from an edge e to an edge e′, one of the two sides of e′ (the side that e′

separates from e) includes > n/3 vertices of G, by construction. The other side of e′ can be small, but if it
is, it is a strict superset of the small side of e. Because the numbers of vertices on the small sides of the
edges in this walk form a strictly increasing sequence of integers, they must eventually reach a number that
is at least n/3, at which point the walk terminates.

We will prove our result by showing that, for every fixed r, Gk has no such low-rank balanced cut,
contradicting Lemma 10.

Definition 11. Given any partition of the vertices of Gk into two subsets, define a block of the partition to
be a contiguous subsequence of the vertices (as ordered along the boundary line of the drawing of Gk) that
belongs to one of the two subsets, and is not part of any larger such contiguous subsequence.

Lemma 12. If a partition of the vertices of Gk into two subsets has a biadjacency matrix of rank ≤ r, it
has ≤ 4r + 1 blocks.

Proof: Each two consecutive blocks contain two consecutive vertices in the ordering of Gk, one yellow
and one blue in the alternating coloring of Gk from the figure. Assume for a contradiction that there are
≥ 4r + 2 blocks. These would lead to ≥ 4r + 1 yellow–blue edges between consecutive vertices, crossing
from block to block and from one side of the partition to the other. Among these, some subsequence of
≥ 2r + 1 edges all have their yellow vertices in the same subset of the partition as each other and their
blue vertices in the other subset. Select the edges in odd positions of this subsequence.

This gives a subsequence of ≥ r + 1 edges of Gk, connecting vertices that are all consistently colored
yellow in one subset of the partition and blue in the other subset. Moreover, because we selected only the
edges in odd positions from a longer sequence, no two of these edges have endpoints that are consecutive
in the vertex ordering of Gk. Because the yellow vertices of Gk are adjacent only to the two consecutive
blue vertices, the only yellow–blue edges connecting the selected vertices are the ones in the selected
subsequence. That is, this subsequence forms an induced matching within the subgraph of edges of Gk that
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cross the given partition. The submatrix of the biadjacency matrix, corresponding to this induced matching,
is a permutation matrix of rank ≥ r + 1. This contradicts the assumption of the lemma that the whole
biadjacency matrix has rank r. This contradiction proves that our other assumption, that there are 4r+ 2 or
more blocks, cannot be true.

Definition 13. As is standard in asymptotic analysis, the “big Omega notation” f(x) = Ω
(
g(x)

)
, where

f(x) and g(x) are expressions with a single free variable x, indicates that there exist constants x0 and
α > 0 such that, for all x > x0, f(x) ≥ α g(x). More intuitively, f grows at least proportionally to g.
We also use Ω

(
g(x)

)
, separated from the “f(x) =” part of this notation, to denote a quantity q(x) such

that q(x) = Ω
(
g(x)

)
. However, the meaning of this notation becomes unclear when there is more than

one free variable: even if all variables are assumed to grow unboundedly, there may be different relations
between f and g depending on the relative growth rates of the variables. To sidestep these issues we only
use Ω-notation for a single free variable. We use the modified notation Ωc, as in f(x, c) = Ωc

(
g(x, c)

)
, to

indicate that c is not the free variable in the relation between f and g. Instead, this notation is a shorthand
for ∀c f(x, c) = Ω

(
g(x, c)

)
: for each c, there must exist x0 and α (both possibly depending on c), such

that, for all x > x0, f(x, c) ≥ α g(x, c).

Lemma 14. For any constant c, and any balanced partition of Gk forming at most c blocks in each subset
of the partition, there exist two blocks on opposite sides of the partition such that the smaller of their two
lengths is Ωc(3

k/c2) times larger than 1 + ℓ, where ℓ is the number of vertices of Gk that lie between the
two blocks in the vertex ordering of Gk.

Proof: Label the two subsets of the partition as “red” and “blue”. Let R be the largest red block, consisting
of Ωc(3

k) vertices. Form a sequence of blue blocks B1, B2, . . . where B1 is the closest blue block to R
and each successive Bi, i > 1 is the closest blue block to R that is larger than Bi−1. Consider the sequence
1, |B1|, |B2|, . . . , where |Bi| is the size of block Bi. This sequence is short (it has length at most c+ 1)
and has a large final value Ωc(3

k), so it must sometimes increase rapidly: there must be some i for which
|Bi| is larger than the previous value in the sequence by a factor of Ωc(3

k/c).
The blue blocks between R and Bi are all short: they are smaller than Bi by a factor of Ωc(3

k/c). If the
red blocks between R and Bi are also all short then R and Bi are close together and they together supply
the desired pair of blocks.

Otherwise, form another sequence of red blocks Ri between Bi and R, where R1 is the closest red
block to Bi in this range, and each successive Ri is the closest red block to Bi that is larger than Ri−1,
finishing the sequence with R itself. The sequence |Bi|/3k/c, |R1|, |R2|, . . . is short, and starts off a factor
of at least 3k/c smaller than its final value |R|, so it must again sometimes increase rapidly: there must be
some j for which Rj is larger than the previous value in the sequence by a factor of Ωc(3

k/c2). All blocks
between Rj and Bi are shorter than both Rj and Bi by this factor, so Rj and Bi are close together and
they together supply the desired pair of blocks.

Lemma 15. Let M be a square matrix over any field with the following structure: its diagonal entries are
all nonzero, and for each diagonal entry either all entries above it in the same column or all entries to the
left of it in the same row are zero. The remaining entries can be arbitrary. (See Fig. 2.) Then M has full
rank.

Proof: This follows by induction on the size of M . The submatrix formed by removing the last row and
last column has full rank by induction. If the last column is zero except on the diagonal, the last row does



8 David Eppstein

Fig. 2: Schematic view of a matrix described by Lemma 15. The nonzero main diagonal entries are red. Each diagonal
entry has zeroes either above it or to the left of it, shown in pale yellow. The remaining blue squares mark entries
whose value can be arbitrary.

not belong to the row space of the earlier rows; symmetrically, if the last row is zero except on the diagonal,
the last column does not belong to the column space of the earlier columns. In either case, including this
row or column adds one to the rank.

Definition 16. We say that two semicircular tracks in distinct levels i < j of Gk are nested whenever the
horizontal interval spanned by the track at level i is a subset of the horizontal interval spanned by the track
at level j. Equivalently, every vertical line that crosses the track at level i also crosses the track at level j.

Observation 17. When two tracks are nested, at levels i < j, the leftmost and rightmost vertices that can
be reached from the track at level i lie strictly between the leftmost and rightmost vertices that can be
reached from the track at level j.

Observation 18. If a set of semicircular tracks is pairwise nested, let t be any track in this sequence and
let L and R be the subsets of vertices that can be reached by smooth paths from the left and right sides of t
respectively. Then the gap between L and R is longer than the interval spanned by the reachable vertices
of any lower-level track (Observation 5). Therefore, at most one of L or R contains vertices that can be
reached by lower-level tracks in the nested set.

Observation 19. If a semicircular track of Gk at level i is not the first or last track at its level, then it is
nested inside a semicircular track at level i+ 1 or level i+ 2, respectively according to whether the given
track is not subdivided or is subdivided by two junctions to higher-level tracks.

Lemma 20. If a yellow–blue edge of Gk has at least x vertices of Gk before it and after it in the sequence
of 3k vertices on the boundary line, then there exists a set of Ω(log x) pairwise-nested semicircular tracks
directly above it, with levels that include either i or i+ 1 for each i ≤ log3 x.

Proof: Construct the set of pairwise-nested tracks beginning with the track at level 0 directly above the
given edge, and then continue greedily, at each step choosing a track one or two levels above the previous
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choice by Observation 19. The track chosen at each step is necessarily nested with all the tracks nested
within the previous outermost track, by transitivity of interval inclusion. This greedy construction can
only stop at a level high enough for the outermost track to be the first or last semicircular track on its
level, from which it follows that there are Ω(log x) tracks, with levels that include either i or i+ 1 for each
i ≤ log3 x.

Theorem 1. The graphs Gk have unbounded clique-width.

Proof: We prove that, for any constant r, these graphs do not have rank-width ≤ r. Assuming for a
contradiction that they do all have rank-width ≤ r, they would have a balanced partition whose biadjacency
matrix has low rank, by Lemma 10. By Lemma 12 we may assume that this partition forms O(r) blocks
in the vertex sequence of Gk. By Lemma 14 we may assume that some two of these blocks R and B, on
different sides of the partition, are larger than the gap ℓ between them by a factor of 3k/O(r2)

Now choose any yellow–blue edge between the two blocks and apply Lemma 20 to find a nested
sequence of semicircular tracks above this edge. Each track on level i lies above a sub-drawing of a graph
isomorphic to Gi, spanning a subsequence of 3i vertices of the overall graph, of which it can reach 2i.
Only O(log ℓ) of these nested semicircular tracks can be at such a low level that they fail to reach both R

and B. Another Ω(log 3k/O(r2)) = Ωr(k) of them span subsequences of vertices that lie entirely within
R, B, and the gap between them, reaching both R and B. For each one of these tracks, at level i of the
drawing, by Observation 17, the leftmost and rightmost vertices reachable from the track give ri ∈ R and
bi ∈ B that are connected to this track but not to any of the lower-level nested semicircular tracks. In
particular, distinct i and j give distinct ri, rj , bi, and bj .

The chosen vertices ri and bi, for all of these nested semicircular tracks, induce a biadjacency matrix
in which each main diagonal coefficient, corresponding to the pair (ri, bi), is a one. By Observation 18,
for each such coefficient, either the coefficients above it in the same column of the matrix are all zero, or
the coefficients to the left of it in the same row of the matrix are all zero, forming a matrix of the form
described by Lemma 15. By Lemma 15, its rank equals the length of the sequence of semicircular tracks.
But this is Ωr(k), unbounded, contradicting the assumption that the rank is ≤ r.

4 Bounded twin-width
In this section, we prove that the strict outerconfluent graphs have bounded twin-width. The notion of
planification that we use, an encoding a strict outerconfluent graph and its drawing by a plane graph, is quite
similar to the notion of a first-order transduction; transductions are known to preserve bounded twin-width
(Bonnet et al., 2022c). Rather than applying this general approach, we work out the details more carefully,
using a counting argument, to show that strict outerconfluent graphs have bounded twin-width as ordered
graphs with a natural vertex ordering coming from their drawings.

4.1 Small hereditary classes of ordered graphs
As Bonnet et al. (2022b) showed, for hereditary families of ordered graphs, twin-width is intimately related
to the growth rate of the class. Their small conjecture, that the same relation held more strongly for
unordered graphs, was later falsified (Bonnet et al., 2022a). As it may be somewhat unfamiliar to treat
ordered graphs as standalone objects, we provide definitions here.
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Definition 21. An ordered graph is a triple G = (V,E,<) where (V,E) are the sets of vertices and edges
of an undirected graph and (V,<) is a total ordering. Its number of vertices is |V | (this is commonly called
the order of a graph, to distinguish it from the size |E|, but that would obviously cause confusion with
respect to <, so we avoid this terminology.) Two ordered graphs are isomorphic if there is a bijection
on their vertex sets that is simultaneously a graph isomorphism on their undirected graphs and an order
isomorphism on their vertex orders. Isomorphism is an equivalence relation; we call its equivalence classes
isomorphism classes. All members of an isomorphism class must have the same number of vertices, so we
can talk about this number for an isomorphism class rather than an individual graph. An induced subgraph
G[S] of an ordered graph G = (V,E,<), defined by a subset S ⊆ V , is another ordered graph (S,ES , <S)
where ES is the subset of E consisting of edges with both endpoints in S, and <S is the restriction of < to
S.

We consider here only finite graphs: V and E must be finite sets. With that assumption, there can be
only finitely many isomorphism classes that have a given number of vertices. However, we still speak
about classes of graphs, rather than sets of graphs, to emphasize that we are not restricting the vertices of
the graphs to belong to any specific universal set, such as the natural numbers or the points of the plane.

Definition 22. A class of ordered graphs is hereditary if it contains every induced subgraph of a graph in
the class. It is small if there exists a number c such that the number of isomorphism classes of n-vertex
graphs in the class is O(cn).

The following is central to our proof that strict outerconfluent graphs have bounded twin-width. Although
it is one of the key results in the theory of twin-width, we are not aware of previous uses of this lemma to
prove bounded twin-width of natural classes of graphs, rather than using more direct constructions.

Lemma 23 (Bonnet et al. (2022b)). Every small hereditary class of ordered graphs has bounded twin-width.
A hereditary class of (unordered) undirected graphs has bounded twin-width if and only if its graphs can
be ordered to form a small hereditary class of ordered graphs.

Additionally, we need an algorithmic version of this result:

Lemma 24 (Bonnet et al. (2022b)). For every small hereditary class of ordered graphs there is a polynomial-
time algorithm for constructing twin-width decompositions of bounded width for the ordered graphs in the
class.

4.2 Ordering outerconfluent graphs
To apply Lemma 23 and Lemma 24 to outerconfluent graphs, we need to describe these as ordered graphs,
rather than merely as graphs. There is an obvious ordering to use for their vertices, the ordering around the
boundary of the disk on which these graphs are drawn; this is a cyclic ordering rather than a linear ordering,
but that is a mere technicality.

Definition 25. Define an ordered strict outerconfluent drawing to be a strict outerconfluent drawing within
a specified oriented topological disk, together with a choice of one vertex of the drawing to be the start of
its linear order. For technical reasons we require all tracks and junctions of the drawing to be interior to
the disk, rather than touching its boundary at non-vertex points as some tracks from Fig. 1 do; this does
not restrict the class of graphs that may be drawn in this way. As a special case we allow drawings with
no vertices, tracks, or junctions, representing the empty graph, despite the inability of choosing a starting
vertex in this case. The ordered graph of an ordered strict outerconfluent drawing is the ordered graph
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G = (V,E,<) for which (G,E) is the undirected graph depicted in the drawing, and < is the clockwise
ordering of vertices around the boundary of the disk of the drawing, starting from the designated starting
vertex. A strict outerconfluent ordered graph is any graph that is the ordered graph of an ordered strict
outerconfluent drawing. Two ordered strict outerconfluent drawings are topologically equivalent if there
is a smooth homeomorphism of the plane that maps each vertex, track and junction of one drawing to a
corresponding vertex, track, or junction of the other drawing, preserving the clockwise orientation of the
vertices around the disk and preserving the choice of starting vertices.

Observation 26. The ordered graphs of topologically equivalent ordered strict outerconfluent drawings
are isomorphic ordered graphs.

Definition 27. If D is an ordered strict outerconfluent drawing, an induced subdrawing D[S], for a given
subset S of the vertices of the drawing, is obtained from D by the following steps:

• Remove from D all vertices that do not belong to S.

• Remove from D all tracks and junctions that do not belong to smooth curves connecting pairs of
vertices in S.

• While any remaining junction has exactly two tracks meeting at it (necessarily forming a locally
smooth curve at that junction), remove the junction and replace the two tracks by their union, so that
all remaining junctions form the meeting point of three or more tracks.

• If S is non-empty, select the starting vertex of the ordered induced drawing to be the vertex of S that
appears earliest in the vertex ordering of D.

Lemma 28. If G is the ordered graph of an ordered strict outerconfluent drawing D, and S is any subset
of the vertices of G, then the induced subgraph G[S] is the ordered graph of the induced subdrawing D[S].

Proof: The removal of vertices, tracks, and junctions from D leaves only the vertices in G[S], and is defined
in a way that does not change the existence of smooth curves between these vertices. The replacement of
pairs of tracks by their union also does not affect the existence of smooth curves between pairs of vertices,
as each such curve can only use both replaced tracks, or neither. The choice of starting vertex in the
induced subdrawing is made in a way that causes the vertex ordering of the subdrawing to be the induced
ordering of the vertex ordering of D. Because D is assumed to be strict, it has no multiple adjacencies
between vertices, nor loops from a vertex to itself. Removing tracks from D to form D[S] cannot create
new multiple adjacencies or loops, so this remains true in D[S]. Additionally, the removal of unused tracks
and junctions from D to form D[S], and the merger of tracks at two-track junctions, ensures that in D[S]
the technical requirements of having no unused tracks or junctions, and having at least three tracks at each
junction, are maintained.

Corollary 29. The ordered strict outerconfluent graphs are a hereditary class of ordered graphs.

Proof: Each such graph has an ordered outerconfluent drawing representing it, and each of its induced
subgraphs comes from the corresponding induced subdrawing by Lemma 28. Therefore, each induced
subgraph has a drawing representing it, and remains in the same class of graphs.
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4.3 Smallness
To prove that the ordered strict outerconfluent graphs form a small class, we combine a general principle
(beyond the scope of this paper to formalize) that the number of planar diagrams with a given number of
features is singly exponential in the number of features, and a result from Eppstein et al. (2016) that certain
strict confluent drawings have a linear number of features. We begin with a bound on the number of planar
diagrams, as we need it here.

Definition 30. A plane graph is a graph together with a non-crossing drawing in the plane: a point for each
vertex, a smooth curve connecting the two endpoints of each edge, and no points of intersection between
edge curves other than at their shared endpoints. Two plane graphs are topologically equivalent if there is a
homeomorphism of the plane mapping each feature of one to a corresponding feature of the other. A plane
graph is maximal if it is not possible to add any more edges to the graph and corresponding edge curves to
the drawing, connecting pairs of existing vertices that were not previously connected. A face of a plane
graph is a connected component of the topological space formed by removing the vertices and edge curves
from the plane.

The following facts are standard in topological graph theory:

Lemma 31. Every planar graph has a plane drawing. The maximal plane graphs on n vertices, for n ≥ 3,
have exactly 3n− 6 edges and exactly 2n− 4 faces, each bounded by three edges of the graph. 2n− 3
of these faces are bounded, and one is unbounded. Their graphs, the maximal planar graphs, each have
exactly 4n − 8 equivalence classes of drawings, under topological equivalence, where an equivalence
class is determined by the choice of which triangle in the graph is to be the outer face and how it is to be
oriented.

Lemma 32 (Turán (1984)). The number of isomorphism classes of planar graphs with n vertices is at most
212n.

Corollary 33. The number of equivalence classes of plane graphs, under topological equivalence, is at
most cn for some c > 0.

Proof: By Turán’s lemma, the number of maximal planar graphs is at most 212n, from which it follows
that the number of topological equivalence classes of maximal plane graphs is at most (4n− 8)212n. Every
plane graph can be obtained by removing some subset of the 3n− 6 edges of a maximal plane graph, so
the number of topological equivalence classes of plane graphs is at most (4n− 8)212n23n−6.

The bounds stated above are far from tight, but this is unimportant for our results. To apply Turán’s
lemma to strict outerconfluent drawings, we need to transform them into plane graphs.

Definition 34. A face–vertex incidence of a plane graph G is a pair of a vertex of G and a face of G that
has that vertex on its boundary. Given an ordered strict outerconfluent drawing D, we define a planification
of D to be a tuple (G, o, s, S), where G is a plane graph, o and s are vertices of G, and S is a subset of the
face-vertex incidences of G, constructed as follows:

• The vertices of G consist of the vertices and junctions of D, and an additional vertex, o, placed
outside the disk in which D is drawn.

• Vertex s is the start vertex in the ordering of D.
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• The edge curves of G consist of the tracks of D, together with additional curves, drawn outside
the disk in which D is drawn and disjoint from each other, connecting o to each vertex of D. Two
vertices are adjacent in G exactly when they are connected by one of these curves. (Note that, in a
strict outerconfluent drawing, it is impossible for two or more tracks to connect the same two vertices
or junctions, as this would in all cases result in a loop or an unused track.)

• S consists of the sharp angles of D, in the sense described by Eppstein et al. (2016): they are the
face–vertex incidences where the vertex of G is a junction of D, at which the two tracks on either
side of the face at that vertex do not have a smooth union. Necessarily, S includes all but two of the
vertex–face incidences at each junction. Two tracks at any junction have a smooth union if and only
if, in the cyclic ordering of tracks at that junction, the two non-sharp angles separate the two tracks
from each other.

As we show, this completely encodes the combinatorial information in a strict outerconfluent drawing,
in the following sense:

Lemma 35. Let (G, o, s, S) be any planification of any ordered strict outerconfluent drawing D, and let
(G′, o′, s′, S′) be any tuple of a plane graph topologically equivalent to G, the vertices corresponding to o
and s in G′ under the topological equivalence, and the subset of vertex–face incidences corresponding to
S under the topological equivalence. Then from (G′, o′, s′, S′) we can construct a strict outerconfluent
drawing D′ that is topologically equivalent to D.

Proof: Define a junction of G′ to be any of its vertices that is not a neighbor of o; these are the vertices that
correspond to junctions of D under the topological equivalence of G and G′. Find disjoint neighborhoods
of each junction, interior to the disk of the drawing; these exist because of the restriction that D cannot
touch the boundary of the disk except at its vertices. Within each neighborhood, modify G′ (preserving
topological equivalence as a plane drawing) so that the edge-curves meeting at each junction form sharp
or smooth angles according to the information given in S′. (Because of the technical restriction on
our drawings, each junction has a neighborhood interior to the disk of the drawing, within which this
modification may be performed.) Consider the result as a confluent drawing, with o and its incident edges
removed, neighbors of o as its vertices, and non-neighbors of o as junctions, embedded in a disk whose
boundary lies in the faces of G′ incident with o. Order the vertices of the drawing clockwise around this
disk starting with s. Then the result is a confluent drawing, mapped from drawing D and its planification
G by a homeomorphism of the plane (the homeomorphism that maps G to G′, composed with its local
modifications at the junctions). This homeomorphism takes each vertex, track, or junction of D to a
corresponding vertex, track, or junction of the resulting confluent drawing, and preserves the smoothness
or lack thereof of unions of tracks. Therefore, it is a topological equivalence of confluent drawings.

Thus, we can count topological equivalence classes of strict outerconfluent drawings by using Turán’s
lemma to count their planifications. However, to apply Turán’s lemma, we need to know how many
junctions and tracks there can be. Fortunately, this has already been bounded:

Lemma 36 (Eppstein et al. (2016)). Every strict outerconfluent graph with n vertices has a strict outercon-
fluent drawing with at most n− 3 junctions and at most 3n− 6 tracks.

Putting these results together we have the main result of this section:

Lemma 37. The ordered strict outerconfluent graphs form a small class of ordered graphs.
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Proof: By Lemma 35, the number of equivalence classes of n-vertex ordered strict outerconfluent graphs
under isomorphism of ordered graphs is at most the number of equivalence classes of planifications of
drawings of these graphs, under topological equivalence of planifications. Given an n-vertex ordered strict
outerconfluent graph, let D be a strict outerconfluent drawing of it with at most n − 3 junctions and at
most 3n− 6 tracks, known to exist by Lemma 36, and let (G, o, s, S) be its planification. Each junction
has as many vertex–face incidences as it has track–junction incidences; each track contributes two such
incidences, one at each endpoint, but in the worst case each vertex of the given graph takes up at least one
track endpoint (if it were an isolated vertex the number of junctions and tracks would be smaller) so the
number of vertex–face incidences at junctions is at most 5n− 12. The number of vertices in G is one plus
the number of vertices and junctions in D, at most 2n− 2, so by Corollary 33 the number of choices for the
plane graph G (under topological equivalence) is singly exponential in n. The number of choices for o and
s is at most 2n− 2. The number of choices for S is at most 25n−12. Multiplying these numbers of choices
together gives a singly exponential number of planifications, under topological equivalence, and therefore a
singly-exponential number of ordered strict outerconfluent graphs, under ordered isomorphism.

4.4 Twin-width
Theorem 2. The strict outerconfluent graphs have bounded twin-width. If the ordering of the vertices along
the boundary of a strict outerconfluent drawing of one of these graphs is given, a twin-width decomposition
for it of bounded width can be constructed in polynomial time.

Proof: This follows from Corollary 29 and Lemma 37, under which assigning them their boundary
orderings produces a hereditary small class of ordered graphs, Lemma 23, under which hereditary small
class of ordered graphs have bounded twin-width, and Lemma 24, under which twin-width decompositions
of bounded width for hereditary small class of ordered graphs can be found in polynomial time.

5 Discussion
We have shown that the clique-width of strict outerconfluent graphs is unbounded, but our lower bound
proves only sublogarithmic clique-width. It would be of interest to determine how quickly the clique-width
can grow, as a function of the number of vertices. Many important graph optimization problems, including
all problems expressible in the MSO1 form of monadic second-order logic, can be solved efficiently for
the graphs of bounded clique-width (Courcelle et al., 2000), and our result presents an obstacle to the
application of these techniques on strict outerconfluent graphs. If we could prove a superlogarithmic
lower bound, it would cause algorithms whose dependence on clique-width is exponential to have a
superpolynomial overall time bound, creating a greater barrier to their use.

In the other direction, we have shown that the twin-width of these graphs is bounded. This enables
the application to these graphs of fixed-parameter-tractable algorithms for graphs of bounded treewidth,
including algorithms for first-order model checking (Bonnet et al., 2022c) and for finding a graph coloring
with a number of colors within a constant factor of the maximum clique size (Bonnet et al., 2021b).
However, because our proof goes through a counting argument, it does not provide a direct construction
of a low-twin-width decomposition, and the bound that it provides on twin-width is large. It would be of
interest to find an alternate proof with a better bound on twin-width.

It is natural to try to extend our twin-width bound to more general classes of confluent graphs. The
full class of all confluent graphs is out of reach, because it includes the interval graphs (Dickerson et al.,
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2005), and these do not form a small class: even when counting the n-vertex interval graphs as unordered,
undirected graphs their number is exponential in n log n (Yang and Pippenger, 2017). We remark that this
bound, together with our methods for converting counting problems on confluent drawings to plane graphs,
can be used to show that some confluent drawings require Ω(n log n) tracks; we omit the details. The strict
confluent drawings produce a small class of unordered graphs by the same reasoning as Lemma 37, but we
do not know of a natural ordering for these graphs under which they are hereditary. On the other hand,
the (non-strict) outerconfluent drawings naturally form a hereditary class of ordered graphs, by the same
reasoning as Corollary 29, but we do not know whether they are small.

Many of the other known width parameters are either unbounded when clique-width is unbounded, or
bounded when twin-width is bounded. Thus, our results settle whether these parameters are bounded on
the strict outerconfluent graphs. However, it may be of interest to consider other width parameters in
connection with other forms of confluent drawing.
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