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We give constructive proofs for the existence of uniquely hamiltonian graphs for various sets of degrees. We give
constructions for all sets with minimum 2 (a trivial case added for completeness), all sets with minimum 3 that
contain an even number (for sets without an even number it is known that no uniquely hamiltonian graphs exist), and
all sets with minimum 4, except {4}, {4, 5}, and {4, 6}. For minimum degree 3 and 4, the constructions also give
3-connected graphs.

We also introduce the concept of seeds, which makes the above results possible and might be useful in the study of
Sheehan’s conjecture. Furthermore, we prove that 3-connected uniquely hamiltonian 4-regular graphs exist if and
only if 2-connected uniquely hamiltonian 4-regular graphs exist.
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1 Introduction
The most important problem for hamiltonian cycles is of course which properties guarantee the existence
of a hamiltonian cycle, but as soon as the existence of a hamiltonian cycle is known, the question arises
how many hamiltonian cycles exist. In [4], recent results and an overview of older results on graphs with
few hamiltonian cycles are given. The extremal case is when a graph contains a single hamiltonian cycle,
that is: it is uniquely hamiltonian. A crucial role for the existence of a uniquely hamiltonian graph is
played by the combination of vertex degrees present in the graph. Already in 1946 Tutte reported a result
by Smith that uniquely hamiltonian cubic graphs don’t exist [9]. A long standing conjecture by Sheehan
[7] states that this should in fact be the case for all d-regular graphs with d > 2. The result by Smith
was later improved by Thomason [8] showing that uniquely hamiltonian graphs where all vertices have
odd degree don’t exist. In [5] it is shown that no d-regular uniquely hamiltonian graphs exist if d ≥ 23.
So while there are e.g. neither uniquely hamiltonian graphs with all degrees 3 nor with all degrees 24, a
special case of what we will prove will be that there are uniquely hamiltonian graphs if both these vertex
degrees are allowed. For even d with 4 ≤ d ≤ 22 it is not known whether d-regular uniquely hamiltonian
graphs exist. In [3] Fleischner shows that there are uniquely hamiltonian graphs with minimum degree
4. He constructs graphs with vertices of degree 4 and 14 and graphs where the maximum degree can
grow even larger – without specifying which degrees can occur. We will use an improved version of his
method to prove that for all sets M with minimum 4, except maybe for {4}, {4, 5}, and {4, 6}, uniquely
hamiltonian graphs exist, so that the set of vertex degrees is exactly M . Furthermore we characterize sets
of degrees with minimum 2 or 3 for which uniquely hamiltonian graphs exist completely.

The term graph always refers to a simple undirected graph, that is: without multiple edges and without
loops. If multiple edges are allowed, we use the term multigraph. Loops are never allowed, as they are
trivial in the context of uniquely hamiltonian graphs.
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We define the degree set Mdeg(G) of a graph (or multigraph) G with vertex set V as Mdeg(G) =
{deg(v) |v ∈ V }.

For a set M = {d0, d1, d2, . . . , dk} with d0 < d1 < · · · < dk, we say that a 2-connected (if 2 ∈ M ),
resp. 3-connected (otherwise) uniquely hamiltonian graph G realizes M if Mdeg(G) = M . If such a G
exists, we define M to be uhc-realizable.

Next to the question whether a set M is uhc-realizable, it is also interesting which role is played by
the larger degrees. Our emphasis is on the smallest degree d0 and we want to know whether the number
of times that the degrees d1, . . . , dk occur can be bounded by a constant even for very large graphs, so
that the average degree can be arbitrarily close to the smallest degree. On the other hand it might also be
interesting to know, whether the larger degrees can occur an unbounded number of times and maybe also
occur for at least a fixed fraction of the vertices also in arbitrarily large graphs. The average degree would
in that case be bounded from below by the minimum degree times a constant factor c > 1. The strongest
requirement is, if both can occur and even in combination depending on the di. We formalize that by the
following definition:

For a set M = {d0, d1, d2, . . . , dk} with k > 0, d0 < d1 < · · · < dk we say that M is strongly
uhc-realizable, if for each partition D1, D2 of {d1, . . . , dk} (with one of D1, D2 possibly empty) there
are constants c1 ∈ N, c2 ∈ R, c2 > 0, and an infinite sequence of graphs Gi = (Vi, Ei) realizing M , so
that for all d ∈ D1 each Gi has at most c1 vertices of degree d, and for each d′ ∈ D2 each Gi has at least
c2|Vi| vertices of degree d′.

2 Minimum degree 2 or 3
We will start with an easy remark that is mainly contained for completeness:

Remark 2.1 Any finite set M = {d0 = 2, d1, d2, . . . , dk} ⊂ N with 2 < d1 < d2 < · · · < dk is
uhc-realizable and if k > 0, it is also strongly uhc-realizable.

Proof:
We will first prove that M is uhc-realizable. |M | = 1 is trivial. If |M | = 2, one can take Kd1+1 and

subdivide the edges of a hamiltonian cycle. If |M | > 2 one can e.g. take complete graphs Kd1+1, . . .Kdk+1,
remove an edge edi ∈ Kdi+1 for 1 ≤ i < k, an edge e′di

∈ Kdi+1 for 2 ≤ i ≤ k with edi ∩ e′di
= ∅

for 2 ≤ i < k, and then connect the endpoints of edi
and e′di+1

for 1 ≤ i < k. The result is obviously
hamiltonian and 2-connected and after subdividing the edges of a hamiltonian cycle, one has a uniquely
hamiltonian graph with exactly the vertex degrees in M .

To show that M is strongly uhc-realizable, assume a partition D1, D2 to be given. If D2 = ∅ one can
subdivide edges on the hamiltonian cycle arbitrarily often to obtain the sequence of graphs. If D2 ̸= ∅
one can use the above construction for multisets M ′

j containing the same elements as M , but numbers in
D1 exactly once and numbers in D2 exactly j times.

2

3 Minimum degree 3 and 4
The following construction is a slight modification of a construction by H. Fleischner [3].

Let P = (V,E) be a graph and s, t, v ∈ V be vertices. If there is a unique hamiltonian path from s to
t in the graph P−v = P [V \ {v}] induced by V \ {v}, we call P = (P, s, t, v) a weak H-plugin or just
an H-plugin. If in addition there is no hamiltonian path from s to t in P (so also containing v), we call
P = (P, s, t, v) a strong H-plugin.

In cases where s, t, and v are clear from the context, we will also refer to the graph P alone as an
H-plugin.
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Fig. 1: The splicing operation.

For an H-plugin (P, s, t, v) and a graph G with a vertex x of degree 3 with neighbours y, x1, x2, we
define the P-splice of G at {x, y}, denoted as O(x, y,P) as the graph obtained by removing x, connecting
x1 with the vertex s in a copy P ′ of P , x2 with the vertex t in P ′ and identifying the vertex v in P ′ with
y. This operation is sketched in Figure 1. We will also refer to it shortly as splicing the edge {x, y}. The
notation O(x, y,P) does not take into account which of the vertices is x1 and which is x2, so in general
O(x, y,P) is one of the two possibilities. Elementary arguments show that if P – or at least P together
with a new vertex connected to s, t, and v – as well as G are 3-connected, then O(x, y,P) is 3-connected.

The following lemma and corollary are stronger versions of Lemmas 1,2, and 3 in [3].

Lemma 3.1 (parts already in [3]) Let G = (V,E) be a graph with a unique hamiltonian cycle CH ,
x ∈ V of degree 3 with neighbour y, so that the edge {x, y} is not on CH . Let P = (P, s, t, v) be an
H-plugin.

If at least one of the following three conditions is fulfilled, then O(x, y,P) has a unique hamiltonian
cycle CH,O. Except for the edges incident with x, all edges of CH are also contained in CH,O.

(i) G[V \ {y}] is not hamiltonian.

(ii) {x, y} lies in a triangle.

(iii) P is a strong H-plugin.

Condition (iii) also explains the name strong H-plugin: while in general the splicing of edges that are
not on the unique hamiltonian cycle only guarantees a unique hamiltonian cycle in the result if the edges
satisfy some extra condition, this extra condition is not necessary if P is strong.

Proof: As s and t have only one edge to the outside of (the copy of) P in O(x, y,P), none of them can
be incident only with edges of a hamiltonian cycle CH,O of O(x, y,P) that lie outside P . To this end
there are in principle three ways how CH,O could pass through P :

a.) by a hamiltonian path of P−v from s to t while the vertex v = y is incident to two edges of CH,O not
in P ,

b.) by a hamiltonian path of P from v to s or to t,

c.) by a hamiltonian path of P from s to t.

In all three cases (i), (ii), and (iii) of the lemma, we can get a hamiltonian cycle of O(x, y,P) passing
P like described in a.) if we replace the part x1, x, x2 in CH by x1, s, . . . , t, x2 with the middle part the
unique hamiltonian path from s to t in P−v . So there is always a hamiltonian cycle for case a.), but that
cycle is unique due to the two paths in P−v and outside P−v being unique.

Assume now that O(x, y,P) has a hamiltonian cycle passing P as in case b.) and assume w.l.o.g.
that the endpoint is s. Replacing the part y = v, . . . , s, x1 by y, x, x1, we get a hamiltonian cycle of G
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containing {x, y}, which does not exist, as CH is unique. So a hamiltonian cycle falling into case b.) does
not exist.

It remains to be shown that also case c.) can not occur under the additional prerequisites.
(i)
Assume that O(x, y,P) has a hamiltonian cycle passing P as in case c.). Replacing the part x1, s, . . . , t, x2

(now also containing v = y) by x1, x, x2, we get a cycle in G missing only y – that is: a hamiltonian
cycle of G[V \ {y}], which does by assumption not exist.

(ii) This is a special case of (i). Assume that G[V \ {y}] contains a hamiltonian cycle C ′
H . Then C ′

H

passes x by x1, x, x2, but replacing this part by x1, y, x, x2 or x1, x, y, x2 – depending on whether the
triangle is x1, x, y or x2, x, y – we get a hamiltonian cycle of G containing e, which does not exist, as CH

is unique.
(iii) In this case the prerequisites are exactly that a path as in c.) does not exist.

2

Corollary 3.2 (parts already in [3]) Let G = (V,E) be a graph with a unique hamiltonian path PH from
s ∈ V to t ∈ V . Assume x ∈ V , x ̸∈ {s, t} is of degree 3 with neighbour y, so that the edge {x, y} is not
on PH . Let P = (P, s′, t′, v) be an H-plugin.

If at least one of the following four conditions is fulfilled, then O(x, y,P) has a unique hamiltonian
path PH,O from s to t. Except for the edges incident with x, all edges of PH are also contained in PH,O.

(i) y ̸∈ {s, t}, and G[V \ {y}] has no hamiltonian path from s to t.

(ii) {x, y} lies in a triangle.

(iii) P is a strong H-plugin.

(iv) y ∈ {s, t}.

Proof:
Adding a new vertex to G and connecting it with s and t, the resulting graph G′ has a unique hamilto-

nian cycle if and only if G has a unique hamiltonian path from s to t. Applying Lemma 3.1 to G′ we get
the results. Case (iv) follows by case (i) of Lemma 3.1.

2

We can now prove the main theorem for minimum degree 3:

Theorem 3.3 A finite set M = {d0 = 3, d1, d2, . . . , dk} with 3 < d1 < d2 < · · · < dk of natural
numbers is uhc-realizable if and only if M contains an even number. In that case it is also strongly
uhc-realizable.

Proof:
The fact that there is no uniquely hamiltonian graph G with Mdeg(G) = M if M contains no even

number, is a well known result of Thomason [8] – no matter what the condition on connectivity is. To
show that M is uhc-realizable if M contains an even number, we will explicitly construct a 3-connected
uniquely hamiltonian graph G with Mdeg(G) = M in that case.

Figure 2 shows one of the five smallest uniquely hamiltonian graphs G with Mdeg(G) = {3, 4} (see
[4]). By using the strong plugin given in Figure 3 to an edge not on the hamiltonian cycle and incident
to a vertex of degree 4, we can increase the degree of that vertex by 2. Doing that recursively, we can
increase the degree of that vertex to any even degree. Applying the plugin to an edge incident with
two vertices of degree 3, we can increase the degree of one of them to 5 and recursively to any odd
degree. As the number of vertices of degree 3 can be increased by replacing a vertex by a triangle – and
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Fig. 2: The graph U3,4 drawn as a minimum genus embedding. Sides with the same colour have to be
identified. This is one of the five smallest uniquely hamiltonian graphs with only degrees 3 and 4 as given
in [4]. The unique hamiltonian cycle is 1, 2, . . . , 18. The vertices 3 and 12 are the only vertices of degree
4.

keeping the graph uniquely hamiltonian – we can conclude that there are infinitely many (3-connected)
uniquely hamiltonian graphs GM for any degree set M = {3, d1, d2, . . . , dk} containing one or two even
degrees. If we take two graphs realizing degree sets M,M ′, remove one vertex of degree 3 in each of
them and connect the neighbours in a way that the parts of the unique hamiltonian cycles are connected
to each other, we get a graph GM∪M ′ realizing the degree set M ∪ M ′. This way we get that for each
M = {3, d1, d2, . . . , dk} with at least one even element there are infinitely many uniquely hamiltonian
graphs GM realizing it.

Assume now that for a degree set M = {3, d1, d2, . . . , dk} containing an even degree a partition
D1, D2 of {d1, d2, . . . , dk} is given. There is a uniquely hamiltonian graph GM realizing M . If D2 is
empty, we can recursively replace vertices of degree 3 by triangles to get an infinite sequence of uniquely
hamiltonian graphs realizing M and having the same number of vertices of degree d ∈ D1. If D2 contains
an even degree, we can make arbitrarily many copies of a graph realizing D2 ∪ {3} and recursively
combine them in the way described above with GM . The result has a constant number of vertices with
degree in D1 and at least a constant fraction of vertices with degree in D2. If finally D2 does not contain
a vertex of even degree, we can recursively replace vertices of degree 3 in GM by triangles, so that for
each k ∈ N and each d ∈ D2 we can use the plugin to make k vertices with degree d. As all graphs
constructed in this proof are 3-connected, this final construction proves that M is strongly uhc-realizable.

2

The repeated application of P3,+2 does not give smallest possible graphs with this degree sequence
– in fact not even smallest graphs constructed by using plugins. There is e.g. a plugin on 15 vertices
increasing the degree of the identified vertex by 4 and increasing the number of vertices by 13 instead of
16 when applying P3,+2 twice.

For minimum degree 4, it is unfortunately not so easy to give a strong plugin, but we have to construct
it, starting from weak plugins.

We do not only want to splice one edge in a graph G, but each edge in some set of edges. This is in
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Fig. 3: The Petersen graph with one edge removed gives a strong plugin P3,+2 for s = 1, t = 9 and
v = 10. It can be easily checked by hand that 1, 2, . . . , 9 is the unique hamiltonian path from s to t if v
is removed and of course there is no hamiltonian path from s to t without removing v as it would imply
a hamiltonian cycle in the Petersen graph. When used as a plugin, the degrees in the copy of P3,+2 are 3
and d+ 2 if the vertex identified with v has degree d.

general not possible, if the edges only satisfy condition (i) of Lemma 3.1 or Corollary 3.2 for G: if z is
a vertex, so that G[V \ {z}] has no hamiltonian cycle or hamiltonian path between two vertices a, b, it
is possible that after splicing an edge {x, y} not even close to z, the result O(x, y,P) has a hamiltonian
path or cycle in the graph with z removed. If on the other hand we have a set EO of candidate edges
{x1, y1}, . . . , {xk, yk} to be spliced with different xi in different triangles, or the yi are one of the starting
points s, t of the unique hamiltonian path, these properties are preserved after splicing an edge in EO.
This implies that in that situation we can apply the splicing operation also with a weak H-plugin to all
edges simultaneously or in any order and still draw the conclusions of Lemma 3.1 or Corollary 3.2.

Let G = (V,E) be a graph with s, t ∈ V , v ̸∈ V and a unique hamiltonian path from s to t. For a set
V ′ ⊆ V we define WV ′(G) as the graph obtained from G by adding the vertex v and connecting it to all
vertices in V ′ – or formally: WV ′(G) = (VW , EW ) with VW = V ∪ {v}, EW = E ∪ {{v, w}|w ∈ V ′}.
For a set {4, d1, . . . , dk} with 4 < d1 < d2 · · · < dk we call G = (V,E) a {4, d1, . . . , dk}-seed, if there
is a set V ′ ⊆ V , so that if WV ′(G) is used for splicing an edge with both endpoints of degree 3 in a
3-connected graph, the result is 3-connected and the set of degrees that occur in the copy of WV ′(G) is
exactly {4, d1, . . . , dk}.

Remark 3.4 Let G = (V,E) be a graph with a unique hamiltonian path from s ∈ V to t ∈ V , V ′ ⊆ V
and v ̸∈ V . Then we have:

(i) WV ′(G) is an H-plugin.

(ii) If V ′ = {x, y} and x, y are the endpoints of an edge not on the unique hamiltonian path from s to t,
then W{x,y}(G) is a strong H-plugin.

This remark follows immediately from the definitions of H-plugin and strong H-plugin and the fact
that a hamiltonian path from s to t containing v would imply a hamiltonian path in G containing the edge
{x, y}.
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Fig. 4: The graph P− from [3], which has two hamiltonian cycles: 1, 2, 3, . . . , 15 and
1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 6, 7, 8, 9, 10. As only one of them contains the edge {1, 15} it has a unique
hamiltonian path 1, 2, . . . , 15 from s = 1 to t = 15. Edges with both endpoints of degree 3 to which the
splicing operation with a weak H-plugin can be applied while the uniqueness of the hamiltonian path is
preserved, are drawn as arrows pointing at the vertices which can or must be chosen as y.

If G = (V,E) is an M -seed for some set M and V ′ ⊆ V is a set proving this, then the plugin WV ′(G)
is also called an M -plugin.

We will use seeds to construct weak H-plugins, use those to construct strong H-plugins, and the strong
H-plugins to construct uniquely hamiltonian graphs with certain sets of degrees.

We will first use the splicing operation to show how weak H-plugins imply the existence of certain
strong H-plugins:

Lemma 3.5 If for a set M = {4, d1, . . . , dk} with 4 < d1 < · · · < dk} there is an M -seed S, then there
is a strong H-plugin Pstr

M , so that when Pstr
M is used for splicing an edge with both endpoints of degree

3, the set of vertex degrees of the vertices in the copy of Pstr
M is exactly M .

If there are infinitely many M -seeds, each with for 1 ≤ i ≤ k exactly Ci vertices with degree di when
used for splicing an edge with both endpoints of degree 3, then there are infinitely many strong M -plugins
Pstr
M , each with 5Ci vertices with degree di after splicing.

Proof:
Let PM be the (weak) M -plugin constructed from S as described in Remark 3.4 and assume that for

1 ≤ i ≤ k exactly Ci vertices in PM have degree di when it is used for splicing an edge.
Figure 4 shows the graph P− with a unique hamiltonian path 1, 2, . . . , 15 from s = 1 to t = 15 (given

in [3]). Edges with both endpoints of degree 3 to which the splicing operation with a weak H-plugin can be
applied in a way that there is still a unique hamiltonian path between s and t are drawn as arrows pointing
at the vertices which can or must be chosen as the vertex y in the operation. If we splice these edges with
PM , we get a graph with 5C1, . . . , 5Ck vertices with degrees d1, . . . , dk, 2 vertices (the vertices 5 and
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11) with degree 3, and all other vertices with degree 4. Due to Corollary 3.2, this graph still has a unique
hamiltonian path from s to t not containing the edge {5, 11}. If we remove the edge between s and t, add
a new vertex v, and connect it to the vertices 5 and 11, due to Remark 3.4 we get a strong H-plugin Pstr

d .
Each of the vertices s and t now has a degree d′−1 with d′ ∈ M , so when applied in a splicing operation
the degree is again d′. Before splicing, v has degree 2, so splicing an edge with both endpoints of degree
3 it gets degree 4. All other vertices have a degree in M . If we apply the Pstr

d -splice to an edge with both
endpoints of degree 3, one of them is deleted and the other one is identified with v and gets degree 4. If
there are infinitely many H-plugins PM , each with C1, . . . , Ck vertices with degrees d1, . . . , dk, we get
infinitely many strong H-plugins Pstr

M with 5C1, . . . , 5Ck vertices with degrees 4 < d1 < · · · < dk.
2

Lemma 3.6 For each k ∈ N there are 3-connected uniquely hamiltonian graphs Gk = (Vk, Ek) with
Mdeg(Gk) = {3, 4}, so that the edges not on the hamiltonian cycle form a 2-regular subgraph containing
all vertices of degree 4 together with a matching of size at least k containing all vertices of degree 3.

Proof:
We can apply a well known technique from [6] to obtain a uniquely hamiltonian graph from a graph

with two hamiltonian cycles that contains a cubic vertex that is passed by the two hamiltonian cycles in
different ways. We take two copies of P− and in each of them an arbitrary cubic vertex that is traversed
by the two hamiltonian cycles in two different ways. Say these vertices are v and v′, that the neighbours
are a, b, c, resp. a′, b′, c′ and that the hamiltonian cycles pass v as a, v, b and a, v, c (and accordingly for
v′). Removing v and v′ and adding the edges {a, c′}, {b, b′}, {c, a′}, only one hamiltonian cycle remains
– using the paths a to c in one copy and c′ to a′ in the other.

As in both hamiltonian cycles the vertices of degree 4 are traversed in a way so that the edges not on
the hamiltonian cycle and incident with the 4-valent vertices form a triangle, the result will in each case
have a unique hamiltonian cycle with two triangles of edges not on the hamiltonian cycle containing all 6
vertices of degree 4. As each cubic vertex has exactly one edge not on the hamiltonian cycle, these edges
form the required matching. Starting from this graph, we can replace vertices of degree 3 by triangles to
increase the number of cubic vertices and therefore also the size of the matching until we have a matching
of size at least k.

2

We get the following theorem as an immediate consequence:

Theorem 3.7 Let M ⊂ {4, 5, 6 . . . } with 4 ∈ M be a set, so that there are sets M1,M2, . . . ,Mk with⋃k
i=1 Mi = M and for 1 ≤ i ≤ k there is an Mi-seed Si. Then M is uhc-realizable.
If |M | > 1, |Mi| = 2 for 1 ≤ i ≤ k, and for each i there are infinitely many Mi-seeds with the same

number of vertices with degree different from 4, then M is also strongly uhc-realizable.

Proof:
Given the set M , we can take any uniquely hamiltonian graph Gk′ from Lemma 3.6 with k′ ≥ k,

k′ > 0 and splice the edges of the matching using each of the strong H-plugins Pstr
M1

,. . . ,Pstr
Mk

at least
once. This removes all vertices of degree 3 or increases their degree to 4. Furthermore outside the H-
plugins only degree 4 occurs and in the H-plugins exactly all vertex degrees in M occur, while the graph
has still one unique hamiltonian cycle.

To show that M is strongly uhc-realizable for k ≥ 1, assume a partition D1, D2 of M \{4} to be given.
If D2 = ∅, to construct the sequence of graphs we can use increasingly large strong H-plugins – keeping
the numbers of vertices of degree d constant for d ∈ {d1, . . . , dk}. If D2 ̸= ∅, we can use graphs Gk′

for increasingly large k′ and use the same arbitrarily large number of copies of strong H-plugins Pstr
d for

each d ∈ D2.
2
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Fig. 5: A {4, 7}-seed G with the unique hamiltonian path 1, 2, 3, . . . , 18 from s = 1 to t = 18. The set
V ′ that fulfills the requirements of the definition is the set containing all vertices of degree 3, except for
vertex t = 18, so V ′ = {5, 9, 10, 13, 17}. The uniqueness of the hamiltonian path as well as the fact that
G – so also the result of WV ′(G) used for splicing in a 3-connected graph – is 3-connected, have been
checked by computer, but as the graph is relatively small, these properties can – though tedious – still be
checked by hand.

Remark 3.8 For each k ≥ 7 there are {4, k}-seeds.
For each k ≥ 8 there are infinitely many {4, k}-seeds, so that the corresponding plugins after being

used for splicing an edge with both endpoints of degree 3 contain two vertices of degree k and all other
vertices have degree 4.

Proof: We start from the {4, 7}-seed S7 in Figure 5. We use the triangle 1, 2, 3 for constructing {4, k}-
seeds for k ≥ 8 as in Figure 6: new vertices t1, . . . , tk−7 are inserted, the edge {2, 3} is replaced by the
path 2, t1, . . . , tk−7, 3, and edges {1, t1}, . . . , {1, tk} are added. Each hamiltonian path from s = 1 to
t = 18 that is not 1, 2, t1, . . . , tk−7, 3, . . . , 18 could be transformed to a hamiltonian path contradicting
the uniqueness of the hamiltonian path in S7. Also the connectivity requirements can be easily checked.

For k ≥ 8 there is a vertex tk−7 and the number of vertices of degree 4 can be increased by steps
of 1 always producing new {4, k}-seeds for the same k. This procedure is described in Figure 7. Any
hamiltonian path from 1 to 18 traversing the vertices in a different way than given in Figure 7 would
imply a second hamiltonian path from 1 to 18 in S7

2

The construction of the {4, k}-seeds is exclusively to show that such seeds do exist and by no means
meant to construct minimal ones. For k > 7 smaller {4, k}-seeds are known – e.g. a {4, 10}-seed with
10 vertices. This {4, 10}-seed has only vertices of degree 2, 3, and 4 and the hamiltonian path goes from
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1

3 2t
k−7

t
1

Fig. 6: Constructing {4, k}-seeds for k > 8.

t
1

t
k−7

1

3 2

Fig. 7: Extending a {4, k}-seed for k ≥ 8 constructed from the {4, 7}-seed in Figure 5 by increasing the
number of vertices of degree 4. The number of vertices of degree 4 can be increased by steps of 1 vertex.

a vertex of degree 2 to a vertex of degree 3 – see Figure 11.
Unfortunately in spite of an extensive computer search, no {4}-, {4, 5}-, or {4, 6}-seeds were found.

See Section 4 for details.

Remark 3.9 For each k ≥ 7 there are {4, 6, k}-seeds.
For each k ≥ 8 there are infinitely many {4, 6, k}-seeds, so that the corresponding plugins after being

used for splicing an edge with both endpoints of degree 3 contain one vertex of degree 6, 2 vertices of
degree k, and all other vertices have degree 4.

Proof:
In Figure 8 a {4, 6, 7}-seed is given that contains a triangle 1, 2, 3 and the unique hamiltonian cycle

from 1 to 16 contains the edges {1, 2} and {2, 3}. Except for vertex 1 none of the vertices has degree 7
after splicing an edge, so the seed can be extended in the same way as in the proof of Remark 3.8 to seeds
for larger k and for k ≥ 8 also to the infinite sequence.

2

Remark 3.10 For each k ≥ 6 there are {4, 5, k}-seeds.
For each k ≥ 7 there are infinitely many {4, 5, k}-seeds, so that the corresponding plugins after being

used for splicing an edge with both endpoints of degree 3 contain one vertex of degree 5, 2 vertices of
degree k, and all other vertices have degree 4.

Proof:
In Figure 9 a {4, 5, 6}-seed is given that contains a triangle 1, 2, 3 and the unique hamiltonian cycle

from 1 to 16 contains the edges {1, 2} and {2, 3}. Except for vertex 1 none of the vertices has degree 6
after splicing an edge, so the seed can be extended in the same way as in the proof of Remark 3.8 to seeds
for larger k and for k ≥ 7 also to the infinite sequence.
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Fig. 8: A {4, 6, 7}-seed G with the unique hamiltonian path 1, 2, 3, . . . , 16 from s = 1 to t = 16. The set
V ′ that fulfills the requirements of the definition is the set containing all vertices of degree 3.

2

Theorem 3.7 and Remarks 3.8, 3.9, and 3.10 now immediately imply the main result for minimum
degree 4:

Theorem 3.11 • Except for maybe {4}, {4, 5}, and {4, 6}, any set M = {4, d1, d2, . . . , dk} with
4 ≤ d1 < d2 < · · · < dk is uhc-realizable.

• Any set M = {4, d1, d2, . . . , dk} with 8 ≤ d1 < d2 < · · · < dk and k ≥ 1 is strongly uhc-
realizable.

Due to Theorem 3.7 the existence of a 4-seed implies the existence of a 3-connected uniquely hamilto-
nian 4-regular graph, but in fact also the other direction is correct:

Corollary 3.12 There is a 3-connected uniquely hamiltonian 4-regular graph, if and only if there is a
{4}-seed. In that case there are infinitely many 3-connected uniquely hamiltonian 4-regular graphs and
every set M of natural numbers d ≥ 2 with 4 ∈ M and |M | ≥ 2 is strongly uhc-realizable.

Proof: From a 3-connected uniquely hamiltonian 4-regular graph G we can get a {4}-seed with deg(s) =
3 and deg(t) = 2 by choosing a vertex of G as s, subdivide an edge {s, x} on the hamiltonian cycle
incident with s with a new vertex t, and remove an edge {s, y} that is not on the hamiltonian cycle. The
set {y, t} shows that it is a {4}-seed. The 3-connectivity after using plugins constructed from it follows
by standard arguments from Menger’s theorem. A way to construct seeds with more vertices of degree
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Fig. 9: A {4, 5, 6}-seed G with the unique hamiltonian path 1, 2, 3, . . . , 16 from s = 1 to t = 16. The set
V ′ that fulfills the requirements of the definition is the set containing all vertices of degree 3.

4 and {4, k}-seeds for k > 4 is given in Figure 10. The rest of the statement is a direct consequence of
Remark 2.1, Theorem 3.3, and Theorem 3.7. 2

Furthermore, for 4-regular graphs, the existence of a 2-connected uniquely hamiltonian graph also
implies the existence of a 3-connected uniquely hamiltonian graph:

Lemma 3.13 There is a 3-connected uniquely hamiltonian 4-regular graph, if and only if there is a 2-
connected uniquely hamiltonian 4-regular graph.

Proof:
As 3-connected graphs are also 2-connected, the only thing to prove is that the existence of a uniquely

hamiltonian 4-regular graph with a 2-cut implies the existence of a 3-connected uniquely hamiltonian
4-regular graph.

Let G = (V,E) be a uniquely hamiltonian 4-regular graph with a 2-cut and {s, t} be vertices of a 2-cut,
so that one of the components of G[V \ {s, t}] – say C0 – has minimum size. Let G0 = G[C0 ∪ {s, t}].
Then there is a unique hamiltonian path in G0 from s to t and due to the minimality of C0 the vertices s
and t have degree at least 2 in G0. If one has degree 2, they are non-adjacent. As the number of vertices
with odd degree must be even and as they both have neighbours in more than one component, they both
have degree 2 or both have degree 3. In case of degree 2 we can add the edge {s, t}, so that in each case
we have a graph, which we will call again G0 with a unique hamiltonian path PH from s to t, where s and
t are of degree 3 and all other vertices of degree 4. Let now Gv

0 be G0 with an edge e ̸= {s, t} that is not
part of PH subdivided with a new vertex v. By construction Gv

0 does not have a hamiltonian path from
s to t, but a unique hamiltonian path in (Gv

0)−v = G0. So Gv
0 is a strong H-plugin that when applied to

two connected copies of P− like in Lemma 3.6 gives a 4-regular uniquely hamiltonian graph.
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x
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Fig. 10: Extending a {4}-seed with more vertices of degree 4 and making {4, k}-seeds from it, depicted
for the example k = 6, where the set V ′ from the definition of seeds would be {y, t′, t1, t2}.

It remains to be shown that for a 3-connected graph G′ and suitable x, y ∈ G′ the graph O(x, y,Gv
0) is

3-connected. It is sufficient to show that the graph G1 obtained from Gv
0 by adding a new vertex v′ and

connecting it to s, t, and v is 3-connected.
Assume to the contrary that G1 has a 2-cut K. Note that K ̸= {s, t} as C0 is a component and v and

through v also v′ are connected to it. If s and t are in different components of G1 \K, then the common
neighbour v′ must be in K. So K \ {v′} is a 1-cut of Gv

0 . If K = {v, v′}, choose w as a neighbour of v
different from s, t, otherwise let w be the vertex in K \ {v′}. Then w is a cutvertex of Gv

0 and also of G0.
Together with s or t it forms a 2-cut contradicting the minimality of C0.

If s and t are in the same component of G1 \ K or one is in K, there is a vertex x ̸∈ {v, v′} in a
component not containing s or t. But then K – possibly after replacing v or v′ in K by a neighbour –
again contradicts the minimality of C0, so G1 does not have a 2-cut.

2

In [2] Fleischner proved that there are 4-regular uniquely hamiltonian multigraphs and in fact 2k-
regular uniquely hamiltonian multigraphs with arbitrarily high degree. Another direct consequence of
Lemma 3.6 is the following simple generalisation:

Corollary 3.14 For a set M = {d1, . . . , dk} with 2 ≤ d1 < d2 < · · · < dk of natural numbers there is
a uniquely hamiltonian multigraph G with Mdeg(G) = M if and only if M contains an even number. In
that case there are infinitely many 3-connected uniquely hamiltonian multigraphs G with Mdeg(G) = M .

Proof:
In [8] it is shown that uniquely hamiltonian multigraphs do not exist if all degrees are odd, so we only

have to prove that they do exist if an even degree is contained.
For 2 ∈ M this is even proven for simple graphs in Remark 2.1, so assume that all elements of M

are at least 3. Taking graphs Gk′ with k′ ≥ k from Lemma 3.6 with the matching and 2-factor with the
described properties, we can multiply the edges of the 2-factor containing the 4-regular vertices until the
vertices all have an even degree contained in M . For each remaining degree di, we can now choose an
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Fig. 11: A graph with a unique hamiltonian path from s = 1 to t = 10. The set V ′ = {3, 4, 5, . . . , 10}
shows that it is a {4, 10}-seed. It is the unique smallest {4, 10}-seed.

edge in the matching and multiply it until it has degree di. If there are still vertices of degree 3 left and
3 ̸∈ M , we can multiply the corresponding edges of the matching until a degree in M is reached.

2

4 Computational results
All seeds displayed in this article (and many more) were found by computer. Generating and testing all
graphs with certain degrees would be too time consuming, so two specialized programs were developed,
one of them mainly to test the second one that was used for the most time consuming runs. The programs
were designed to construct seeds where the degree sets with limits for the numbers of vertices with each
degree as well as the degrees of s and t are given as a parameter. The programs start with a hamiltonian
path s = 1, 2, . . . , n − 1, t = n and then add edges in a way that given degree restrictions are respected
and that no second hamiltonian path from 1 to n is introduced.

The smallest {4, 10}-seed has only 10 vertices, {deg(s),deg(t)} = {2, 3}, and the maximum degree
is 4 – see Figure 11. Though {deg(s),deg(t)} = {2, 3} and maximum degree 4 in the seed seems a good
choice as it implies the smallest possible number of edges in a seed with a given number of vertices, for
k < 10 no {4, k}-seeds with this structure exist up to |V | ≤ 21. In fact for odd k, no such seeds can exist
as they would need an odd number of vertices of the only odd degree, which is 3.

The smallest {4, 9}-seeds have 14 vertices and {deg(s),deg(t)} = {3, 7} or {deg(s),deg(t)} =
{3, 8} and the smallest {4, 8}-seeds have 14 vertices and {deg(s),deg(t)} = {3, 7} or {deg(s),deg(t)} =
{7, 7}. Except for s, t, also for these seeds the maximum degree is 4. In fact one of the {4, 8}-seeds is
also a {4, 9}-seed. It is given in Figure 12.

Unfortunately the computation of seeds is very time consuming. Testing all possible sets of degrees of
{4, 7}-seeds on 15 vertices already took about 100 days of CPU time on an AMD EPYC 7552 running
with 2.2 to 3.3 GHz with full load. The possible presence of vertices with degree larger than 4 inside
the seed – that is: at a vertex different from s and t – has a large impact on the time consumption. Not
allowing vertices with degree larger than 4 inside the seed, the search for {4, 7}-seeds on 15 vertices
needed about 37 minutes on the same machine. As for the smallest {4, k}-seeds for k ∈ {8, 9, 10}, no
such vertices were present, for k ≤ 7 we focused on seeds without vertices with degree larger than 4
inside.
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Fig. 12: A graph with a unique hamiltonian path from s = 1 to t = 14. The set V ′ = {4, 5, 6, 8, 9, 12}
shows that it is a {4, 8}-seed and the set V ′ = {1, 4, 5, 6, 8, 9, 12} shows that it is a {4, 9}-seed. There
are no smaller {4, 8}- or {4, 9}-seeds.

To be exact: for k ∈ {6, 7} we did a complete search only up to 15 vertices. No {4, 6}- or {4, 7}-seeds
exist for these vertex numbers. For larger vertex numbers we focused on seeds without interior vertices
with large degree. The smallest such 7-seeds have 18 vertices – an example is given in Figure 5. For 6-
seeds the existence of seeds without internal vertices of large degree was only checked up to 17 vertices.
No such 6-seeds were found. For 18, 19 and 20 vertices we restricted the search to 3 cases: for no internal
vertices with degree larger than 4 the cases {deg(s),deg(t)} = {5, 5} and {deg(s),deg(t)} = {3, 5}
were checked. For one internal vertex with degree 5, the case {deg(s),deg(t)} = {3, 3} with 5 vertices
of degree 3, one (internal) vertex of degree 5 and the rest of degree 4 was checked. No such seeds were
found and the total CPU time needed was about 18 years on an AMD EPYC 7532.

Even for carefully designed and implemented algorithms independent tests are necessary. As runs
without any output are not very good tests for the programs, the two programs were also compared when
generating 10-seeds and 12-seeds with {deg(s),deg(t)} = {2, 3} and no internal vertices with degree
larger than 4. The output of the two programs was compared for their number and for isomorphism up
to 20 vertices. For 10-seeds there were in total 4.689 non-isomorphic seeds and for 12-seeds there were
in total 1.414.640 non-isomorphic seeds. In addition k-seeds with {deg(s),deg(t)} = {3, k − 1}, no
internal vertices of degree larger than 4, and 6 ≤ k ≤ 10 on up to 16 vertices (in total 4.907 seeds) were
compared. For seeds, isomorphism means that the two endpoints of the hamiltonian path are marked
vertices and are distinguished from the other vertices, so some seeds that are non-isomorphic as seeds can
be isomorphic as graphs. There was complete agreement. The program used for the larger runs can be
obtained from the authors.

5 Final remarks
In this article we are interested only in uniquely hamiltonian graphs. Nevertheless the method of splicing
can also be useful when constructing graphs with few hamiltonian cycles. We will only give a short sketch
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Fig. 13: The splicing operation for more than one hamiltonian cycle with a generalized 4-seed and a
generalized 6-seed.

of the possibilities. We will not formally state results, as we do not give formal proofs. The following
statements should be considered as preliminary as long as no proofs are given somewhere.

If we allow ns hamiltonian paths from s to t in a seed and nG hamiltonian cycles in a graph G – none
of them containing the edge e of G – then with the otherwise same prerequisites of Lemma 3.1, the proof
can be repeated, this time showing that the result after splicing has ns · nG hamiltonian cycles. This
implies that for any set M of natural numbers with minimum 4 there is a constant C and an infinite series
of graphs with degree set M and at most C hamiltonian cycles. In fact there is also one constant working
as an upper bound for all sets M . The constants we get from our proof that used P− are nevertheless very
large and far worse for the 4-regular case than in [10]. For better constants one has to search for starting
graphs that need fewer splicing operations, but can have more than one hamiltonian cycle. An example
is the construction in [10] proving that there are infinitely many (2-connected) 4-regular graphs with 144
hamiltonian cycles. It was found and proven in a completely different way, but can be interpreted making
use of splicing:

The graph in Figure 13(c) has 36 hamiltonian cycles – none of them containing {x, y}. Furthermore
removing y, the graph is non-hamiltonian. The generalized 4-seed (that is: allowing more than one
hamiltonian path from s to t) in Figure 13(a) has 4 hamiltonian paths from s to t, so with plugins obtained
from it and its extensions, the results of splicing {x, y} have 144 hamiltonian cycles. The generalized
seed in Figure 13(b) has 2 hamiltonian paths from s to t and would give one vertex of degree 6, so splicing
{x, y} would give 72 hamiltonian cycles for the degree set M = {4, 6} and replacing a vertex of degree
3 by a triangle also for M = {4, 8}.

All graphs explicitly given in the previous sections can be inspected at and downloaded from the
database House of Graphs [1]. They can be found by searching for the keyword UHG_degree_sequence.

All properties about small graphs stated here have been checked by computer, but can – though some-
times tedious – be confirmed by hand.
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