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Many combinatorial optimization problems can be formulated as the search for a subgraph that satisfies certain prop-
erties and minimizes the total weight. We assume here that the vertices correspond to points in a metric space and can
take any position in given uncertainty sets. Then, the cost function to be minimized is the sum of the distances for
the worst positions of the vertices in their uncertainty sets. We propose two types of polynomial-time approximation
algorithms. The first one relies on solving a deterministic counterpart of the problem where the uncertain distances
are replaced with maximum pairwise distances. We study in details the resulting approximation ratio, which depends
on the structure of the feasible subgraphs and whether the metric space is Ptolemaic or not. The second algorithm is
a fully-polynomial time approximation scheme for the special case of s− t paths.

Keywords: robust optimization, approximation algorithms, dynamic programming

1 Introduction
Given a graph G = (V,E) and a family of feasible subgraphs G of G, many discrete optimization problems
amount to find the cheapest subgraph in G. In this paper, we assume that G is a graph embedded into a
given metric space (M, d) so that every vertex i ∈ V is associated to a point ui ∈ M and the weight of
edge {i, j} ∈ E is equal to the distance d(ui, uj). Then, the cost of a subgraph G ∈ G is defined as the
sum of the weights of its edges. Denoting by E[G] the set of edges of G, the cost of graph G ∈ G is given
by

cd(u,G) =
∑

{i,j}∈E[G]

d(ui, uj),

leading to the combinatorial optimization problem

min
G∈G

∑
{i,j}∈E[G]

d(ui, uj). (Π)

The subscript d on cd will be removed when clear from the context, denoting the cost by c(u,G).
An example of problem Π arises in data clustering, where one wishes to partition a given set of data

points {u1, . . . , un} ⊂ M into at most K sets so as to minimize the sum of all dissimilarities between
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2 Bougeret et al.

points that belong to the same element of the partition. In this example, G is a complete graph, every
vertex i of V represents one of the data point ui, and G consists of all disjoint unions of cliques covering
G. Furthermore, the distance d(ui, uj) between any two vertices i, j ∈ V measures the dissimilarity
between the corresponding data points. This dissimilarity may involve Euclidean distances, for instance
when comparing numerical values, as well as more ad-hoc distances when comparing ordinal values
instead. Problem Π encompasses other applications, such as subway network design or facility location.
In the the network design problem, one wishes to find a cheapest feasible subgraph of G connecting a
certain number of vertices. Thus, G consists of Steiner trees covering a given set of terminals and the
distance used is typically Euclidean, see Gutiérrez-Jarpa et al. (2013). In facility location problems, set
G consists of unions of disjoint stars, the centers and the leaves of the stars respectively representing the
facility and the clients. In that example, the distance typically involves shortest paths in an underlying
road network represented by an auxiliary weighted graph GM = (VM, EM), leading to a graph-induced
metric space, see Melkote and Daskin (2001).

More formally, we are interested in the class S of deterministic combinatorial optimization problems
that can be formulated as Π. Any Π ∈ S represents a specific problem, such as the shortest path or the
minimum spanning tree. An instance of problem Π is defined by its input I = (G, α, u, d), where G is an
undirected simple graph, α contains problem-specific additional inputs, and d is the distance matrix of the
set

⋃
i∈V{ui}. We denote by G(I) the set of all subgraphs (not necessarily induced) of G that satisfy the

constraints specific to Π for input I . For instance, for the Shortest Path problem (SP), the additional input
α = {s, t} consists of the origin and destination vertices, while α = ∅ in the Minimum Spanning Tree
problem (MST). Notice that considering the distance d as a matrix and providing it explicitly in the input
avoids (i) providing (M, d) as part of the input, which may not be straightforward in some cases (e.g., if
(M, d) is a Riemannian manifold), (ii) discussing the complexity of computing the distances which again
might involve solving difficult optimization problems.

It has been assumed so far that the position of the vertices are known with precision, which is often not
a realistic assumption. In data clustering, uncertainty on the values is common, be it because of a mea-
surement error, or because of a lack of information – in which case the corresponding coordinate is often
replaced by the full interval (Masson et al. (2020)). Similar uncertainties arise in network design or facil-
ity location because the exact location of the stations and facilities must satisfy technical requirements as
well as political considerations as local officials are never happy to let their citizens face the inconvenience
of heavy civil engineering. In this paper, we address this issue through the lens of robust optimization,
by introducing ROBUST-Π. An instance of ROBUST-Π is given by I = (G, α,U , d) where G and α are
as before, d is a distance matrix, Ui denotes the set of possible positions for node i, which correspond to
indexes of rows/columns of the the distance matrix d, and U = ×i∈VUi. Given this instance, the problem
is to solve

min
G∈G(I)

max
u∈U

∑
{i,j}∈E[G]

d(ui, uj). (ROBUST-Π)

Thus, the objective of ROBUST-Π is to find G ∈ G(I) that minimizes c(G) = maxu∈U c(u,G). Introduc-
ing the notation σi = |Ui|, we see that ROBUST-Π is a generalization of Π as it corresponds to the case
where σi = 1 for each i.

Remark 1. When (M, d) is the q-dimensional Euclidean space, a natural setting for locational uncer-
tainty would be to model the uncertainty around ui by a convex set, such as a polytope Pi ⊂ Rq , with
P = ×i∈VPi. Then, given the set of subgraphs G(I) of G, one could seek to solve the optimization
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problem
min

G∈G(I)
max
u∈P

∑
{i,j}∈E[G]

d(ui, uj), (1)

where the adversary maximizes over polytope P instead of the finite set U used in (ROBUST-Π). Never-
theless, due to the convexity of d, we have

max
u∈P

∑
{i,j}∈E[G]

d(ui, uj) = max
u∈ext(P)

∑
{i,j}∈E[G]

d(ui, uj),

where ext(P) denotes the set of extreme points of P . Therefore, problem (1) can be cast into our setting
by letting d be the distance matrix of the set

⋃
i∈V ext(Pi) and defining the sets Ui accordingly.

Problem ROBUST-Π is closely related to min-max robust combinatorial optimization pioneered in Kou-
velis and Yu (2013). In that framework, one searches for the best solution to a combinatorial optimization
problem given that the adversary chooses the worst possible cost vector in a given uncertainty set, see the
surveys by Aissi et al. (2009); Buchheim and Kurtz (2018); Kasperski and Zieliński (2016). The com-
plexity and approximation ratios available for the resulting problems typically depend on the underlying
combinatorial optimization problem (herein represented by Π) and the structure of the uncertainty set.
While some algorithms have been proposed to handle arbitrary finite uncertainty sets (e.g. Chassein et al.
(2020); Kasperski and Zieliński (2013)), simpler sets typically benefit from stronger results, such as axis-
parallel ellipsoids (Baumann et al. (2014); Nikolova (2010)) or budget uncertainty sets (Bertsimas and
Sim (2003, 2004)). The latter results have been extended to more general polytopes in Omer et al. (2024)
and to problems featuring integer decision variables in Goetzmann et al. (2011). Specific combinatorial
optimization problems, such as the shortest path or the spanning tree, have also benefited from stronger
results, e.g. Aissi et al. (2005); Yaman et al. (2001).

An important specificity of problem ROBUST-Π is that its cost function is in general non-concave,
hardening the inner maximization problem. In fact, we have shown in our companion paper (Bougeret
et al. (2023)) that computing the cost function c(G) of a given subgraph G ∈ G(I) is in general NP-hard.
We have further shown in that paper that problem ROBUST-Π is NP-hard for the shortest path and the
minimum spanning tree. That work also proposes exact and approximate solution algorithms based on
mixed-integer formulations. Another paper addressing ROBUST-Π is Citovsky et al. (2017), which relies
on computational geometry techniques to provide constant-factor approximation algorithms in the special
case where Π is the traveling salesman problem, meaning that G(I) consists of all Hamiltonian cycles of
G. The main result of that paper is a polynomial-time approximation scheme for the special case in which
each Ui is a set of disjoint unit disks in the plane. They also propose an approximation algorithm that
amounts to solve a deterministic counterpart of ROBUST-Π where the uncertain distances are replaced by
the maximum pairwise distances

dmax
ij = max

ui∈Ui,uj∈Uj

d (ui, uj) ,

for each (i, j) ∈ V2, i ̸= j.
In Section 2, we deal with the main purpose of this paper, which is to extend the approximation algo-

rithm based on dmax and suggested by Citovsky et al. (2017) to general sets G(I) and distances matrices
more general than those induced by embeddings into Euclidean spaces. First, Theorem 1 transfers any
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approximation ratio known for problem Π ∈ S to ROBUST-Π. We prove that, in general, the transfer
involves a multiplicative constant equal to 9 (Theorem 4). Then, we dig into smaller multiplicative con-
stants, assuming that G(I) and/or d satisfy additional assumptions. Regarding G(I), we obtain smaller
constants for special families of graphs such as cycles, stars, trees, and graphs that can be composed as
disjoint unions of these graphs. As a special case of our results, we find the constant of 3 for Hamilto-
nian cycles previously provided by Citovsky et al. (2017). Concerning the structure of d, we show that
distances that satisfy Ptolemy’s inequality (see Apostol (1967)) benefit from stronger results.

We complement these results by Section 3 where we provide a dynamic programming algorithm for the
special case where Π is the Shortest Path problem, so G(I) consists of all s − t paths. The algorithm is
then turned into a fully-polynomial time approximation scheme by rounding the input appropriately.

Additional notations and definitions Given a simple undirected graph G, V [G] denotes its set of ver-
tices. When clear from context we use notations n = |V [G]| and m = |E[G]|, where |S| denotes the
cardinality of any finite set S. For any i ∈ V [G], we denote by N(i) = {j ∈ V [G] | {i, j} ∈ E[G]} the
neighborhood of i. We say that a graph G is a clique if for any two disjoint vertices i, j,{i, j} ∈ E, and
we say that G is a star if G is a complete bipartite graph K1,k for some k ≥ 1. For any positive integer k,
we denote [k] = {1, . . . , k}. The diameter of a subet S of the indices of d is given by maxu,v∈S d(u, v).
Remember also that given a problem ROBUST-Π, G denotes the graph in the input I , G(I) is the set of all
subgraphs (not necessarily induced) G of G that satisfy the constraints specific to Π for input I .

2 Approximation of the general robust problem
2.1 Reduction to a deterministic problem by using worst-case distances

Algorithm 1: Solving a deterministic counterpart based on some representative location u′

Given an instance I = (G, α,U , d) of ROBUST-Π
Select u′ ∈ U to define instance I ′ = (G, α, u′, d′) of Π, where d′ is the submatrix of d

corresponding to u′

Compute G using an approximation algorithm for I ′

return G

A natural approach to ROBUST-Π would be to choose a relevant vector u′ ∈ U , reduce to the cor-
responding deterministic problem Π given by minG∈G(I)

∑
{i,j}∈E[G] d

(
u′
i, u

′
j

)
, and use any known

approximation algorithm for Π. This approach is formalized by Algorithm 1.
Unfortunately, choosing such a representative u′ is not easy. For instance, a natural choice might be to

consider the geometric median of each set, i.e., u′ = ugm where ugm
i ∈ argminu1∈Ui

∑
u2∈Ui

d (u1, u2) .
Although the choice of geometric median may appear natural at first glance, the cost of the solution Ggm

returned by Algorithm 1 for u′ = ugm may actually be arbitrarily larger than the optimal solution cost.

Observation 1. Let Π ∈ S such that any G ∈ G(I) is a single edge for any instance I of Π. Let egm be
the solution returned by Algorithm 1 for u′ = ugm. The ratio c(egm)/OPT is unbounded.

Proof: For any ϵ > 0 small enough, consider V = {1, 2, 3} and E = {{1, 2}, {2, 3}}. We consider an
embedding into the 1-dimensional Euclidean space with U1 = {ϵ}, U2 = {0}, and U3 = {−1, 0, 1}, and
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defining d as the resulting distance matrix. We have that ugm
1 = ϵ and ugm

2 = ugm
3 = 0 so Algorithm 1

picks edge {2, 3} having a cost of c({2, 3}) = 1. In contrast edge {1, 2} has a cost of ϵ, yielding a ratio
of 1/ϵ.

We proceed by using a different approach for reducing to the deterministic problem Π. Given an
instance I = (G, α,U , d) of ROBUST-Π, we construct an instance I ′ = (G, α, v, dmax) of Π by defining
dmax
ij = maxui∈Ui,uj∈Uj

d (ui, uj) and v = (1, . . . , |V|). Notice that dmax is indeed a distance matrix as
dmax
ij = 0 iff i = j and it satisfies the triangular inequality. This leads to Algorithm 2.

Algorithm 2: Solving a deterministic counterpart based on dmax distances

Given an instance I = (G, α,U , d) of ROBUST-Π
Construct dmax to define instance I ′ = (G, α, v, dmax) of Π
Compute G using an approximation algorithm for I ′

return G

Theorem 1. Let Π ∈ S and assume that:

• Π has a ρ1-polynomial time approximation algorithm, and

• there exists ρ2 ≥ 1 such that for each input I = (G, α,U , d) of ROBUST-Π, cdmax(G) ≤ ρ2cd(G)
for any G ∈ G(I).

Then, Algorithm 2 can be used to derive a polynomial ρ1ρ2-approximation for ROBUST-Π.

Proof: Let G∗ be an optimal solution of instance (G, α,U , d) of ROBUST-Π, and Gmax be an optimal
solution to instance I ′ = (G, α, v, dmax) of Π. Furthermore, following the first assumption, there is a
ρ1-approximation algorithm for Π, which we use to construct a solution G to I ′ such that cdmax(G) ≤
ρ1cdmax(Gmax). We have

cd(G) ≤ cdmax(G) ≤ ρ1cdmax(Gmax) ≤ ρ1cdmax(G∗) ≤ ρ1ρ2cd(G
∗),

where the last inequality follows from the second assumption of the theorem.

Let us recall Ptolemy’s inequality (see e.g. Apostol (1967)). A distance is Ptolemaic if for any four
indexes A,B,C,D of d,

d (A,C) · d (B,D) ≤ d (A,B) · d (C,D) + d (B,C) · d (A,D) . (2)

In Section 2.2 and Section 2.3 we prove the existence of constant upper bounds on the ratio cdmax(G)/c(G)
for different families G(I) and distances. A summary of our results is given in Table 1. In particular, for
any graph G, Theorem 3 states that cdmax(G) ≤ 4c(G) for any Ptolemaic distance, and Theorem 4 states
that cdmax(G) ≤ 9c(G) for any distance. These imply that, up to a constant factor, ROBUST-Π is not
harder to approximate than Π, as formalized below.

Theorem 2. Let Π ∈ S be a problem that is ρ1-approximable in polynomial time and I = (G, α,U , d)
be an instance of ROBUST-Π. Then, Algorithm 2 yields a polynomial 9ρ1-approximation for ROBUST-Π,
and even a 4ρ1-approximation if d is Ptolemaic.
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Problem (each connected
component belongs to graph
family G(I))

deterministic
version

c(G)/cdmax (G) robust counterpart

Π ∈ S (arbitrary) ρ-approx. 9 (Thm 4)
4 (Ptolemaic, Thm 3)

9ρ-approx.
4ρ-approx. (Ptolemaic)

MIN-EWCP (clique) 2-approx (Eremin et al.
(2014))

2 (Prop 5) 4-approx.

SP (path) polynomial 2 (Cor 3) 2 approx
NP-hard (Bougeret et al. (2023))
FPT AS (Thm 6)

MST (tree) polynomial 6 (Prop 9)
4 (Ptolemaic, Thm 3)
2
√
2 (planar Eucl., Prop 10)

6-approx.
4-approx. (Ptolemaic)
2
√
2-approx. (planar Eucl.)

NP-hard (Bougeret et al. (2023))
MIN-SSF (star) polynomial (Khoshkhah

et al. (2019))
3 (Prop 7)
2 (Ptolemaic, Cor 4)

3-approx
2-approx

TSP (cycle) 3
2

-approx (Christofides
(1976))

2 (Citovsky et al. (2017))
and Cor (3)

3-approx (Citovsky et al. (2017))
PT AS (planar Eucl.) (Citovsky
et al. (2017))

Tab. 1: Overview of our results. When no reference is given, the ratios in the “robust counterpart” column are
obtained by Theorem 1. All our results are for finite Ui, except the 2

√
2 ratio for trees, which holds for balls in the

Euclidean plane, and the PT AS for TSP holding for disjoint unit balls in the Euclidean plane.

2.2 Bounding the approximation ratio on general graphs
We divide our study of cdmax(G)/c(G) for arbitrary graphs G into two cases. First, we consider that the
distances matrices satisfy the Ptolemy’s inequality recalled in (2). Then, we consider arbitrary distances
matrices.

2.2.1 Ptolemaic distances
We consider throughout the section that d is Ptolemaic, which includes, for instance, distances resulting
from embeddings into Euclidean spaces. A direct consequence of the definition is given by the following
lemma.

Lemma 1. Let d be a Ptolemaic distance matrix and let A,B and C be such that

d (B,C) ≥ max{d (A,B) , d (A,C)}.

Then, for any other O,
d(O,A) ≤ d(O,B) + d(O,C). (3)

Proof: Using d (B,C) ≥ max{d (A,B) , d (A,C)} and Ptolemy’s inequality, we get

d (B,C) · d (O,A) ≤ d (B,C) · d (O,B) + d (B,C) · d (O,C) ,

and the result follows.

Using the above inequality, we can get a constant bound on the approximation ratio by focusing on the
extremities of a diameter of each uncertainty set Ui, i ∈ V. It results in the following ratio.
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Theorem 3. Let d be a Ptolemaic distance and G be a graph. Then, cdmax(G) ≤ 4 cd(G).

Proof: For all i ∈ {1, . . . , n}, let [u1
i , u

2
i ] be a diameter of Ui, i.e., u1

i ∈ Ui, u
2
i ∈ Ui and d

(
u1
i , u

2
i

)
=

diam(Ui). Let Ũi = {u1
i , u

2
i } and Ũ be the cross product of the Ũi. Let c̃(G) = maxu∈Ũ

∑
{i,j}∈E[G] d(ui, uj).

As Ũ ⊆ U , we get c(G) ≥ c̃(G). Let us now prove that c̃(G) ≥ cdmax (G)
4 .

Define the random variable ũi taking any value of Ũi with equal probability 1/2. The worst-case length
of the graph is not smaller than its expected edge length, i.e.,

c̃(G) = max
u∈Ũ

∑
{i,j}∈E[G]

d (ui, uj) ≥ E

 ∑
{i,j}∈E[G]

d (ũi, ũj)

 ,

where, by linearity of expectation,

E

 ∑
{i,j}∈E[G]

d (ũi, ũj)

 =
∑

{i,j}∈E[G]

E [d (ũi, ũj)] .

We then consider some arbitrary edge {i, j} ∈ E[G]:

E [d (ũi, ũj)] =
1

4

(
d
(
u1
i , u

1
j

)
+ d

(
u1
i , u

2
j

)
+ d

(
u2
i , u

1
j

)
+ d

(
u2
i , u

2
j

))
.

Let ūi ∈ Ui and ūj ∈ Uj such that d (ūi, ūj) = dmax
ij . As u1

ju
2
j is a diameter of Uj , we have d(u1

j , u
2
j ) ≥

max(d(u1
j , ūj), d(u

2
j , ūj)), and we can apply Lemma 1 twice to the triplet (u1

j , u
2
j , ūj) to get{

d
(
u1
i , u

1
j

)
+ d

(
u1
i , u

2
j

)
≥ d

(
u1
i , ūj

)
d
(
u2
i , u

1
j

)
+ d

(
u2
i , u

2
j

)
≥ d

(
u2
i , ūj

)
.

One last application of the lemma in u1
iu

2
i ūi then yields

d
(
u1
i , ūj

)
+ d

(
u2
i , ūj

)
≥ d (ūi, ūj) = dmax

ij .

Summarizing the above, we get to c(G) ≥ c̃(G) ≥
∑

{i,j}∈E[G] E [d (ũi, ũj)] ≥ 1
4cdmax(G).

2.2.2 Arbitrary distances
Lemma 1 does not apply to non-Ptolemaic distances, as illustrated in the following example.

Example 1. Consider a distance matrix d based on the index set {A,B,C,O} such that for X ̸= Y (see
also Figure 1)

d(X,Y ) =

 1 if {X,Y } ⊆ {A,B,C}
0.5 if {X,Y } ∈ {{O,B}, {O,C}}
1.5 if {X,Y } = {O,A}

,

One readily verifies that d(O,A) = 3
2 (d(O,B) + d(O,C)), which contradicts (3).

In fact, multiplying the right-hand-side of (3) by 3/2, as in Example 1, is enough for any distance matrix.
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1B
1

A

1
C

0.5
1.5

O

0.5

Fig. 1: Counter example of Lemma 1 for non-Ptolemaic distances.

Lemma 2. Let (A,B,C) be a triplet such that d (B,C) ≥ max{d (A,B) , d (A,C)} and {O} index
another coordinate of d. Then,

d(O,A) ≤ 3

2
(d(O,B) + d(O,C)).

Proof: Using d (B,C) ≥ max{d (A,B) , d (A,C)} and applying the triangle inequality at each step, we
get

d(O,A) ≤ d(O,B) + d (A,B) ≤ d(O,B) + d (B,C) ≤ 2d(O,B) + d(O,C)

d(O,A) ≤ d(O,C) + d (A,C) ≤ d(O,C) + d (B,C) ≤ d(O,B) + 2d(O,C)

Adding the above two inequalities provides the result.

Using the above result, we can obtain a weaker counterpart of Theorem 3 for non-Ptolemaic distances.

Theorem 4. For any distance matrix d, cdmax(G) ≤ 9 cd(G).

Proof: The proof follows exactly the approach followed in the proof of Theorem 3, but we use Lemma 2
instead of Lemma 1 when needed. We thus use the same notations as in the proof of Theorem 3. As u1

ju
2
j

is a diameter of Uj , we have d(u1
j , u

2
j ) ≥ max(d(u1

j , ūj), d(u
2
j , ūj)), and we can apply Lemma 2 twice to

triplet (u1
j , u

2
j , ūj) to get 

d
(
u1
i , u

1
j

)
+ d

(
u1
i , u

2
j

)
≥ 2

3
d
(
u1
i , ūj

)
d
(
u2
i , u

1
j

)
+ d

(
u2
i , u

2
j

)
≥ 2

3
d
(
u2
i , ūj

)
.

One last application of Lemma 2 in u1
iu

2
i ūi then yields

d
(
u1
i , ūj

)
+ d

(
u2
i , ūj

)
≥ 2

3
d (ūi, ūj) =

2

3
dmax
ij .

Summarizing the above, we get to

c(G) ≥ c̃(G) ≥
∑

{i,j}∈E[G]

E [d (ũi, ũj)] ≥
1

4

4

9
cdmax(G) =

cdmax(G)

9
.
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2.3 Bounding the approximation ratio on specific structures
In what follows, we assume that the structure of the subragph induced by G can be leveraged to obtain
stronger bounds than in the previous section. We first describe how graph decomposition can be used to
obtain such bounds. We then address the special graphs that have been singled out in our introductory
applications, namely: paths, cycles, trees (subway network design), cliques (clustering), and stars (facility
location). Unless stated otherwise, we assume throughout the section that d is an arbitrary distance matrix,
non-necessarily Ptolemaic.

2.3.1 Building blocks
We study below how the bounds obtained for distinct subgraphs can be combined to obtain a bound on
their union.

Proposition 1. Let G be a graph, Gt be a subgraph of G, and ρt ≥ 1 such that cdmax(Gt) ≤ ρt c(Gt)
for each t = 1, . . . , T . Then:

• cdmax

(
∪T
t=1Gt

)
≤ T × max

t=1,...,T
ρt c

(
∪T
t=1Gt

)
, and

• cdmax(∪T
t=1Gt) ≤ max

t=1,...,T
ρt c(∪T

t=1Gt) if, in addition, V (Gt)∩V (Gt′) = ∅ for each t ̸= t′ ∈ [T ].

Proof: Let G = ∪T
t=1Gt. In the first case we have T · c(G) ≥

T∑
t=1

c(Gt) ≥
T∑

t=1

1

ρt
cdmax(Gt) ≥

cdmax(G)

max
t=1,...,T

ρt
.

In the second case we have c(G) =

T∑
t=1

c(Gt) ≥
T∑

t=1

1

ρt
cdmax(Gt) ≥

cdmax(G)

max
t=1,...,T

ρt
.

The above results are particularly useful when combining sets Gt having low values of ρt. The simplest
example of such a set is a single edge.

Observation 2. For any e ∈ E[G], cdmax(e) = c(e).

From the above observation and Proposition 1, we obtain immediately that matchings also satisfy the
equality.

Corollary 1. For any matching G, cdmax(G) = c(G).

Matchings can be further combined to obtain general bounds that depend on the characteristics of G.
In the remainder, χ(G) denotes the edge chromatic number of G and ∆(G) denotes its maximum degree.

Corollary 2. cdmax(G) ≤ χ(G) c(G).

Proof: By definition of χ(G), there exists a partition of E[G] into E1, . . . , Eχ(G) such that for any
t ∈ [χ(G)], Et is a matching. For any t ∈ [χ(G)], we define Gt such that Gt only contains edges of
Et (and no other vertices of edges). We have G =

⋃χ(G)
t=1 Gt, and by previous corollary on matching,

cdmax(Gt) ≤ c(Gt) for ant t. Thus, by Proposition 1, we get the desired inequality.
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2.3.2 Graphs with small maximum degree
Recall that Vizing’s theorem states that χ(G) ≤ ∆(G) + 1. Combining this with Corollary 2 implies that
cdmax(G) ≤ (∆(G) + 1)c(G). Actually, the bound can be decreased to ∆(G), as stated below.

Proposition 2. For any graph G, cdmax(G) ≤ ∆(G) c(G).

Proof: We follow the proof of Theorem 3 (and re-use same notations), but using different sets Ũi. For
any edge {i, j} of G, define uj

i ∈ Ui and ui
j ∈ Uj such that d

(
ui
j , u

j
i

)
= dmax

ij . For any vertex i, let

Ũi = {uℓ
i , ℓ ∈ N(i)}, and ∆i = |N(i)| be the degree of i. Let c̃(G) = maxu∈Ũ

∑
{i,j}∈E[G] d (ui, uj).

As Ũ ⊆ U , we know that c(G) ≥ c̃(G). Let us now prove that c̃(G) ≥ cdmax (G)
∆(G) .

For any vertex i, consider random variable ũi taking any value of Ũi with equal probability. As in the
proof of Theorem 3, it is enough to lower bound the following quantity for an arbitrary edge {i, j} ∈ E[G]:

E [d (ũi, ũj)] =
1

∆i∆j

 ∑
ℓ1∈N(i),ℓ2∈N(j)

d
(
uℓ1
i , uℓ2

j

) .

Suppose without loss of generality that ∆j ≤ ∆i and let Xi = N(i) \ {j} and Xj = N(j) \ {i} (Xi or
Xj may be empty). Let us define an arbitrary injective mapping ϕ : Xj → Xi, so that∑

ℓ1∈Xi

∑
ℓ2∈Xj

d
(
uℓ1
i , uℓ2

j

)
≥

∑
ℓ1∈Xj

∑
ℓ2∈Xj

d
(
u
ϕ(ℓ1)
i , uℓ2

j

)
≥

∑
ℓ2∈Xj

d
(
u
ϕ(ℓ2)
i , uℓ2

j

)
. (4)

Using (4), we have∑
ℓ1∈N(i)ℓ2∈N(j)

d
(
uℓ1
i , uℓ2

j

)
≥ dmax

ij +
∑
ℓ∈Xj

d
(
uj
i , u

ℓ
j

)
+

∑
ℓ1∈Xi,ℓ2∈Xj

d
(
uℓ1
i , uℓ2

j

)
+

∑
ℓ∈Xi

d
(
uℓ
i , u

i
j

)
≥ dmax

ij +
∑
ℓ∈Xj

d
(
uj
i , u

ℓ
j

)
+

∑
ℓ∈Xj

d
(
u
ϕ(ℓ)
i , uℓ

j

)
+

∑
ℓ∈Xi

d
(
uℓ
i , u

i
j

)
≥ dmax

ij +
∑
ℓ∈Xj

d
(
uj
i , u

ℓ
j

)
+

∑
ℓ∈Xj

d
(
u
ϕ(ℓ)
i , uℓ

j

)
+

∑
ℓ∈Xj

d
(
u
ϕ(ℓ)
i , ui

j

)
= dmax

ij +
∑
ℓ∈Xj

(
d
(
uj
i , u

ℓ
j

)
+ d

(
u
ϕ(ℓ)
i , uℓ

j

)
+ d

(
u
ϕ(ℓ)
i , ui

j

))
≥ dmax

ij +
∑
ℓ∈Xj

dmax
ij = ∆jd

max
ij .

We obtain
E [d (ũi, ũj)] ≥

1

∆i∆j
∆jd

max
ij =

1

∆i
dmax
ij ≥ 1

∆(G)
dmax
ij .

Proposition 2 immediately implies the following Corollary, which had an ad-hoc proof for cycles
in Citovsky et al. (2017).
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Corollary 3. Let G be a path or a cycle, then cdmax(G) ≤ 2 c(G).

We verify in the two propositions below that the above bound is tight.

Proposition 3. For any path G of length at least three, there exists an uncertainty set U such that
cdmax(G) = 2 c(G).

Proof: We consider a path G composed of n ≥ 3 vertices, where E[G] = {{i, i+1} : i ∈ {1, . . . , n−1}.
The vertices are located on a one-dimensional line where U1 = {0}, U2 = {0, 1} and U3 = · · · = Un =
{1}. We have dmax

12 = dmax
23 = 1 and dmax

i,i+1 = 0,∀i = 3, . . . , n−1, so cdmax(G) = 2. There are only two
feasible solutions depending on whether u2 = 1 or u2 = 0, and they have the same cost c(G) = 1.

Proposition 4. For any cycle G of length at least four, there exists an uncertainty set U such that
cdmax(G) = 2 c(G).

Proof: We consider a cycle G composed of n ≥ 4 vertices, where E[G] = {{i, i+ 1} : i ∈ {1, . . . , n−
1} ∪ {{n, 1}}. The vertices are located on a one-dimensional line where U1 = {0}, U2 = {0, 1}, U3 =
{1}, U4 = {0, 1} and U5 = · · · = Un = {0} if n ≥ 5. We verify that cdmax(G) = 4, and there are four
feasible solutions depending on whether u2 = 1 or u2 = 0 and u4 = 1 or u4 = 0. These four solutions
all have the same cost c(G) = 2.

The above proposition considers cycles that contain at least four vertices, so one can wonder what
happens in the case of smaller cycles. We show next that for cycles that contain only 3 vertices, the bound
can be reduced to 3/2.

Remark 2. Consider the 3-cycle G. Applying the triangle inequality three times yields:

c(G) = max
u∈U

(d(u1, u2) + d(u2, u3) + d(u1, u3)) ≥ max
u∈U

(2max{d(u1, u2), d(u2, u3), d(u1, u3)})

≥ 2max{dmax
12 , dmax

23 , dmax
13 }

≥ 2

3
cdmax(G),

so the maximum worst-case factor is bounded by 3/2. This bound is tight. To see this, one can look at the
case exhibited in the proof of Proposition 3 (U1 = {0}, U2 = {0, 1} and U3 = {1}). For the 3-cycle,
cdmax(G) = 3 and c(G) = 2.

2.3.3 Cliques
We now turn to the special case where G(I) contains only cliques. One specificity of a clique G is that for
any matching M of size

⌊
n
2

⌋
, every edge of G belongs to a triangle including one edge of M . Applying

the triangle inequality repeatedly for a well chosen matching provides the following ratio.

Proposition 5. Let G be a clique. Then, cdmax(G) ≤ 2 c(G).

Proof: Recall that n denotes |V [G]|. It is folklore that χ(G) = n − 1 when n is even, and χ(G) = n
when n is odd, leading to χ(G) ≤ n for any n. This implies that E[G] can be partitioned into n matchings
Mi, each of size ⌊n/2⌋, and thus that cdmax(G) =

∑n
i=1 cdmax(Mi). Therefore, there is a matching of

G, denoted M∗, such that

cdmax(M∗) ≥ 1

n
cdmax(G). (5)
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Next, we define u∗ as any element from argmax
u∈U

∑
{i,j}∈M∗

d(ui, uj), and we use the shorter notation

d∗ij = d(u∗
i , u

∗
j ), and d∗e = d∗ij for any edge e = {i, j}. Observe that because M∗ is a matching

d∗e = dmax
e (6)

for each e ∈ M∗. For any E′ ⊆ E[G], let d∗(E′) =
∑

e∈E′ d∗e . Observe that c(G) ≥ d∗(G). Our
objective is to prove that d∗(G) ≥ 1

2cdmax(G).
Assume without loss of generality that M∗ = {{2i − 1, 2i} | i ∈ [⌊n

2 ⌋]}, so n is the only vertex not
belonging to any edge of M∗ when n is odd. For any i ∈ [⌊n

2 ⌋], let X(2i−1, 2i) = {{2i−1, l}∪{2i, l} |
l ∈ V [G] \ {2i − 1, 2i}}. As a consequence, X(2i − 1, 2i) ∪ {2i − 1, 2i} gathers all the edges of the
triangles of G including {2i− 1, 2i}. Observe that the triangle inequality yields

d∗(X(2i− 1, 2i)) =
∑

l∈V [G]\{2i−1,2i}

(d∗(2i−1)l + d∗(2i)l) ≥ (n− 2)d∗(2i−1)(2i). (7)

Summing up (7) for all i ∈ [⌊n
2 ⌋], we obtain∑

i∈[⌊n
2 ⌋]

d∗(X(2i− 1, 2i)) ≥ (n− 2)d∗(M∗) = (n− 2)cdmax(M∗),

where the last equality follows from (6). What is more, any edge e ∈ E[G] \M∗ belongs to at most two
sets X(2i− 1, 2i), so that

2d∗(E[G] \M∗) ≥
∑

i∈[⌊n
2 ⌋]

d∗(X(2i− 1, 2i)).

We obtain

2d∗(G) = 2

[
d∗((E[G] \M∗)) + d∗(M∗)

]
≥ (n− 2)cdmax(M∗) + 2cdmax(M∗) = ncdmax(M∗).

From (5), we finally get c(G) ≥ d∗(G) ≥ n
2 cdmax(M∗) ≥ 1

2cdmax(G).

We show below that the above bound is asymptotically tight, even for very simple distances.

Proposition 6. If G is a k-clique, there exists an uncertainty set U such that cdmax(G) = 2(k−1)
k c(G) if

k is odd and cdmax(G) = 2k
k+1 c(G) if k is even.

Proof: Let us define Ui = {0, 1} for any i ∈ V [G], and the distance d by d(x, y) = |x − y|. Hence,
cdmax(G) = m, where m = |E[G]| = n(n−1)

2 .
On the other hand, we see that computing c(G) is equivalent to partitioning V into {V1, V2}, and

defining ui = 0 if i ∈ V1, and 1 if i ∈ V2. Hence, c(G) is equal to the optimal cost of a max-cut for G.
That cost is equal to n2

4 and (n−1)
2

(n+1)
2 when n is even and odd, respectively, leading in both cases to

the claimed ratio.
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2.3.4 Stars
In what follows, we consider stars whose center is vertex 1 (meaning that for any i ̸= 1, |N(i)| = 1).

Proposition 7. Let G be a star. Then, assuming that d is Ptolemaic, cdmax(G) ≤ 2 cd(G).

Proof: Let {u1
1, u

2
1} such that d

(
u1
1, u

2
1

)
= diam(U1). Let ū1 ∈ U1 and For all i ∈ {2, . . . , n}, let

ūi ∈ Ui such that there exists ū1 ∈ U1 with d(ū1, ūi) = dmax
1i . We then follow the same approach as

in the proof of Theorem 3: we set U1 = {u1
1, u

2
1}, U i = {ūi},∀i > 1, and for i ∈ V , we consider

the random variables ũi uniformly distributed on Ui. Since {u1
1, u

2
1} is a diameter of U1, we can apply

Lemma 1 to get
d(u1

1, ūi) + d(u2
1, ūi) ≥ d(ū1, ūi) = dmax

1i .

This implies E [d (ũ1, ũi)] ≥ 1
2d

max
1i for any i > 1, and thus the claimed ratio.

Corollary 4. Let G be a star. Then, cdmax(G) ≤ 3 c(G).

Proof: The result is obtained with the exact same proof as Proposition 7 where we apply Lemma 2 instead
of Lemma 1.

We show below that the bound from Corollary 4 is asymptotically tight.

Proposition 8. Let G be a star on n vertices. There is an uncertainty set U such that cdmax(G) =
3(n−1)
n+1 c(G).

Proof: We consider the uncertainty set U =
�n

i=1 Ui where U1 = {u2
1, . . . , u

n
1} and Ui = {ui}, i =

2, . . . , n, such that:

• for all (i, j) ∈ {2, . . . , n}2, i ̸= j, d(ui
1, u

j
1) = 2/3,

• for all (i, j) ∈ {2, . . . , n}2, i ̸= j, d(ui, uj) = 2/3,

• for all i = 2, . . . , n, d(ui
1, ui) = 1 and ∀j ̸= i, d(uj

1, ui) = 1/3.

The triangle inequality is verified, so d is a distance.
By symmetry of the star graph and of the uncertainty set, every solution u ∈ U is optimal and has

the same value 1 + 1
3 (n − 2). Moreover, the maximum distance between U1 and Ui is equal to 1 for all

i ∈ {2, . . . , n}, so cdmax(G) = n− 1. As a result, cdmax(G) = 3(n−1)
n+1 c(G).

2.3.5 Trees
We conclude our study of specific structures with trees. Our first result combines the bounds obtained for
stars in the previous section with the composition results presented in Section 2.3.1 to improve the ratio
of 9 obtained in Theorem 4 for general graphs and distances.

Proposition 9. Let G be a tree. Then cdmax(G) ≤ 6 c(G).
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Proof: Observe first that we can partition E[G] into E1 and E2 such that each Ei induces a star forest
(a graph where any connected component is a star). Indeed, to obtain such a partition we root the tree at
vertex 1, and define Si as the star whose central vertex is i and whose leaves are the children vertices of i
in G. Then, we define E1 (resp. E2) as the union of E(Si) for vertices i which are an odd (resp. even)
distance from vertex 1. By Proposition 1 and Corollary 4, we get the claimed ratio.

Next, we show how the bound can be further tightened when considering distances resulting from
Euclidean embeddings and spherical uncertainty sets.

Proposition 10. Assume d is the Euclidean distance, and that for all i ∈ V , Ui is a closed ball. Then, for
any tree G, cdmax(G) ≤ 2

√
2 c(G).

Proof: We assume without loss of generality that G is rooted at vertex 1. The proof is made by induction
on the height of the tree. For this, we consider the following induction statement:

P (h) : If G has height h, there are two solutions u1, u2 ∈ U such that

• cdmax(G) ≤ 2
√
2
∑

{i,j}∈E[G] d(u
1
i , u

1
j ) =

∑
{i,j}∈E[G] d(u

2
i , u

2
j ),

• u1
i = u2

i for each vertex i with level l < h,

• [u1
i , u

2
i ] is a diameter of Ui for each vertex i with level h.

If h = 0, G has only one vertex which is the root of the tree, so the induction statement is trivially
satisfied with any diameter [u1, u2] of U1.

Assume that P (h) is true for some h ≥ 1, and let G be a rooted tree with height h + 1. Without
loss of generality, we assume that the vertices of V [G] are sorted by increasing level and let nh−1, nh

and nh+1 be such that the vertices with level h are Vh = {nh−1 + 1, . . . , nh} and those with level
h + 1 are Vh+1 = {nh + 1, . . . , nh+1}. Let G≤h = (V≤h, E≤h) be the subtree of G induced by
vertices {1, . . . , nh}. Tree G≤h has height h so we can apply the induction statement to get two solutions
u1, u2 ∈ U as described in P (h).

Now, for all i ∈ Vh, let Si ⊂ E[G] be the set of edges of the star graph whose internal vertex is
i and whose leaves are the children vertices of i (which all belong to Vh+1). Similarly to what was
done in the proof of Proposition 7, for all {i, j} ∈ Si, we can set u1

j ∈ argmaxu∈Uj
d(u, u1

i ) and
u2
j ∈ argmaxu∈Uj

d(u, u2
i ), which yields d(u1

i , u
1
j ) + d(u2

i , u
2
j ) ≥ dmax

ij . We can then assume without
loss of generality that

∑
{i,j}∈Si

d(u1
i , u

1
j ) ≥

∑
{i,j}∈Si

d(u2
i , u

2
j ), i.e.,

cdmax(Si) ≤ 2
∑

{i,j}∈Si

d(u1
i , u

1
j ). (8)

Given that we are considering the Euclidean distance with spherical uncertainty sets, the above implies
that segment [u1

i , u
1
j ] goes through the center oj of Uj (direct application of the triangle inequality). Then,

let [ū1
j , ū

2
j ] be the diameter of Uj that is orthogonal to [u1

i , u
1
j ]; it exists because Uj is spherical. Denoting

the radius of Uj by rj , we then compute{
d(u1

i , u
1
j )

2 = d(u1
i , oj)

2 + r2j + 2rjd(u
1
i , oj) ≤ 2(d(u1

i , oj)
2 + r2j )

d(u1
i , ū

1
j )

2 = d(u1
i , ū

2
j )

2 = d(u1
i , oj)

2 + r2j
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As a consequence, d(u1
i , ū

1
j ) = d(u1

i , ū
2
j ) ≥ 1/

√
2d(u1

i , u
1
j ). Using (8), we then get

cdmax(Si) ≤ 2
√
2

∑
{i,j}∈Si

d(u1
i , ū

1
j ) = 2

√
2

∑
{i,j}∈Si

d(u1
i , ū

2
j ).

The same applies to all i, so we build two solutions ũ1, ũ2 ∈ U such that

• ũ1
i = ũ2

i = u1
i for all i ∈ V≤h,

• [ũ1
i , ũ

2
i ] = [ū1

i , ū
2
i ] is a diameter of Ui for all i ∈ Vh+1.

To conclude, we observe that E[G] = E≤h ∪
(⋃

i∈Vh
Si

)
, so∑

{i,j}∈E[G]

d(ũ1
i , ũ

1
j ) =

∑
{i,j}∈E≤h

d(ũ1
i , ũ

1
j ) +

∑
i∈Vh

∑
{i,j}∈Si

d(ũ1
i , ũ

1
j )

=
∑

{i,j}∈E≤h

d(u1
i , u

1
j ) +

∑
i∈Vh

∑
{i,j}∈Si

d(u1
i , ū

1
j )

≥ 1

2
√
2
cdmax(G≤h) +

1

2
√
2

∑
i∈Vh

cdmax(Si)

=
1

2
√
2
cdmax(G).

Remark 3. Notice that Proposition 10 does not fit into the framework described so far as the sets Ui

are infinite. Nevertheless, a finite input for such problems can be defined as Iball = (G, α, c, r, ℓ), where
G and α are as before, c and r denote the center and radii of the balls, respectively, and ℓ denotes
their dimension. Furthermore in such problems, we consider that the distance between any two points in
u, v ∈ Rℓ can be computed in constant time by calling the function ∥u− v∥2.

3 FPTAS for robust shortest path
Up to now, we have mostly focused on general problems ROBUST-Π and provided constant-factor approx-
imation algorithms. The purpose of this section is to focus on a specific problem, ROBUST-SP, known to
be NP-hard (Bougeret et al. (2023)). We do this by providing a dynamic programming algorithm for
ROBUST-GEN-SP (a generalization of ROBUST-SP where d is not required to verify the triangle inequality)
in Section 3.1. As observed at the end of Section 3.1, this dynamic porgramming algorithm becomes
polynomial when some parameters are constant (typically |U|). Moreover, it is also used in Section 3.2 to
derive the FPT AS.

3.1 Dynamic programming algorithm
In the ROBUST-GEN-SP problem, the input I = (G, s, t,U , d) is the same as in the ROBUST-SP problem,
except that d is now a non-negative matrix that is only assumed to be symmetric, e.g., d(u, v) = d(v, u) for
any u, v ∈

⋃
i∈V Ui. In particular, the function associated with d may not respect the triangle inequality.

This level of generality will be useful in the next section when deriving the FPT AS for ROBUST-SP.
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Next, we introduce further notations that are used to derive the dynamic programming algorithm. Let
Gi→t denote the set of all i − t simple paths in G, and Gi→t

κ those having at most κ edges. Given i ∈ V
and a path P ∈ Gi→t, we define the worst-case cost given that ui = uℓ

i for ℓ ∈ [σi] (recall that σi = |Ui|)
as

• cℓ(P ) = max{c(u, P ) | u ∈ U , ui = uℓ
i}, and

• and Pr(P ) = (cℓ(P ))ℓ∈[σi] as the profile of P .

We also introduce for any κ ∈ [n] the set of profiles of all i − t paths with at most κ edges as P(i,κ) =
{Pr(P ) | P ∈ Gi→t

κ }. We denote

• Val(I) = {cℓ(P ) | i ∈ V, P ∈ Gi→t, ℓ ∈ [σi]},

• nval = |Val(I)|, and

• nP = |
⋃

i∈V,κ∈[n] P(i,κ)| the total number of different profiles.

Our objective is to define an algorithm A(i, κ) that, given any i ∈ V and κ ∈ [n] computes (P(i,κ), Q(i,κ))
such that

• Q(i,κ) ⊆ Gi→t
κ ,

• |Q(i,κ)| = |P(i,κ)|,

• for any p ∈ P(i,κ), there exists P ∈ Q(i,κ) such that Pr(P ) = p.

Informally, A(i, κ) computes all profiles associated to (i, κ) as well as a representative path for each one
of these profiles. Let us first verify that computing this is enough to solve ROBUST-GEN-SP optimally.

Lemma 3. Given an input I = (G, s, t,U , d) of the ROBUST-GEN-SP problem, and given (P(s,n), Q(s,n)),
we can find an optimal solution of I in time polynomial in n and linear in nP .

Proof: For any p ∈ P(s,n), p = (pℓ)ℓ∈[σs], let xp = maxℓ∈[σs] pℓ. We define

pmin = argmin
p∈P(s,n)

xp

and output Pmin ∈ Q(s,n) such that Pr(Pmin) = pmin. Let P ∗ be an optimal solution and p∗ =
Pr(P ∗). As p∗ ∈ P(s,n), we have c(Pmin) = xpmin ≤ xp∗ = c(P ∗).

We provide next the dynamic programming recursion for P(i,κ), leaving aside the computation of
Q(i,κ) to simplify the presentation. Given i ∈ V, κ ∈ [n], j ∈ N(i), P ′ ∈ Gj→t

κ , and p′ = Pr(P ′),
we consider the i − t path P = iP ′ obtained by concatenating i with P ′. One readily verifies that
Pr(P ) = p(i, κ, j, p′), where p(i, κ, j, p′) = (yℓ)ℓ∈[σi], with yℓ = maxℓ′∈[σj ] d

(
uℓ
i , u

ℓ′

j

)
+ p′ℓ′ . We

obtain that for any i ̸= s and κ > 0

P(i,κ) = {p(i, κ, j, p′) | j ∈ N(i), p′ ∈ P(j,κ−1)}, (9)

and P(s,0) = (0)ℓ∈[σs]. Recall that σ = maxi∈V σi. We provide in the next lemma the complexity of the
resulting dynamic programming algorithm.
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Lemma 4. Let i ∈ V, κ ∈ [n]. Given P(j,κ−1) and Q(j,κ−1) for any j ∈ N(i), we can compute
(P(i,κ), Q(i,κ)) in time O(nσ2nP) and space O(nPn(log(n))).

Proof: For complexity issues we assume that P(j,κ−1) and Q(j,κ−1) are represented as arrays AP and
AQ indexed by profiles, where given a profile p, AP [p] is true iff p ∈ P(j,κ−1), and AQ[p] contains a path
P such that Pr(P ) = p if p ∈ P(j,κ−1), and ∅ otherwise. This explains the O(nPn(log(n))) required
space for storing Q. As profiles are vectors of length at most σ, we consider that it takes O(σ) to obtain
the value stored at index p of array AP or AQ.

We compute P(i,κ) following the recursion relation (9), and compute Q(i,κ) along the way. More
precisely, we start by initializing two arrays A′

P and A′
Q of size nP . Then, for all j ∈ N(i) and p′ ∈

P(j,κ−1), we compute p(i, κ, j, p′) in time O(σ2). Now, we perform the following operations in O(1). If
p(i, κ, j, p′) is not already in P , we add it to P , we find a path P ′ in Q(j,κ−1) such that Pr(P ′) = p′, and
we add the path iP ′ to Q.

We are now ready to state the main result of this section.

Theorem 5. ROBUST-GEN-SP can be solved in time O(n3σ2nP) and space O(nPn
3log(n)).

Proof: We compute (P(s,n), Q(s,n)) using a DP algorithm based on (9), and obtain an optimal solution
by Lemma 3. The overall complexity is dominated by the DP, whose complexity is in O(a × b), where
a denotes the number of entries of the associated memoization table, and b is the time-complexity of
computing one entry, assuming the other ones are accessible in O(1). As there is an entry (i, κ) for any
i ∈ V and κ ∈ [n], we get a = O(n2). By Lemma 4, we get b = O(nσ2nP) get the claimed time
complexity. The space complexity immediately follows.

Let us further elaborate on the value of nP that arises in Theorem 5. First of all, we see that nP ≤
(nval)

σ , leading to the observation below, used in the next section to derive the FPTAS.

Observation 3. ROBUST-GEN-SP can be solved in time O(n3σ2(nval)
σ)

From a more theoretical viewpoint, notice that the reduction of Bougeret et al. (2023)[Proposition 1]
proving the hardness of ROBUST-GEN-SP involves a “large” set U , so a natural question is whether
ROBUST-GEN-SP becomes polynomial for “small” sets U , either in terms of diameter or number of ele-
ments. It so happens that the two questions can be answered positively. Namely, observe that for any value
cℓ(P ), we can find some nv,v′ ∈ [n] for each (v, v′) ∈ U2 such that cℓ(P ) =

∑
(v,v′)∈U2 nv,v′d (v, v′).

Therefore, nval can be bounded by n
|U|(|U|−1)

2 , and ROBUST-GEN-SP can be solved in polynomial time
if |U| is constant. Alternatively, if all distances are integer, meaning d has integer values, then nP ≤
n× diam(U), so ROBUST-GEN-SP can be solved in O(n3σ2(n× diam(U))σ) in that case.

3.2 FPTAS
We now consider solving ROBUST-SP approximately. More precisely, we provide an algorithm that, given
an input I of ROBUST-SP and ϵ > 0, outputs an (1 + ϵ)-approximated solution in time polynomial both
in n and 1/ϵ. More precisely, given any ϵ > 0, we want to provide an (1 + ϵ)-approximated solution. Let
I = (G, s, t,U , d) be an input to ROBUST-SP and A be an upper bound to OPT(I) and ϵ′ > 0. We define a
matrix d′ by rounding each element of d to the closest value of the form ϵ′ℓA for some ℓ ∈ N. We obtain
an instance I ′ = (G, s, t,U , d′) to ROBUST-GEN-SP. Having Observation 3 in mind, a straightforward
application of the DP from the previous section to I ′ would yield too many values nval. Hence, we show
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in Section 3.2 how to adapt the DP, and choose A and ϵ′ (depending on ϵ) appropriately to obtain the result
below.

Theorem 6. ROBUST-SP admits an FPT AS for fixed σ: for any ϵ, we can compute a (1+ϵ)-approximated
solution in time O(n3σ2(n

2

ϵ )σ).

Proof: Let I = (G, s, t,U , d) be an instance of ROBUST-SP. Our objective is to provide a solution of
cost at most (1 + ϵ)OPT(I). Let ϵ′ ∈ R+. Using the 2-approximation obtained combining Theorem 1
and Proposition 2, we start by computing an s − t path PA of cost c(PA) = A, where OPT(I) ≤ A ≤
2OPT(I). For any x, y ∈

⋃
i∈V Ui, we define d′(x, y) by rounding up d(x, y) to the closest value of the

form ϵ′ℓA for some ℓ ∈ N. For any path P and u ∈ U we denote by c′(u, P ) =
∑

i,j∈P d′(ui, uj),
c′(P ) = maxu∈U c′(u, P ). Let I ′ = (G, s, t,U , d′) be the instance of ROBUST-GEN-SP obtained when
using d′ instead of d.

Observe that

• the function d′(u, v) = d′(u, v) may not be a distance,

• for any x, y ∈
⋃

i∈V Ui, we have d(u, v) ≤ d′(u, v) ≤ d(u, v) + ϵ′A

• for any path P , c(P ) ≤ c′(P ) ≤ c(P ) + nϵ′A

• OPT′ ≤ OPT + nϵ′A.

Let i ∈ V and P be an i− t path. We say that P is useless if it verifies c′(P ) > A(1 + nϵ′); otherwise,
P is said to be good. According to previous observations, we see that c′(PA) ≤ A(1 + nϵ′). Thus, for
any i ∈ V and useless i − t path P , we have c′(P ) > c′(PA). This implies that P cannot be the suffix
of an optimal solution to input I ′ (meaning that there is no optimal solution of I ′ that first goes from s to
i, and then uses P ). As a consequence, in the DP algorithm provided in Section 3.1, we can restrict our
attention to the profiles of good paths, without loosing optimality in I ′. More formally, for any i ∈ V and
κ ∈ [n], we adapt the previous definition P(i,κ) to

P(i,κ)
good = {Pr(P ) | P ∈ Gi→t

κ , P is good},

and we now consider that the DP algorithm Ag(i, κ) computes (P(i,κ)
good, Q

(i,κ)) instead of (P(i,κ), Q(i,κ)).
We now compute P ∗ an optimal solution on instance I ′ (for cost function c′) using Theorem 5 (with DP
algorithm Ag), and output P ∗.

We have c(P ∗) ≤ c′(P ∗) = OPT(I ′) ≤ OPT(I) + nϵ′A ≤ OPT(I)(1 + 2nϵ′). Let us now consider the
complexity of computing P ∗. As c′(P ) = maxℓ∈[σi] c

′ℓ(P ), observe that for any good path P we have
c′ℓ(P ) ≤ A(1 + nϵ′). Moreover, as for any x, y ∈

⋃
i∈V Ui, d′(u, v) is a multiple of ϵ′A, we get that for

any good path P , c′ℓ(P ) = ℓϵ′A for 0 ≤ l ≤ n+ ⌈ 1
ϵ′ ⌉. This implies that nval ≤ (n+ 2 + 1

ϵ′ ) = O( n
ϵ′ ),

so Observation 3 leads to the desired complexity of O(n3σ2( n
ϵ′ )

σ) to get a ratio 1 + 2nϵ′. Finally, given
a target ratio 1 + ϵ, we set ϵ′ = ϵ

2n , obtaining the claimed complexity.
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4 Conclusion
In this paper, we proved that for a certain type of problem Π ∈ S, we can transfer the approximability of
Π to its robust variant ROBUST-Π (to the price of a constant multiplicative factor), and we provided an
FPT AS for the robust shortest path problem. Natural questions for future research would be to improve
some of the multiplicative constants we obtained for specific structures and to generalize the FPT AS to
a larger class of problems.
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