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A graph is an efficient open domination graph if there exisalzset of vertices whose open neighborhoods partition
its vertex set. We characterize those gragher which the Cartesian produ¢t O H is an efficient open domination
graph whenH is a complete graph of order at least 3 or a complete bipaytitph. The characterization is based on
the existence of a certain type of weak partition@fG). For the class of trees whdii is complete of order at least

3, the characterization is constructive. In addition, ecigeype of efficient open domination graph is charactetize
among Cartesian produafs0 H whenH is a5-cycle or ad-cycle.
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1 Introduction

The domination number of a graghis a classical invariant in graph theory. It is the minimundoaality

of a setS of vertices for which the union of the closed neighborhoaddered in vertices of is the entire
vertex set of7. Hence, each vertex @ is either inS or is adjacent to a vertex ii. In other words, we
can say that vertices ¢f control each vertex outside 6f A classical question in such a situation is: who
controls the vertices af? One possible solution to this dilemma is total dominatiarset D C V(G)

is a total dominating set af if every vertex ofG is adjacent to a vertex dD. (Hence, vertices ab are
also controlled byD.)
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A natural question for a grapf# is whether we can find a total dominating $etsuch that the union
of the open neighborhoods of the verticedlris V(G) but so that these open neighborhoods also form
a partition of V(G). The concept has been presented under the names totaltperfiss Cockayne
et al. (1993), efficient open domination Gavlas and Sch@@0®) and exact transversals Cowen et al.
(2007). In the present work we follow the terminology of affit open domination, and we say that
a graphG is an efficient open domination graphdf has a total dominating sd? such that the open
neighborhoods of the vertices 6f form a partition ofV(G). A similar concept for ordinary domination
was first investigated by Biggs (1973) and Kratochvil (1988ey call a graph 1-perfect if it contains a
perfect code, that is, a set of vertices whose closed neipbbds partition the vertex set.

The problem of establishing whether a gra@his an efficient open domination graph is anP-
complete problem; see Gavlas et al. (2003); McRae (1984ylaG&t al. (2003) gave a recursive char-
acterization of the class of efficient open domination trégavlas and Schultz (2002) presented various
properties of efficient open domination graphs. The effioigren domination graphs that are also Cayley
graphs were studied by Tamizh Chelvam and Mutharasu (20t fficient open domination grid graphs
by Cowen et al. (2007); Dejter (2008); Klostermeyer and @alsker (2006). Moreover, Abay-Asmerom
et al. (2008) characterized those direct product graphsatieesefficient open domination graphs.

Several graph products have been investigated in the lastideades and a rich theory involving the
structure and recognition of classes of these graphs hagethdammack et al. (2012). The most studied
graph products are the Cartesian, strong, direct, anddgraphic. These four are also called gta@ndard
products One approach to graph products is to deduce propertiesrofdagt with respect to (the same)
properties of its factors. See a short collection of thepegyinvolving total domination and perfect codes
in Dorbec et al. (2006); Gravier (2002); Henning and Ral020 Ho (2008); Jerebic et al. (2005); Klavzar
et al. (2006); Kuziak et al. (2014a,b); Mekis (2010); R&0Q5). The domination related questions on
the Cartesian product seems to be the most problematic athersiandard products. We just mention
Vizing's conjecture, which says that the domination nundfea Cartesian product is at least the product
of the domination numbers of the two factors. Settling throsjecture is one of the most challenging
problems in the area of domination (see the recent surveyizingls conjecture BreSar et al. (2012)).
Efficient open domination is no exception, which could beréeeson it has not been studied intensively
yetin the Cartesian product setting. Other than the resunltgid graphs mentioned above, a step forward
in this direction was made only recently by Kuziak et al. (2Bjlwhere some special types of Cartesian
products were considered. In the same paper complete pigans of efficient open domination graphs
among lexicographic and strong products of graph were given

The aim of this paper is to show how the problem of finding effitiopen domination graphs among
Cartesian products can be approached by partitioning ttiexveet of one factor. In the next section we
set the context by supplying needed definitions and prevasudts in this area. In Section 3 we prove that
for r > 3, the graphG O K, has an efficient open dominating set if and only/i{fG) has a weak partition
that satisfies certain properties. This provides a way tetroot graphs with efficient open dominating
sets in this family of Cartesian products. In addition weegavstructural characterization of the trges
such thafl’ O K. has an efficient open dominating set. Section 4 addresses/éiaik partition approach
to graphs of diameter 2.



Efficient open domination Cartesian products 3

2 Definitions and previous results

Throughout the article we consider only finite, simple gmpRor most common graph theory notation
and definitions we follow the book by Hammack et al. (2012)pamticular, our definitions and notation
for open (V(v)) and closed ¥ [v]) neighborhoods of a vertex for distance {¢ (u, v)) between a pair of
vertices and for the diametetibm(G)) of a graph are the same as theirs. The distaiage, v) between
an edge: and a vertex in G is the shortest distance betwesand the two end vertices ef while the
distanced(e1, e2) between edges, ande, is the shortest distance between the end vertices ahd
the end vertices of;. In general, for nonempty subsdtsand@ of V(G), the distancé (P, Q) between
them is the shortest distance between a vertex ffband a vertex fronf). A weak partitionof a setX
is a collection of pairwise disjoint subsets &f whose union isX. We emphasize that, in contrast to a
partition, members of a weak partition are allowed to be gmphe subgraph induced by a subsebf
V(G) is denoted byS). A matchingin G is any (possibly empty) set of independent edges: if a
positive integer, then the vertex set of each of the grdphd(,., andC. (if » > 2) will be the interval[r]
defined byfr] = {1,...,7}.

Since this present work concerns total domination on Cariggroducts, we include several of the
important definitions here for the sake of completeness. &ydtsat a vertex of G dominatesa vertex
y (equivalently,y is dominated by) if y € N(x). A subsetD of V(G) is atotal dominating sebf G
if each vertex inG is dominated by at least one vertexfih Thetotal domination numbeof a graph
G is the minimum cardinality of a total dominating set@fand is denoted by;(G). The Cartesian
product G O H, of graphsG and H is a graph withV (GO H) = V(G) x V(H). Two vertices(g, h)
and(g¢’, h') are adjacent itz O H whenever (¢’ € E(G) andh = b’) or (9 = ¢’ andhh’ € E(H)). For
afixedh € V(H) we callG" = {(g,h) € V(GOH) : g € V(G)} aG-layerin GO H. Similarly, an
H-layer9H for a fixedg € V(G) is defined asH = {(¢9,h) € V(GO H) : h € V(H)}. Notice that the
subgraph of7 O H induced by aG-layer or anH -layer is isomorphic ta> or H, respectively. The map
pc : V(GOH) — V(G) defined byps((g,h)) = g is called aprojection map ontd. Similarly, we
definepy as theprojection map ontd?. Projections are defined as maps between vertices, buiindgu
it is more useful to see them as maps between graphs.

A graphG is anefficient open domination gragshortly anEOD-grap}j if there exists a seb, called
an efficient open dominating s¢shortly anEOD-se}, for which |J,., N(v) = V(G) and N(u) N
N (v) = 0 for every pairu andv of distinct vertices ofD. Note that two different vertices of an EOD-set
are either adjacent or at distance at least three. It is @asge that the patR, is an EOD-graph if and
onlyif n # 1 (mod 4), while the cycleC,, is an EOD-graphifand only it = 0 (mod 4). LetG andH
be graphs such th& O H is an EOD-graph with an EOD-sé). Note that the projection of an edge in
(D) ontoG is either a vertex or an edge. When the projection of everg @u@D) ontoG is an edge, we
say thatD is aparallel EOD-setwith respect ta&. A Cartesian product that contains a parallel EOD-set
with respect to one of its factors is callegharallel EOD-graph

Among the class of nontrivial Cartesian products seveffalite families of EOD-graphs have been
found. In Cowen et al. (2007); Klostermeyer and Goldwas2@0§) the authors investigated EOD-graphs
among the grid graphs (that is, Cartesian products of paResults from both papers are merged in the
following characterization.

Theorem 2.1 Cowen et al. (2007); Klostermeyer and Goldwasser (2Q@dy > r > 3. The grid
graph P,.O P, is an EOD-graph if and only if is an even number and= = (mod r + 1) for some
xe{l,r—2,r}.
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Some partial results on EOD-graphs in the family of torupbsa(Cartesian products of cycles) were
presented by Dejter (2008), by characterizing only thosh wiparallel EOD-set (there referred to as a
parallel total perfect code).

Theorem 2.2 Dejter (2008)The Cartesian producf,. O C; has a parallel EOD-set if and only ifandt
are multiples of four.

Kuziak et al. (2014b) recently continued with the study ofl=@raphs among tori and cylinders (Carte-
sian product of a path and a cycle).

Proposition 2.3 Kuziak et al. (2014blett > 4. The torusC, O C; is an EOD-graphifand only if = 0
(mod 4).

In addition, they proved that, O C; is not an EOD-graph if € {3,5,6,7} andt > r. Based on the
above observations they posed the following conjecture.

Conjecture 2.4 Kuziak et al. (2014b).etr andt be integers such that > 3 andt > 3. The torus
C, OCy is an EOD-graph ifand only if =0 (mod 4) andt =0 (mod 4).

The same authors characterized the graptisr which G O K5 is an EOD-graph. In order to do this
they introduced the so-called zig-zag graphs, Kuziak e28l14b). LetG be a graph on at least three
vertices andE’ = {ey,...,e;} a subset off(G), wheree; = u;v; for everyi € [k], with the following
properties:

(1) N(u;) " N(v;) =0;

(i7) dg(ei,ej) >2forl <i< j<Fk;

(t33) foreveryx € V(G) — {us,v; : ¢ € [k]} there exist uniqug and/, j # ¢, such thatlg(x,e;) =

dg(z,e0) = 1;
(4v) for every sequence,,...,e;; of distinct edges withy > 2 and with
dG(eiz,eig+1 mod ,)) =2for¢ e {1,...,j}, j mustbe an even number.

We call £’ azig-zag sebf G and, if there exists a zig-zag set@ we callG azig-zag graph
Theorem 2.5 Kuziak et al. (2014blf G is a zig-zag graph, the& O K5 is an EOD-graph.

Not all EOD-graphs amon@ O K, are given by the above theorem. Kuziak et al. observed that fo
a description of all EOD-graphs among Cartesian productgahs withK5, a certain combination of
zig-zag graphs and 1-perfect graphs is needed (see Kuzek(2014b) for details).

One can observe that fer > 2, every EOD-set irG O K. is a parallel EOD-set with respect .
Namely, if an edge induced by two vertices of a vertex subisef G O K. projects to a single vertex
g € V(G), then the layefK, contains a vertex that is dominated more than oncd byhis observation
led to the idea of how to approach the problem of finding EOBpYs among- O K. for » > 2. This is
presented in the next section.
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3 GOK,forr > 2

In order to obtain a characterization of EOD-graphs am@ngk,., » > 2, we introduce a new concept,
based on a weak partition of the vertex settbf As we will see in later sections, a modification of this
concept can be used for the construction of EOD-graphs tleaCartesian products O H where H
belongs to several other special classes of graphs.

Letr be aninteger largerthan 1. We call a gr&ph K .-amenable graplf there exists a weak partition
{Vo,V1,...,V,.} of V(G), such that

(A) if x € Vp, then|N(z) N V;| = 1 for everyi € [r],
(B) (V;)is a matching irG for everyi € [r],
(C) (V1 U---UV,)is amatching irG.

For the sake of clarity in the above definition we emphasiz the induced subgraph¥;) and
(V1 U---UV;) do not contain any edges other than those in their perfeathimas.
We first prove thaf<,-amenable graphs do not differ from zig-zag graphs.

Theorem 3.1 A graphG is a K>-amenable graph if and only & is a zig-zag graph.

Proof: Let G be aK>-amenable graph with a weak partiti¥y, V1, V2 } of V(G) that satisfies conditions
(A), (B) and (C). We will show thal?’ = (V; U V4) is a zig-zag set off by demonstrating that conditions
(i) — (4v) hold. Since(V; UV3), (V1) and (V) are matchingsE’ is a set of edge$es,...,er}. By
the same argument we derive th&f(e;,e;) > 2 for i # j, and thus(ii) holds. Lete; = w;v; for
everyi € [k]. If x € N(u;) N N(v;) for somei € [k], thenz € V} by the matching argument again.
But this contradicts condition (A) sincéV(xz) N V;| > 2 in this case. Hencéi) also holds. Ifz €
V(G) — {ui,v; : @ € [k]}, thenz € V. By (A) we have thaiN(x) N V;| = 1 for everyi € {1,2},
which implies the existence of exactly two different edgeande, of E’ with dg(x,e;) = dg(x,er) =
1. This proves(iii). To prove(iv), lete;,,eq,,...,e;;, j > 2, be a sequence of distinct edges with
da(e; e ) =2for/ € [j]. In addition, letz, be a common neighbor @f ande; .
2 £+1 (mod j) 2 £+1 (mod j)

As beforez, € V; for every? € [j]. Without loss of generality, suppose the end-vertices efiiigee;,
belong tol;. By condition (A) for the vertex:, the end-vertices of;, belong tol,. The same argument
for the vertexxz, implies that the end-vertices ef, belong toV;. Continuing this way, we get a zig-zag
pattern for the end-vertices ef, , e;,, . .., e;;. If j is an odd number, then the end-verticeg gfande;,
are both inV;, which gives a contradiction with condition (A) for the vextr;. Thus; is an even number
and(zv) holds as well.

Now let G be a zig-zag graph with a zig-zag 96t = {e, ..., e} wheree, = u;v;. We setlV =
V(G) — {u,v; : i € [k]}. Observe thak’ can be partitioned a8’ = E; U - - - U E; such that for each
i € [t], the following holds. The sef; is a maximal set of edges such that between any two distinetsed

e; ande,, from E; there exists a sequeneg= ¢;,,¢;,,...,e;, = en, £ > 1, of distinct edges where the
distance between two consecutive edges in this sequelc8igch a sequence is calle@-@tep sequence
of length?.

Observe that there exists a partitionfof= F; U - - - U E, such thatF;, for everyi € [t], consists of a
maximal set of edges such that between any two distinct edgasde;, from E; there exists a sequence
ej = ej,, €5, -, €5, = ek, £ > 1, of distinct edges such that the distance between two catigeedges
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in this sequence 8 (we call such sequenceZastep sequence of length Now, in E; fix an arbitrary
edgee. For an arbitrary edg¢ in E; there exists a 2-step sequence betweamd f. Property(iv)
implies that the lengths of all different 2-step sequenads/bene and f are of the same parity. Thus,
edges off; can be partitioned into two sets' andE?2. The sett} consists ot and all edgeg for which
the length of a 2-step sequence betweemd f is even, andE? = E; — E}. For everyi € [t] let V}!
denote the set of end-vertices of edge#iih andV;? the set of end-vertices of edgesiii. Finally, let
Vi=Viu---uVltandV, =V2U---UV2

We will show that{Vj, V1, V,} is a weak partition of/ (G) satisfying conditions (A), (B) and (C).
Properties (B) and (C) clearly follow, sinek;(e;,e;) > 2 for every paire;,e; € E’. To prove (A) let
x € Vp. By (ii7) there exist exactly two different edges e, € E’ such thatlg(z,e,) = 1 = dg(z, er).
Note thate, ande, belong to the samé&; in the partition ofE’. Recall that we have fixed the edge
e € E;. If a 2-step sequence betweemnde, and a 2-step sequence betweesnde, have the same
parity, then we obtain a contradiction withw). Hence, end-vertices of one edge, sgybelong toV;,
and end-vertices of,. belong toV,. Since, in addition)V(u;) N N(v;) = 0, by (¢) for every: we have
|N(z) V1| =1 = |N(x) N V;| and condition (A) holds. O

Theorem 3.2 Letr be a positive integer such that> 2 and letG be a graph. The Cartesian product
G O K, is an EOD-graph if and only if7 is a K.-amenable graph.

Proof: Let G be aK,-amenable graph with corresponding weak partitjég, ..., V;.} of V(G). We
define a subseb of V(GO K,) by D = {(g,i) : i € [r] andg € V;}. It follows thatD contains at most
one vertex from eaclk.-layer. To prove that: O K. is an EOD-graph we will show that every vertex
of GO K, is dominated by exactly one vertex 6f. Leti € [r] and letg € V(G). First, assume that
g € Vb. By (A), the vertexg has a unique neighbar; in V;. Consequently g, i) is adjacent tqx;, i)
and(z;, i) € D. Moreover, by the uniqueness ef, no other vertex oD dominategg,:). Now assume
thatg € V;. Since(V;) is a perfect matching; has a unique neighbgf in V;. It follows that(¢’, i) € D
and that(¢’, ) is the only neighbor ofg, i) in D. Finally, assume thaj € V; for somej € [r] such
thatj # i. By the definition ofD this implies that{ (g, j)} = D N 9K,. In addition, since (B) and (C)
hold, (g, i) has no neighbor i: N D. The resultis thatg, i) is dominated by exactly one vertex, namely
(g9,7), of D. ConsequentlyD is an EOD-set of7 O K, andG O K, is an EOD-graph.

To prove the converse, suppose thatl K, is an EOD-graph with an EOD-sé. Fori € [r] let
Vi={v e V(G) : (v,i) € D}, and letVy = V(G) — (V1 U--- U V,). As we observed in Section 2,
D is necessarily parallel with respect@ This means that evefy/,. contains at most one vertex 6,
and we thus infer thafVy, V1,...,V,.} is a weak partition oV (G). We prove that conditions (A), (B),
and (C) of the definition of(,.-amenable hold. If condition (A) is not satisfied, then thexestz € 1
andi € [r], such thaiN(z) N V;| = 0 or |[N(z) NV;| > 1. In the first cas€z, ) is not dominated by
any vertex ofD, and in the second case, ¢) is dominated by more than one vertexf Both cases
are in contradiction with the assumption thatis an EOD-set of7 O K .. Hence, the weak partition
{Vo, Vi,...,V,} satisfies property (A). Let € [r] and letg € V;. Since|D N 9K,| < 1 and(g,4) has
exactly one neighbor i, it follows that| N (¢g) N (V1 U ---U V,)| =1 = |N(g) N V;|. Hence, both (B)
and (C) hold. Thereforé7 is a K,.-amenable graph. O

Let r be an integer larger than 1. In the rest of this section weepttes recursive description of the
family of all K,.-amenable trees. The following construction generalizesbnstruction of zig-zag trees
(that is, Ko-amenable trees) from Kuziak et al. (2014b). We wiill denqté@r the tree of orde2r + 1
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obtained from the stak’; ,. by subdividing each edge exactly once. Itis clear mﬁt, is aK,.-amenable
tree, and the corresponding partition‘O(Kf}) is unique up to a permutation &f. We now define an
infinite family 7, of trees. Each member &F. will have a weak partitio{ V5, V1, ..., V;.} of its vertex
set associated with it.

Suppose thal” is a tree of orden such that{Vy, V{,...,V/} is a weak partition o/ (") and that
T" is a tree of ordem such that{ V", V{’, ..., V/'"} is a weak partition o¥/ (T").

We say that a tre& of ordern + m — 2 is obtained froni” andT"” by aType-a construction ifT" is
isomorphic to the tree formed by choosing a@ny [r], any edgedv; in (V/), any edge:/v! in (V') and
then identifying the vertices) with u/ (now calledu;) andv} with v’ (now calledv;) to obtain the edge
u;v; In T. The associated weak partiti¢ip, V1, ..., V,.} of V(T) is defined by; = Vj’ U Vj” if 7 £ 1,
andV; = (V) UV U{u,v;}) — {ul,vi,ul, v}

Atree S of ordern + m is obtained fron¥” andT"” by aType-b construction ifS is isomorphic to the
tree formed from the union & andT” by adding an edgey for somex € V;j and some; € V;'. The
associated weak partitidilp, Vi, ..., V. } of V(S) is given byV; = V/ UV for0 <i < r.

The family 7. is defined recursively as follows. A trdébelongs to7.. if and only if T’ = Kf:r with its
partition as indicated above @t can be obtained from smaller trees7inby a finite sequence of Type-a
or Type-b constructions.

Theorem 3.3 Letr be an integer such that > 2. The path of order 2 ig(,.-amenable. Ifl" is a tree of
order more than 2, theffi’ is a K,.-amenable graph if and only if € 7...

Proof: Letr be an integer such that> 2. For the path of order 2, l16t; = V(P,), Vo = () = V; for
2 < i < r. Thisweak partitioq V5, V1, . . ., V;.} satisfies the definition showing thB} is a K ,.-amenable
graph. For the remainder of this proof we assume that als weeler consideration have order at least 3.
As noted above, the tre@f’m is a K.-amenable tree. One can conclude directly from the defirdttbat
if T/ andT” are bothK,.-amenable trees, then a tree obtained ff6nandT” by a Type-a or a Type-b
construction is also & ,.-amenable graph. Thus, it follows by induction (on the nundfeType-a and
Type-b constructions) that every membef/ofis a K,.-amenable graph.

Conversely, letl' be a K,.-amenable tree of order at least 3 with a corresponding weatitipn
{Vo, V4,...,V,.} and letk = |V4|. SinceT has order at least 3, it follows from the definition that 1.
We use induction ot to show thatl" € 7,. Letk = 1 andV, = {v}. By property (A)deg(v) = r;
let N(v) = {uq,...,u,} whereu; € V;. By (B) everyu; has a unique neighbaw; in V; and by (C)u;
andw; have no neighbors ir; for j # i. Moreoveru; andw; have no additional neighbors Iy since
k = 1. Thus,T is isomorphic toKffr and hencqd” € 7,..

Now suppose that > 1. Note that every vertex iy has degree at least If there exist € V4 with
deg(v) > r, then there existe € V, N N (v). LetT’ be the component & — vw that containg and let
T" be the component that contaias For0 < i < r, letV;/ = V,;nV(T") and letV! = V; NV (T"). The
resulting weak partitions df (7”) andV (T") clearly satisfy properties (A), (B) and (C), and furthermor
[Vy] < kand|Vy'| < k. By the induction hypothesis bofff andT” belong to7,. SinceT is obtained
from T’ andT” by a Type-b construction, it follows thdt € 7.

Now, suppose that all vertices B are of degree (and hencél}) contains no edges). Choosandv
from V4 with the property thad (u, v) is minimum among all different pairs of vertices frdry. Clearly,
2 < dr(u,v) < 3. Letw be the neighbor of, on the shortest, v-path inT. Without loss of generality
we may assume that € V;. By (B), w has a unique neighbor, say, in V4. The forest” — uw has two
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connected components. The component that contaisgdenoted byl’,, and the one that containsis
denoted byT”’. LetT” be the tree obtained froffi, by adding vertice¢ andt’ and adding edgest and
tt'. LetV =V,nV(T")for0 <i<rletV]/ =(VinV(T,)) U{tt'}, andletV! = V; NV (T,) for

i = 0and2 < i < r. Properties (A), (B) and (C) clearly hold for the above dalimesak partitions of
V(T") andV (T"). Thus,T" andT” are K,-amenable trees. By the induction hypothesis, they aremlso
T... Note thatT" is isomorphic to the tree obtained frdft andT” by a Type-a construction that identifies
t with w, and¢’ with w’. Consequently[” € 7. O

This theorem together with Theorem 3.2 combine to give usdhiewing characterization of those
treesT’ such thafl’ O K. is an EOD-graph for > 3.

Corollary 3.4 Letr be a positive integer larger than 2 and [Etbe a tree. The Cartesian produttd K,
is an EOD-graphifandonly if' = P, or T € 7,.

4 GO H with diam(H) = 2

In this section we consider Cartesian products of graphsenta least) one factor has diameteMoti-
vation for the study of such graphs arises from the previeaan. An EOD-set ofs O H that is parallel
with respect ta7 whendiam(H) = 2 shares an important property with such a sefin K. for r > 3.
This is given in the following lemma.

Lemma4.1 Let H be a graph of diameter 2 and Iét be a graph such tha& O H has an EOD-seD.
For every vertexy in G, |[DN 9H| < 2. Ifin addition D is parallel with respect t@, then|lDN 9H| < 1
for everyg € V(G). If [ID N 9H| = 2, then the two distinct vertices il N 9 H are adjacent.

Proof: Assume thaf) is an EOD-set o7 O H and suppose thdy, «) and(g, v) are distinct vertices in
D. The graphH has diameter 2, and this implies that € E(H) or v andv have a common neighbor
w in H. Since every vertex idH is dominated exactly once b§, we infer that(g, «) and(g,v) are
adjacent, andD N 9H| < 2. It follows immediately that ifD is parallel with respect t@7, then no
H-layer can contain two members DX O |

As we will see, finding an appropriate weak partition of e inG will be useful in the characteri-
zation of (parallel) EOD-graphs among Cartesian prodGdaisH wherediam(H) = 2. First we show
that the Cartesian product of a graph of diam&tand a tree on at least three vertices does not admit a
parallel EOD-set with respect to the tree.

Theorem 4.2 Let H be a graph withdiam(H) = 2 and letT be a tree. IfT" is different thanK, then
T O H does not contain a parallel EOD-set with respecfito

Proof: Let H be a graph withliam(H) = 2. Suppose, in order to obtain a contradiction, that thergtexi
a treeT different thank’,, such thafl’ O H admits a parallel EOD-sd? with respect tdl".

First, we claim thaf N D = {) for every non-universal vertexin H. If this does not hold, then there
exist verticeuo, h), (vo, h) € D which are adjacent ifi' O H. Sinceh is not universal inH, there is
R € V(H) such thatigy (h, h') = 2. Observe thatug, ') and(vg, h’) are not dominated b, 1) and
(vo, h). Moreover, they are not dominated by any verteXdd and*H (sincediam(H) = 2 we have
that|* H N D| < 1 for everyz € V(T') by Lemma 4.1). Therefore, there exists a neighboof u, and a
neighbor, of vy, such thatug, h’) is dominated byuy, h’") € D and(vg, k') is dominated byvy, h') €
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D. Moreover, sinc€uy, h'), (vi, k') € D, there exis{ua, h'), (v2,h’) € D, whereuguy,vov; € E(T).
To dominate vertice@uz, h) and(vz, h), there must existus, h), (vs, h) € D whereusus, vsvs € E(T).
Continuing in this way we obtain a two-way infinite walk. usujugvovivs ... InT. SinceT is a tree, all
vertices of this walk are pairwise different. But this is mnt¢radiction withT" being finite, and the claim
is proved.

We infer thatH has to contain universal vertices and that the projecti@vefy edge i{D) onto H is
a universal vertex. Now, lét be a universal vertex o, such that™® N D # () and let(u, k), (v, h) € D
be adjacent vertices. Together they dominate all vertit&gloand” H. There also exists a non-universal
vertexh’ in H becauseliam(H) = 2. SinceT is different thank,, at least one of. andwv, sayuw,
has a neighbow in T'. Note that(w, h) is dominated byu, k), and(w, k") is not dominated byu, h)
nor (v, h). SinceT™ N D = (), there exists another universal vertex € V (H), such that(w, h') is
dominated by(w, h1) € D. Thisyields a final contradiction, sin¢e, ) is dominated by botlw, #) and
(w, hy) from D, which is not possible in an EOD-sEx O

41 GOK,,

In this subsection we give a necessary and sufficient camd@n a graplG such thatG O K, ,, is an
EOD-graph forl < m < n. The condition will be the existence of a weak partitio4i) that satisfies
very specific requirements. While it may not be easy to ddatemwhether a given grapff has such a
weak patrtition, the requirements of the weak partition witike it straightforward to construct grapis
such thatG O K, ,, is an EOD-graph.

Since K,,, , has diameter 2 and we are not requiring the EOD-se¥ of K, ,, to be parallel with
respect toz, we will refer often to Lemma 4.1. For ease of explanation wsuae throughout this
subsection that < m < n and thatk,, , has partite setsl and B given byA = {1,...,m} and
B = {m+1,...,m + n}. With this notation we let,, ,, be a weak partition ol/(G) containing
mn + m + n + 1 parts indexed as follows:

e Vo,Vi,o s Vi, Vint1s - -+, Vinan; @and

® Viimgg forl <i<mandl <j<n.
We will say thatC,, ,, is K, ,-amenablef it is a weak partition satisfying the following conditien
() Forl < i< m+ n,theinduced subgraplV;) is a matching.
() For1 <i<mandm+1<j<m+n,(V;UVj;)isamatching.

(my For1 <i<j<morm+1<i<j<m+n,eachrinV; has exactly one neighbor Ir; and
eachy in V; has exactly one neighbor ij.

(IV) If 2 € V}j ;) for somel <i < m and somd < j < n,thenN(z) C V4.

(V) If z € Vg, then|N (z) N (Ui<j<nViimeg U Vi) | = 1for1 <i <m, and
IN(2) N (Ut<icmViim+j] YU Vings) | = 1for1 < j < n.
A graph G will be called K,, ,-amenableif V(G) has a weak partition that &, ,-amenable.

With this definition we are now able to give a constructivereleterization of those graplds such that
GO K,, , is an EOD-graph.
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Theorem 4.3 Letm andn be positive integers such that < n and letG be a graph. The Cartesian
productG O K, ,, is an EOD-graph if and only if7 is K, ,-amenable.

Proof: Assume thatG is K, ,-amenable and thdt,, ,, is a weak partition o/ (G) indexed as above
and satisfying the conditions (1)-(V) in the definition alsowVe define a subsé of V(G O K, ,,) by
specifying its intersection with eadk,,, ,,-layer. If is an integer such that< » < m +n andg € V,,
thenD N 9K,,., = {(¢9,7)}. If r ands are integers withl < » < m andl < s < n such that
9 € Virmys)s thenD 0 9K, . = {(g,7), (9. m + s)}. Finally, if g € Vp, thenD N 9K, ,, = 0. Since
Cm,n is a weak partition, the se? is well-defined. We now show thd? is an EOD-set of7 O K, ,, by
showing that each vertex ¢t O K, ,, has exactly one neighbor iD.

Let (x,t) be an arbitrary vertex itf O K, ,,. Assumer € Vy. Suppose first that < ¢ < m. By (V)
there existy) € V(G) such that{y} = N(z) N (Ui<j<nVit.mtj) U V2). This implies that(y,t) € D
and that(y, t) dominateqz, t). Furthermore, it follows from (V) an® N *K,, ,, = 0 that(y, ) is the
only neighbor of(z, t) that belongs taD. The casen + 1 < t < m + n is similar. Assume next that
T € Vjmqs fOr somer ands such thatt < » < m and1 < s < n. By the definition ofD we get
that both(z,r) and(x, m + s) belong toD. Exactly one of these is adjacent(te, t). Combining this
with property (1V) it follows that(z, t) has exactly one neighbor iP. Finally, assume that € V,. for
somer with 1 < r < m. (The casen +1 < r < m + n is similar.) This means thdtc,r) € D and
|DN*K,, | = 1. There are three subcases to consider, namely-{)l <t < m+n, (ii) ¢ = r, and (iii)
t#rbutl <t<m.lfm+1<t<m+n,then(z,r) dominategz,t) (from within the layef’ K, ,,).
From (1), (I1) and (1V) we see thatr, t) is not adjacent to any vertex in N G*. Thus, in subcase (), t)
has a unique neighbor iP. Assume that = r. By (I) there is a uniqug € V. N N(z). By definition
(y,7) € D and thus(z,r) is dominated byD. Properties (I) and (IV) together imply thét, ¢) has no
other neighbor inD. Finally, assume subcase (iii) holds. By (lll) there exestsniquez € V; N N(z).
Now (z,¢) € D and(z,t) is dominated by(z,t). Consequently, by (IV) it follows thatz, ¢) is the only
vertex inD that dominategz, t). We have shown thdD is an EOD-set o&& O K, ...

Conversely, suppose th&t is an EOD-set ofG 0 K, ,. Since K,, ,, has diameter 2, we apply
Lemma 4.1 and conclude th& N 9K, ,| < 2 for every vertexg in G. We produce a weak parti-
tion C of V(G) as follows. The sets i@ are those in the following specifications. Note that soméeée
subsets might be empty.

e Vo={zeV(G):5N*Ky,, =0},
e Vi={zeV(G): SN "Kpn={(z,i)}}forl <i<m+mn,
® Viimyj] =1z € V(GQ) : SN *Kyp o = {(2,4), (x,m +j)}} for1 <i <mandl < j <n.

The verification that is K, ,-amenable (that is, it satisfies properties (1)-(V)) folkdirectly from
the assumption thé&ff is an EOD-set oz O K, ,, and is left to the reader. O

The graphG in Figure 1 was constructed to have a weak partition thafig-amenable. The partite
sets ofK, 3 are as in the development above= {1,2} andB = {3,4,5}. For simplicity the vertices
of G are labeled to indicate the subset of the weak partitiondbatains them. For example, the vertices
labeled1 are inV; while the vertex labeled®, 5] is the only member o¥/, 5;. By Theorem 4.3 the
Cartesian product O K 5 is an EOD-graph.
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3 3

4 4 [2,5) 1 2

Fig. 1. A K> 3-amenable grapty

42 GOC,,r e {4,5)

In this subsection we first define a type of weak partitior¥/gf7) that will enable us to characterize
those Cartesian produats C5 that are parallel EOD-graphs with respectioTo describe these weak
partitions we need to modify Condition (C) as it was state8éction 3 and add an additional condition.
The operations on the subscripts in these new conditionmade moduld.

(C) (V; UV,41) is a matching irG for everyi € [5],
(D) if x € Vi, then|N(z) N V42| = 1 and|N(z) N V;_2| = 1 for everyi € [5].

Notice that the condition (¢is weaker than (C). We say th@tis C5-parallel amenabléf there exists
a weak partition{ Vg, V1, Va, V5, Vi, Vs } of V(G) that satisfies conditions (A), (B), (fand (D).

Theorem 4.4 For any graphG, the Cartesian produdf? O C5 is a parallel EOD-graph with respect to
G if and only ifG is a Cs-parallel amenable graph.

Proof: Assume first that? is a Cs-parallel amenable graph and g, V1, Va, Vs, Vi, Vs } be a weak
partition of V(G) that satisfies conditions (A), (B), (fand (D). We define a subsgtof V(G O Cs) by
D = {(g,i) : g € V; for i € [5]}. Notice thaD N 9C5| = 1 for everyg € V(G) — Vo. We will show
that every vertex ofs O C5 is dominated by exactly one vertex b. Let (g, j) be an arbitrary vertex of
GOCs.

Assume first thay € V; for somei € [5]. If j € {i — 1,i + 1}, then(g, ) is dominated by(g, 7).
Moreover,(g, j) is dominated only byg, i) in D, since(g, ) is the only vertex inD N 9C5 and (B) and
(C) hold. If j = i, then(g, j) is dominated by(¢’,7), wheregg’ is an edge inV;) (notice thaty’ exists
by (B)). Note that(g, j) is dominated only by(¢’, i) from D by (B) and the fact thatD N 9C;| = 1.
It remains to considef = i + 2 andj = i — 2. Assumej = i + 2; the casej = i — 2 is similar.
By condition (D),g has a unique neighbar;; 2 € V;y2. By definition (z;12,7 + 2) € D, and thus
(242,14 2) dominategg, j). As before, sincéD N 9C5| = 1 and since condition (D) holds, it follows
that (z,42,7 + 2) is the only vertex ofD that dominategg, j). Hence, ifg € V; for some:i € [5], then
(g,7) is dominated exactly once hf. Finally, assume that € V4. By condition (A),g has a unique
neighborz; € V;. This implies thaiz;, j) € D and that(z;, j) is the only vertex inD that dominates
(g,7). ConsequentlyD is a parallel EOD-set off O Cs.
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Conversely, leG O C5 be a parallel EOD-graph and |Etbe a parallel EOD-set with respect@b Let
Vo, V1, Va, V3, Vi, Vs be subsets of (G) defined as follows. IfD N 9C5| = 0, theng € V,. Fori € [5],
g€ Viifandonlyif{(g,4)} = DN 9Cs. By Lemma 4.1|D N 9C5| < 1 for everyg € V(G), and thus
{Vo, V1, Vo, V3, V4, Vs } is @ weak partition of/ (G). Note that onlyiy can be empty.

We will show that this weak partition satisfies conditiong,(@8), (C') and (D). If (A) does not hold,
then there exists a vertgy, i) where|D N 9C5| = 0 and eithefN(g) N V;| = 0or |N(g) NV;| > 1 for
some; € [5]. In the first caség, i) is not dominated by and in the second ca$eg, ¢) is dominated by at
least two vertices, both contradicting the fact thats a parallel EOD-set. Thus, (A) holds. If (B) is not
satisfied, then there exisgse V;, for somei € [5], such that eithedeg y,,(g) = 0 or degy;,(g) > 1,
which yields exactly the same contradiction as for (A). Her(@®) is true as well. If (Q does not hold,
then there exisy € V; andg’ € V;1, for some; € [5], such thayg’ € E(G). We infer that(g,: + 1) is
dominated twice, that is by, i) and by(¢’, ¢ + 1), which is not possible. Finally, if (D) does not hold,
then for some € [5], there exists: € V; such thaiN(z) N V12| # 1 or |N(z) N Vi_2| # 1. Again we
get that some vertex is not dominated By(if |N(x) N V42| = 0 = |N(x) N V;_2|) or that some vertex
is dominated more than once By (if |N(z) N Vi42| > 1 or |[N(z) N V;_2| > 1), which is not possible.
This shows that (D) is also true, which completes the proof. O

While the complete characterization of EOD Cartesian pctslwhere one factor i€y = K, o was
given in Subsection 4.1, here we describgaBuch thatG O C, is a parallel EOD-graph with respect to
G. For Cy notice that computations on the subscripts are done matindhe set[4], and in this case
i+ 2 =1 — 2. Thus, we can restate condition (D) as

(D) if z € V;, then|N(x) N V42| = 1 for everyi € [4].

We say thatG is C,-parallel amenable if there exists a weak partit{dn, Vi, Va, Vs, V4 } of V(G) that
fulfills conditions (A), (B), (C) and (D). The proof of the following theorem follows the same linas a
the proof of Theorem 4.4 if we take into consideration corapjah modulot instead of modulé.

Theorem 4.5 For any graphG, the Cartesian produdff O C; is a parallel EOD-graph with respect to
G if and only if G is a Cy-parallel amenable graph.

Forr € {4,5} there exist many graphs which are notC,.-parallel amenable, but for whiadi O Cy
is an EOD-graph (clearlgg O Cy is not a parallel EOD-graph with respect@bin this case). One of the
smallest examples B3, which is notCy-parallel amenable, but; O C, is an EOD-graph, even a parallel
EOD-graph with respect t6';.

5 Conclusion

As already mentioned, this method of defining weak partitismmost easily implemented when one of
the graphs has small diameter. Despite this fact, there iea®on why one should not use it on graphs
with larger diameter. We illustrate this idea on a speciabdaom the class of cycles.

Our goal is to define a weak partition of a gra@hhat consists ot and a family of set§’4 whereA
is a subset ofk] with certain properties. We derive these properties froemstrcond graph in the product,
which is C;, now. Again we have two possibilities for an edge fr@gm), whereD is an EOD-set of
G O Cy: either it projects ta”, as an edge or as a vertex. If it projects to an edg€;inthen A must
contain two consecutive elemeritandi + 1. If an edge projects to a single vertgx V(Cy), thenj € A
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but neitherj + 1 norj — 1 is in A. Moreover, two non-consecutive elementsdomust differ by at least
3 modulok, so that no vertex in the product is dominated more than once.

0 [4,5]

3, 6] [1,2] [4,5] [1,2]

(3, 6] 0

Fig. 2: A*Cs-amenable” grapld

In particular, forCs we obtain the following weak partition:
Vo, Vi, Va, V3, Vi, Vs, Ve, V1,21, Vi2,315 V3,475 Via,505 Vis.e10 Vie,1ys Vinags Viz,s)s Viz,e) -

Clearly the size of the weak partition increases withTogether with this weak partition, several condi-
tions are needed as well. For instance we need a conditiolasim (A) and (V) to care about all vertices
from V,. As in the case of(, s;-amenable graphs, it seems to be hard to decide whether b Grip

a “Cr-amenable” graph. However, it is not difficult to construsmn@ll) examples of such graphs. An
example of a Cs-amenable” graph is given in Figure 2. The labeling follotvs prescription given for
Figure 1.
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