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A permutation τ in the symmetric group Sj is minimally overlapping if any two consecutive occurrences of τ in
a permutation σ can share at most one element. Bóna showed that the proportion of minimal overlapping patterns
in Sj is at least 3 − e. Given a permutation σ, we let Des(σ) denote the set of descents of σ. We study the class
of permutations σ ∈ Skn whose descent set is contained in the set {k, 2k, . . . (n − 1)k}. For example, up-down
permutations in S2n are the set of permutations whose descent equal σ such that Des(σ) = {2, 4, . . . , 2n−2}. There
are natural analogues of the minimal overlapping permutations for such classes of permutations and we study the
proportion of minimal overlapping patterns for each such class. We show that the proportion of minimal overlapping
permutations in such classes approaches 1 as k goes to infinity. We also study the proportion of minimal overlapping
patterns in standard Young tableaux of shape (nk).
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1 Introduction
Let Sn denote the set of permutations of [n] = {1, . . . , n}. We let k[n] = {k, 2k, . . . , nk} if k, n ≥ 1. If
σ = σ1 . . . σn is an element of Sn, we let Des(σ) = {i : σi > σi+1}. For any k, n ≥ 1, C=k[n−1] denote
the set of all σ in Skn such that Des(σ) = k[n− 1] and C⊆k[n−1] denote the set of all σ in Skn such that
Des(σ) ⊆ k[n − 1]. For example, elements of C=2[n−1] are permutations σ = σ1σ2 . . . σ2n ∈ S2n such
that

σ1 < σ2 > σ3 < σ4 > · · · .

These are called up-down permutations or even alternating permutations.
One way to think of elements in C⊆k[n−1] is as column strict arrays which were studied by Harmse and

Remmel in [6] and [7]. A column-strict array P is a filling of a k × n rectangular array with 1, 2, · · · , kn
such that elements increase from bottom to top in each column. Let Fn,k denote the set of all the column-
strict arrays with n columns and k rows. Given a P ∈ Fn,k, we let P [i, j] denote element in the ith
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column and jth row where the columns are labeled from left to right and the rows are labeled from bottom
to top. We let σP denote the permutation

σp = P [1, 1]P [1, 2] . . . P [1, k]P [2, 1]P [2, 2] . . . P [2, k] . . . P [n, 1]P [n, 2] . . . P [n, k].

For example, if P is the element of F4,3 pictured in Figure 1, then σP = 3 11 12 1 2 4 6 8 10 5 7 9. This
given, it is easy to see that σP ∈ C=k[n−1] if and only if P [i, k] > P [i + 1, 1] for all 1 ≤ i ≤ n − 1. An
array P ∈ Fn,k is a standard tableau of shape (nk) if P is strictly increasing in rows, reading from left
to right. That is, P is strictly increasing in rows if for all 1 ≤ j ≤ k,

P [1, j] < P [2, j] < · · · < P [n, j].

We let ST (nk) denote the set of all standard tableaux of shape (nk).

3 1 6 5 

7 

9 4 

2 8 11 

12 10 

Fig. 1: An element of F4,3.

Given any sequence of pairwise distinct positive integers, α = α1 . . . αn, we let red(α) denote the
permutation of Sn that results from α by replacing the ith smallest element of α by i for i = 1, . . . , n. For
example, red(3 6 8 2 9) = 2 3 4 1 5. Given a permutation τ ∈ Sj and permutation σ = σ1 . . . σn ∈ Sn,
we say that

1. τ occurs in σ if there are 1 ≤ i1 < i2 < · · · < ij ≤ n such that red(σi1 . . . σij ) = τ ,

2. σ avoids τ if there is no occurrence of τ in σ, and

3. there is a τ -match in σ starting at position i if red(σiσi+1 . . . σi+j−1) = τ .

We let τ -mch(σ) denote the number of τ -matches in σ. We say that τ has the minimal overlapping prop-
erty or τ is minimally overlapping if the smallest n such that there exists σ ∈ Sn such that τ -mch(σ) = 2
is 2j− 1. This means in any two consecutive τ -matches in a permutation σ can share at most one element
which must necessarily be at the end of the first τ -match and the start of the second τ -match. It fol-
lows that if τ ∈ Sj is minimally overlapping, then the smallest n such that there exist a σ ∈ Sn such that
τ -mch(σ) = k is k(j−1)+1. We call these particular elements of Sk(j−1)+1 maximum packings for τ and
we letMPτ,k(j−1)+1 = {σ ∈ Sk(j−1)+1 : τ -mch(σ) = k}. We let mpτ,k(j−1)+1 = |MPτ,k(j−1)+1|

Minimal overlapping permutations are nice in that we have a nice expression for the generating function
of xτ -mch(σ) over permutations. That is, Duane and Remmel [3] proved the following theorem.

Theorem 1. If τ ∈ Sj has the minimal overlapping property, then∑
n≥0

tn

n!

∑
σ∈Sn

xτ -mch(σ)pcoinv(σ)qinv(σ) =

1

1− (t+
∑
n≥1

tn(j−1)+1

[n(j−1)+1]p,q !
(x− 1)nmpτ,n(j−1)+1(p, q))

. (1)
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Here if σ = σ1 . . . σn ∈ Sn, then inv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi > σj}| and coinv(σ) =
|{(i, j) : 1 ≤ i < j ≤ n & σi < σj}| and

mpτ,n(j−1)+1(p, q) =
∑

σ∈MPτ,n(j−1)+1

pcoinv(σ)qinv(σ).

Harmse and Remmel generalized these definitions and results to Fn,k. However, as we shall see their
definitions make perfectly good sense in the the setting of C=k[n−1] or ST (nk). That is, if F is any filling
of a k × n-rectangle with distinct positive integers such that elements in each column increase, reading
from bottom to top, then we let red(F ) denote the element of Fn,k which results from F by replacing the
ith smallest element of F by i. For example, Figure 2 pictures a filling F with its corresponding reduced
filling, red(F ).

8 10 

17 

13 15 

20 

1 

4 

3 

2

5 

8 red
6 

9 

7 

2 

9 

7 

Fig. 2: An example of red(F ).

If F ∈ Fn,k and 1 ≤ c1 < · · · < cj ≤ n, then we let F [c1, . . . , cj ] be the filling of the k × j
rectangle where the elements in column a of F [c1, . . . , cj ] equal the elements in column ca in F for
a = 1, . . . , j. We can then extend the usual pattern matching definitions from permutations to elements
of Fn,k, C=k[n−1], or ST (nk) as follows.

Definition 2. Let P be an element of Fj,k (C=k[j−1], ST (jk)) and F ∈ Fn,k (C=k[n−1], ST (nk)) where
j ≤ n. Then we say

1. P occurs in F if there are 1 ≤ i1 < i2 < · · · < ij ≤ n such that red(F [i1, . . . , ij ]) = P ,

2. F avoids P if there is no occurrence of P in F , and

3. there is a P -match in F starting at position i if red(F [i, i+ 1, . . . , i+ j − 1]) = P .

We let P -mch(F ) denote the number of P -matches in F . For example, if we consider the fillings
P ∈ F3,3 and F,G ∈ F6,3 shown in Figure 3, then it is easy to see that there are no P -matches in F but
there is an occurrence of P in F since red(F [1, 2, 5]) = P . Also, there are 2 P -matches in G starting at
positions 1 and 2, respectively, so P -mch(G) = 2.

We say that an element P in Fj,k (C=k[n−1], ST (nk)) has the minimal overlapping property or is
minimally overlapping if the smallest i such that there exists an F ∈ Fi,k (C=k[i−1], ST (ik)) with
P -mch(F ) = 2 is 2j − 1. Thus if P has the minimal overlapping property, then two consecutive P -
matches can only overlap in a single column, namely the last column of the first match and first column
of the second match. We say that P is overlapping if P is not minimal overlapping.

If P ∈ Fj,k (C=k[j−1], ST (jk)) has the minimal overlapping property, then the smallest i such
that there exists an F ∈ Fi,k (C=k[i−1], ST (ik)) such that P -mch(F ) = n is n(j − 1) + 1. If
P ∈ Fj,k, we let MPP,n(j−1)+1 denote the set of all F ∈ Fn(j−1)+1,k such that P -mch(F ) = n
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Fig. 3: Examples of P -matches and occurrences of P .

and set mpP,n(j−1)+1 = |MPP,n(j−1)+1|. If P ∈ C=k[j−1], we let CMPP,n(j−1)+1 denote the set
of all F ∈ C=k[n(j−1)+1] such that P -mch(F ) = n and set cmpP,n(j−1)+1 = |CMPP,n(j−1)+1|.
If P ∈ ST (jk), we let STMPP,n(j−1)+1 denote the set of all F ∈ ST ((n(j − 1) + 1)k) such
that P -mch(F ) = n and set stmpP,n(j−1)+1 = |STMPP,n(j−1)+1|. In each case we shall call an
F ∈MPP,n(j−1)+1 (F ∈ CMPP,n(j−1)+1, F ∈ STMPP,n(j−1)+1) a maximum packing for P .

Given P ∈ Fj,k, let

AP (x, t) =
∑
n≥0

tn

(kn)!

∑
F∈Fn,k

xP -mch(F ).

Clearly, when x = 0,

AP (0, t) =
∑
n≥0

tn

(kn)!
|{F ∈ Fn,k : P -mch(F ) = 0}| .

For P,Q ∈ Fj,k, if AP (0, t) = AQ(0, t), we say P and Q are c-Wilf equivalent. If AP (x, t) = AQ(x, t),
we say P and Q are strongly c-Wilf equivalent. In [10], in the case where k = 1, Nakamura conjectured
that if two permutations are c-Wilf equivalent then they are also strongly c-Wilf equivalent. Harmse and
Remmel gave a similar conjecture in [7] when k ≥ 2. That is, they made the following conjecture.

Conjecture 3. P,Q ∈ Fn,k are c-Wilf equivalent if and only if P and Q are strongly c-Wilf equivalent.

It has been shown that the conjecture holds for minimal overlapping patterns and the first and the last
column of a pattern determines which c-Wilf equivalence class it belongs to (see [2], [3], [4], and [7]).
The key to proving such results is to prove an analogue to Theorem 1. This was done by Harmse and
Remmel [7] who proved the following theorem for minimal overlapping patterns in Fj,k.

Theorem 4. Suppose that k ≥ 2, j ≥ 2, and P ∈ Fj,k has the minimal overlapping property. Then

AP (t, x) =
1

1− ( tk! +
∑
n≥1

tn(j−1)+1

(k(n(j−1)+1))! (x− 1)nmpP,n(j−1)+1)
. (2)

One can prove analogous results for minimal overlapping patterns P in C=k[j−1] and for minimal over-
lapping patterns P in ST (jk). However, such results can no longer be expressed just in terms of maxi-
mum packings, but require a more sophisticated concept of generalized maximum packing. This will be
the subject of a forthcoming paper [11].

The main focus of this paper is the following questions.
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How many minimal overlapping patterns are there in Fn,k?
How many minimal overlapping patterns are there in ST (nk)?
How many minimal overlapping patterns are there in C=k[n−1]?

We letMn,k (STMn,k, CMn,k) denote the number of minimal overlapping patterns in Fn,k ( ST (nk),
C=k[n−1]). Then we will be interested in the following quantities:

an,k =
Mn,k

|Fn,k|
,

bn,k =
STMn,k

|ST (nk)|
, and

cn,k =
CMn,k

|C=k[n−1]|
.

Bóna studied the behavior of an,1 in [1]. In [1], Bóna proved that an,1 ≥ 3 − e ≈ 0.2817. That is, he
proved that at least 28.17% of the permutations in Sn are minimimal overlapping. Moreover, he proved
that lim

n→∞
an,1 exists. The main goal of this paper is to prove similar results for an,k, bn,k, and cn,k.

The outline of this paper is as follows. In Section 2, we shall give general lower bound for an,k for all
k. In Section 3, we shall give formulas for Mn,k and an,k. In Section 4, we shall study the asymptotic
behavior of {an,k} for fixed k. In Section 5, we shall analyze bn,k and in Section 6, we shall analyze
cn,k. In section 7, we shall briefly discuss some open questions about the problem of finding the number
of minimal overlapping permutations that start with a given initial segment.

2 Lower Bound for an,k
Bóna proved that the probability that a randomly selected pattern in Fn,1 is minimal overlapping is at
least 3 − e ≈ 0.282, that is, L1 = 3 − e is a lower bound for {an,1}n≥1, independent on n. Based on
Bóna’s idea in [1], we are able to find a basic lower bound Lk for {an,k}n≥1 for any given k ≥ 1.

We say that P ∈ Fn,k is overlapping at position i if red(P [1, . . . , i]) = red(P [n − i + 1, . . . , n]).
That is, the reduction of the first i columns of P is equal to the reduction of the last i columns of P .
Suppose P ∈ Fn,k is overlapping, then there exists integer i, 2 ≤ i ≤ n − 1 such that P is overlapping
at position i. Furthermore, one can easily check that P is overlapping if and only if there exists integer
i, 2 ≤ i < n

2 + 1 such that P is overlapping at position i. Let Ei be the event that P is overlapping at

position i. If 2 ≤ i ≤ n
2 + 1, the probability that Ei happens Pr(Ei) =

(k!)i

(ik)! . That is, we can partition
the elements of Fn,k by the set of elements that lie in the first i columns of P and the set of elements
that lie in the last i columns of P . Once the filling of the first i columns of P is fixed, there are (ik)!

(k!)i

ways to arrange the elements in the last i columns and only one of them is favorable. If n2 < i < n
2 + 1,

Pr(Ei) ≤ (k!)i

(ik)! . Then the probability that a randomly selected pattern in Fn,k is overlapping is bounded
by

Pr

 ⋃
2≤i<n

2 +1

Ei

 ≤ ∑
2≤i<n

2 +1

Pr(Ei) ≤
∑

2≤i<n
2 +1

(k!)i

(ik)!
<
∑
i≥2

(k!)i

(ik)!
.

Then for a fixed k, we get a lower bound Lk for {an,k}n≥1.
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Theorem 5.
Lk = 1−

∑
i≥2

(k!)i

(ik)!
. (3)

Then by Theorem 5, we can compute L1 and L2 directly.

L1 = 1−
∑
i≥2

1

i!
= 1− (−2 + e) = 3− e ≈ 0.282.

L2 = 1−
∑
i≥2

(2!)i

(2i)!
= 3−

∑
i≥0

2i

(2i)!
= 3− 1

2

(∑
i=0

(
√
2)i

i!
+
∑
i=0

(−
√
2)i

i!

)

= 3− 1

2

(
e
√
2 + e−

√
2
)
= 3− cosh(

√
2) ≈ 0.822.

The results above indicate there are at least 28.2% of patterns in Fn,1 that are minimal overlapping, and
at least 82.2% of patterns in Fn,2 that are minimal overlapping, no matter what n is.

Moreover, by observing Equation (3), one can easily find that the sequence {Lk} is monotone increas-
ing. It agrees with our intuition because a pattern is minimal overlapping as long as there exists one
row whose reduction is minimal overlapping and, hence, more rows means higher chance to be minimal
overlapping. Also, since {Lk} is bounded by 1, the sequence converges.

Theorem 6.
lim
k→∞

Lk = 1. (4)

Proof: Since

Lk = 1−
∑
i≥2

(k!)i

(ik)!
,

to show (4) it suffices to show

lim
k→∞

∑
i≥2

(k!)i

(ik)!
= 0.

For i ≥ 2,

lim
k→∞

(k!)i

(ik)!
= 0,

∣∣∣∣ (k!)i(ik)!

∣∣∣∣ ≤ 1

i2
and

∑
i≥2

1

i2
<∞.

Then by the dominated convergence theorem,

lim
k→∞

∑
i≥2

(k!)i

(ik)!
=
∑
i≥2

lim
k→∞

(k!)i

(ik)!
= 0.

Thus we have the following corollary.

Corollary 7. For a given n,
lim
k→∞

an,k = 1. (5)

Now we see no matter how large n is, almost every pattern in Fn,k is minimal overlapping as long as k
is large enough. Another fact worth mentioning is that {Lk} converges to 1 rapidly. By (3), L1 ≈ 0.282,
L2 ≈ 0.822, L3 ≈ 0.950, L4 ≈ 0.986, L5 ≈ 0.996, · · · .
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3 Formulas for Mn,k and an,k
It follows from our observations in the previous section that a pattern P ∈ Fn,k is overlapping if and only
if there exists a unique integer i such that P is overlapping at position i and the reduction of the first i
columns of P is minimally overlapping with 2 ≤ i < n

2 + 1. The basic idea of obtaining the formula
for Mn,k, the number of minimal overlapping patterns in Fn,k, is to subtract the number of overlapping
patterns from the total number.

Assuming n is fixed, we separate the discussion of Mn,k into two cases.
Case 1. k is an even number.

Mn,k =

(
nk

k, k, . . . , k

)
−M2,k

(
nk

2k, 2k

)(
(n− 4)k

k, k, · · · , k

)
−M3,k

(
nk

3k, 3k

)(
(n− 6)k

k, k, · · · , k

)
−M4,k

(
nk

4k, 4k

)(
(n− 8)k

k, k, . . . , k

)
− · · · −Mn

2 ,k

(
nk

1
2nk,

1
2nk

)

=
(nk)!

(k!)n
−

n
2∑
i=2

Mi,k

(
nk

ik, ik

)
((n− 2i)k)!

(k!)n−2i
.

The only significant difference between the even case and the odd case is the term corresponding to
patterns overlapping at position n+1

2 .
Case 2. n is an odd number.

Mn,k =

(
nk

k, k, . . . , k

)
−M2,k

(
nk

2k, 2k

)(
(n− 4)k

k, k, · · · , k

)
−M3,k

(
nk

3k, 3k

)(
(n− 6)k

k, k, · · · , k

)
− · · · −Mn−1

2 ,k

(
nk

1
2 (n− 1)k, 12 (n− 1)k

)
−

∑
P∈Mn+1

2
,k

mpP,n

=
(nk)!

(k!)n
−

n−1
2∑
i=2

Mi,k

(
nk

ik, ik

)
((n− 2i)k)!

(k!)n−2i
−

∑
P∈Mn+1

2
,k

mpP,n.

Dividing Mn,k by |Fn,k|, we get formula of an,k as follows
Theorem 8.

If n is even, an,k = 1−
n
2∑
i=2

ai,k
(k!)i

(ik)!
. (6)

If n is odd, an,k = 1−

n−1
2∑
i=2

ai,k
(k!)i

(ik)!
− bn,k, (7)

where bn,k =

∑
P∈Mn+1

2
,k

mpP,n

|Fn,k| .

It may seem that (6) and (7) gives us a way to recursively compute an,k, but unfortunately this is not
the case. That is, while the even terms depend only on the previous values, the odd terms rely on both
previous terms and

∑
P∈M(n+1)/2,k

mpP,n which is difficult to compute. Indeed, we have no general way
to compute mpP,n for a fixed minimal overlapping P .
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4 The limit of an,k
In this section, we study the asymptotic behavior of {an,k}n≥1, for any given integer k ≥ 1. Throughout
this section, we shall assume that k is a fixed number greater than or equal to 1. We let {dn} be the
subsequence of {an,k}n≥1 consisting of odd terms, ie., dj = a2j−1,k, j = 1, 2, 3, · · · . We let {en} be the
subsequence consisting of even terms.

From equation (6) in Theorem 8, we see {en} is a monotone decreasing sequence and an,k has lower
bound Lk, hence {en} is convergent. To show an,k has a limit, we need to show {dn} converges to the
limit of {en}. This will result in the following theorem.

Theorem 9. For a fixed integer k ≥ 1, lim
n→∞

an,k exists.

Proof: We only need to show the limit of dn equals the limit of en. Since dn+1 = a2n+1,k and en = a2n,k,
by (6) and (7), we have en − dn+1 = b2n+1,k.

b2n+1,k =

∑
P∈Mn+1,k

mpP,2n+1

|F2n+1,k|
≤
Mn+1,k

(
(2n+1)k
nk

)
|F2n+1,k|

(8)

The inequality holds because that the fact that the reduction of the first n + 1 columns of a pattern in
F2n+1,k is minimal overlapping does not guarantee the pattern is overlapping at position n+ 1. In other
words, it is a necessary condition that the reduction of the first n + 1 columns is minimal overlapping
but that it is not sufficient. Take patterns in F5,1 as an example. Assume the reduction of the first three
numbers is 1 3 2 which is minimal overlapping. If the initial three numbers are 3 4 2, we can put 5 1 in
the end to make 3 4 2 5 1 overlapping at the middle position. However, a pattern with prefix 3 4 2 can not
be overlapping at position 3. We use RHS for the right-handed side of (8).

RHS =

(
(2n+1)k
nk

)
Mn+1,k

|F2n+1,k|
=

(
(2n+1)k
nk

)
|Fn+1,k|an+1,k

|F2n+1,k|

=
(2nk + k)!(nk + k)!(k!)2n+1

(nk)!(nk + k)!(k!)n+1(2nk + k)!
an+1,k

=
(k!)n

(nk)!
an+1,k

=
an+1,k

|Fn,k|
.

As n goes to infinity, |Fn,k| goes to infinity and because an+1,k is bounded by 1,

lim
n→∞

en − dn+1 = lim
n→∞

b2n+1,k = 0.

Therefore, lim
n|∞

dn = lim
n|∞

en and then hence lim
n→∞

an,k exists. Note that |Fn,k| increases rapidly as n

increases so that an,k converges rapidly. The larger k becomes, the faster an,k converges.
Let lk be the limit of an,k as n goes to infinity. Using Monte Carlo methods, we computed approximate

values for lk for k = 1, 2, 3, 4: l1 ≈ 0.364, l2 ≈ 0.823, l3 ≈ 0.949 and l4 ≈ 0.986. Comparing Lk and
lk, we find they are very close. This is not a coincidence because (3) is almost the same as (6) and (7) and
we know an,k is close to 1 when n is large.
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5 Standard tableaux of rectangular shapes
The set of all the standard Young tableaux of rectangular shape nk is denoted by ST (nk) and clearly it
is a subset of Fn,k. It is well-known that the cardinality of ST (n2) is the nth Catalan number Cat(n) =
1

n+1

(
2n
n

)
. Then using the similar argument of Theorem 5, we have a lower bound for bn,2, where bn,2 is

proportion of minimal overlapping patterns in ST (n2)

LS2 = 1−
∑
i≥2

1

Cat(i)
.

To find the exact value of the lower bound, we must compute the sum
∑
i≥2

1
Cat(i) . Define a power series

f(x) as follows

f(x) =
∑
i≥1

1

Cat(i)
xi.

Then

xf ′(x) = x
∑
i≥1

i

Cat(i)
xi−1 =

∑
i≥1

i

Cat(i)
xi

By the recursion of Catalan numbers Cat(i+ 1) = 4i+2
i+2 Cat(i),

xf ′(x) =
∑
i≥1

i+ 2− 2

Cat(i)
xi =

∑
i≥1

i+ 2

Cat(i)
xi − 2

∑
i≥1

1

Cat(i)
xi =

∑
i≥1

4i+ 2

Cat(i+ 1)
xi − 2f(x)

=
∑
i≥1

4(i+ 1)− 2

Cat(i+ 1)
xi − 2f(x) = 4

∑
i≥1

i+ 1

Cat(i+ 1)
xi − 2

∑
i≥1

1

Cat(i+ 1)
xi − 2f(x)

=
4

x
(xf ′(x)− x)− 2

x
(f(x)− x)− 2f(x) = 4f ′(x)− 2x+ 2

x
f(x)− 2.

So we obtain a first-order ordinary differential equation

f ′(x) +

(
2x+ 2

x2 − 4x

)
f(x) =

2

4− x
. (9)

Solving this differential equation (9) with the initial value condition f(0) = 0 for f(x) yields

(x− 10)(x− 4)x+ 24
√
4x− x2 arcsin

(√
x
2

)
(4− x)3

Setting x = 1 in this formula for f(x) gives our next theorem.

Theorem 10. ∑
i≥1

1

Cat(i)
= 1 +

4
√
3π

27
. (10)
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Then by the above equation, we have the lower bound LS2 = 1− 4
√
3π

27 ≈ 0.194.
Similarly, for any given k, lower bounds for bn,k, that is, lower bound for the proportion of minimal

overlapping patterns in ST (nk) is

LSk = 1−
∑
i≥2

1

Yik
,

where Yik = |ST (ik)| which could be counted by the hook-length formula. We computed the following
approximations for Lk for k = 3, 4, 5, 6.

LS3 ≈ 0.774, LS4 ≈ 0.926, LS5 ≈ 0.976, LS6 ≈ 0.992.

It is easy for one to show that lim
k→∞

LSk = 1 which implies almost every pattern in ST (nk) is minimal

overlapping as k is very large.
Next we shall find an upper bound for the proportion of minimal overlapping standard tableaux of shape

n2. This is equivalent to finding a lower bound for the proportion of overlapping patterns. For a pattern
P ∈ ST (n2), n ≥ 3, we only consider patterns where the reduction of the first two columns is the same
as the reduction of the last two columns. There are only two cases for such overlapping patterns. For Case
1 (Figure 4), the number of such overlapping patterns in ST ((n+ 2)2) is equal to |ST (n2)|.

1 

2 

3 

4 

1 

2 
P

3 

4 

Fig. 4: Reducing via the patterns in the first two columns for Case 1

For Case 2 (Figure 5), the number of such overlapping patterns in ST ((n+2)2) is equal to the number
of standard Young tableaux of skew shape (n + 2, n)/(2). It is easy to see that the number of standard

1 

3 

2 

4 

1 

3 
P

2 

4 

Fig. 5: Reducing via the patterns in the first two columns for Case 2

tableaux of shape (n+ 2, n)/(2) is equal to the number of standard tableaux of shape (n+ 2, n) where 1
and 2 lie in the first row. But then the number of standard tableaux of (n+ 2, n) where 1 and 2 lie in the
first row is equal to the number of standard tableaux of shape (n + 2, n) minus the number of standard
tableaux of shape (n + 2, n) where 1 and 2 lie first column. But then the number of standard tableaux
of shape (n + 2, n) where 1 and 2 lie first column is equal to the number of standard tableaux of shape
(n+ 1, n− 1). Using the hook length formula for the number of standard tableaux, it follows that

|ST (n+ 2, n)/(2)| = |ST (n+ 2, n)| − |ST (n+ 1, n− 1)|

=
3(2n+ 2)!

(n+ 3)!n!
− 3(2n)!

(n+ 2)!(n− 1)!

=
9n2 + 9n+ 6

(n+ 3)(n+ 2)(n+ 1)

(
2n

n

)
.
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Since the lower bound for number of overlapping patterns in ST ((n + 2)2) is |ST (n2)| + |ST ((n +
2, n)/(2))|, an upper bound for bn+2,2, n ≥ 3 is

USn+2,2 = 1− |ST (n
2)|+ |ST ((n+ 2, n)/(2))|
|ST ((n+ 2)2)|

=
3n2 + 9n

8n2 + 16n+ 6
.

As n goes to infinity, USn+2,2 converges to 0.375. Therefore, {bn,2} is asymptotically between 0.194
and 0.375.

6 Generalized Euler permutations
Elements in C=k[n−1] are called generalized Euler permutations or k-up-down permutations. Note that
2-up-down permutations are usually called up-down permutations. For example, σ = 2 3 5 8 1 4 6 7 is a
4-up-down permutation of length 8 and µ = 1 5 2 6 3 4 is an up-down permutation permutation of length
6.

Next we give a lower bound LEk for {cn,k}n≥2, that is, the proportion of minimal overlapping patterns
in C=k[n−1]. Using essentially the same argument that we used to prove Theorem 5, we have a lower
bound LEk

LEk = 1−
∑
j≥2

1

|C=k[j−1]|
,

where |C=k[j−1]| is the number of k-up-down permutations of length kj. The generating function of
|C=k[j−1]| is ∑

n≥0

|C=k[j−1]|
tkn

(kn)!
=

1∑
n≥0

(−1)ntkn
(kn)!

.

See Stanley’s book, Chapter 3, page 389 [14]. It is apparent that for fixed k, LEk converges so we can
calculate numerical approximation

LE2 = 1−
∑
j≥2

1

|C=2[j−1]|
= 1− 1

5
− 1

61
− 1

1382
− 1

50521
− · · · ≈ 0.783,

LE3 = 1−
∑
j≥2

1

|C=3[j−1]|
= 1− 1

19
− 1

1513
− 1

315523
− · · · ≈ 0.947,

LE4 = 1−
∑
j≥2

1

|C=4[j−1]|
= 1− 1

69
− 1

33661
− 1

60376809
− · · · ≈ 0.985,

LE5 = 1−
∑
j≥2

1

|C=5[j−1]|
= 1− 1

251
− 1

750751
− 1

11593285251
− · · · ≈ 0.996.

It is easy for one to show that lim
k→∞

LEk = 1 which means almost all patterns in C=k[n−1] are minimal

overlapping when k is large.
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Next we will find an upper bound for cn,2. It is well-known that numbers of up-down permutations are
Euler numbers. Suppose E(n) is the nth Euler number, then |C=2[n−1]| = E(2n). By [15], the ratio of
two adjacent Euler numbers have asymptotic estimation as follows

E(n+ 1)

E(n)
∼ 2(n+ 1)

π
. (11)

To find an upper bound of minimal overlapping patterns, we only need to find a lower bound for
overlapping up-down permutations. Similar to Section 5, we only consider patterns where the reduction
of the first two columns is the same as the reduction of the last two columns. In other words, we only
consider prefixes and suffixes of length 4 in an up-down permutation and they have the same reduction.
In [12], the number of such overlapping up-down permutations of length 2n is given as

13E(2n)− 32nE(2n− 1) + 10n(2n− 1)E(2n− 2),

where n ≥ 4. Hence we can get an upper bound for the percentage of minimal overlapping patterns in
C=2[n−1].

UEn,2 = 1− 13E(2n)− 32nE(2n− 1) + 10n(2n− 1)E(2n− 2)

E(2n)
.

Applying (11), we get an asymptotic upper bound

UE2 = lim
n→∞

UEn,2 = 8π − 5

4
π2 − 12 ≈ 0.795.

Therefore, {cn,2} is asymptotically between 0.783 and 0.795.

7 Open questions
A natural extension of our results would be to find the proportion of minimal overlapping patterns in Fn,k
(C=k[n−1], ST (nk)) whose first j columns is equal to some fixed P ∈ Fj,k among all the elements ofFn,k
(C=k[n−1], ST (nk)) whose first j columns is equal to P . For example, in the simplest case, we would be
interested in the question of how many permutations in Sn starting with m are minimal overlapping.

It is not hard to see that for a fixed m, as n approaches to infinity, there are at least (3 − e)(n − 1)!
permutations in Sn starting with m are minimal overlapping. Similar to Theorem 9, we can show that the
proportion of minimal overlapping patterns in Sn starting with m converges as n goes to infinity.

We have used Monte Carlo methods to estimate the limit of the proportion of minimal overlapping
permutations starting among all permutations that start with m for m = 1, 2, 3, 4, 5, 6, 7. Our computa-
tions yielded the following estimates: 0.392, 0.384, 0.375, 0.368, 0.365, 0.361 and 0.358 respectively.
Noting that the sequence is monotone decreasing, we ask whether this is true in general. That is, if
1 ≤ a < b ≤ dn2 e, is it the case that as n approaches infinity, is the proportion of minimal overlapping
permutations in Sn that start with a among all the permutations of Sn that start with a greater than the
proportion of minimal overlapping permutations in Sn that start with b among all the permutations of Sn
that start with b?



Asymptotics for minimal overlapping patterns 13

References
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