
Discrete Mathematics and Theoretical Computer Science .
. vol. 26:3 #3 (2024)

On the parameterized complexity of
computing tree-partitions

Hans L. Bodlaender1 Carla Groenland2 Hugo Jacob3

1 Universiteit Utrecht, Utrecht, Netherlands
2 Technische Universiteit Delft, Delft, Netherlands
3 LIRMM, Université de Montpellier, CNRS, Montpellier, France

revisions 12th Nov. 2023, 30th Apr. 2024, 3rd Oct. 2024; accepted 29th July 2024.

We study the parameterized complexity of computing the tree-partition-width, a graph parameter equivalent to tree-
width on graphs of bounded maximum degree.

On one hand, we can obtain approximations of the tree-partition-width efficiently: we show that there is an algorithm
that, given an n-vertex graph G and an integer k, constructs a tree-partition of width O(k7) for G or reports that
G has tree-partition-width more than k, in time kO(1)n2. We can improve slightly on the approximation factor by
sacrificing the dependence on k, or on n.

On the other hand, we show the problem of computing tree-partition-width exactly is XALP-complete, which implies
that it is W [t]-hard for all t. We deduce XALP-completeness of the problem of computing the domino treewidth.

Next, we adapt some known results on the parameter tree-partition-width and the topological minor relation, and use
them to compare tree-partition-width to tree-cut width.

Finally, for the related parameter weighted tree-partition-width, we give a similar approximation algorithm (with ratio
now O(k15)) and show XALP-completeness for the special case where vertices and edges have weight 1.

Keywords: parameterized algorithms, tree-partitions, tree-partition-width, tree-cut width, domino treewidth, tree-
width, approximation algorithms, parameterized complexity

1 Introduction
Graph decompositions have been a very useful tool to draw the line between tractability and intractability
of computational problems. There are many meta-theorems showing that a collection of problems can be
solved efficiently if a decomposition of some form is given (e.g. for treewidth [15], for clique-width [16],
for twin-width [12], for mim-width [3]). By finding efficient algorithms to compute a decomposition if it
exists, we deduce the existence of efficient algorithms even if the decomposition is not given. In particular,
this proves useful when designing win-win arguments: for some problems, the existence of a solution and
the existence of a decomposition are not independent, so that we can either use the decomposition for an
efficient computation of the solution, or conclude that a solution must (or cannot) exist when there is no
decomposition of small enough width.

ISSN 1365–8050 © 2024 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:2

20
6.

11
83

2v
6

 [
cs

.D
M

]
 9

 J
an

 2
02

5

http://dmtcs.episciences.org/
https://doi.org/10.46298/dmtcs.12540

2 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

The most successful notion of graph decomposition to date is certainly tree decompositions, and its
corresponding parameter treewidth. Any problem expressible in MSO2

(i) can be solved in linear time in
graphs of bounded treewidth due to a meta-theorem of Courcelle [15] and the algorithm of Bodlaender
for computing an optimal tree decomposition [4]. Treewidth is a central tool in the study of minor-closed
graph classes. A minor-closed graph class has bounded treewidth if and only if it contains no large grid
minor.

In this paper, we focus on the parameter tree-partition-width (also called strong treewidth) which was
independently introduced by Seese [31] and Halin [26]. It is known to have simple relations to treewidth
[17, 33]: tw = O(tpw), and tpw = O(∆ tw), where tw, tpw,∆ denote the treewidth, the tree-partition-
width, and the maximum degree respectively. Applications of tree-partition-width include graph drawing
and graph coloring [13, 25, 19, 20, 34, 2, 1]. Recently, Bodlaender, Cornelissen and Van der Wegen [6]
showed for a number of problems (in particular, problems related to network flow) that these are in-
tractable (XNLP-complete) when the pathwidth is used as parameter, but become fixed parameter tractable
when parameterized by the width of a given tree-partition. This raises the question of the complexity of
finding tree-partitions. We show that computing tree-partitions of approximate width is tractable.

Theorem 1.1. There is an algorithm that given an n-vertex graph G and an integer k, constructs a tree-
partition of width O(k7) for G or reports that G has tree-partition-width more than k, in time kO(1)n2.

Thus, this removes the requirement from the results from [6] that a tree-partition of small width is part
of the input. Our technique is modular and allows us to also give alternatives running in FPT time or
polynomial time with an improved approximation factor (see Theorem 3.11). Although not formulated
as an algorithm, a construction of Ding and Oporowski [18] implies an FPT algorithm to compute tree-
partitions of width f(k) for graphs of tree-partition-width k, for some fixed computable function f . We
adapt their construction and give some new arguments designed for our purposes. This significantly
improves on the upper bounds to the width, and the running time.

The results from [6] are stated in terms of the notions of stable gonality, stable tree-partition-width
and a new parameter called weighted tree-partition-width(ii). The notion of stability comes from the
algebraic geometry origins of the notion of gonality; in graph-theoretic terms, this implies that we look
at the minimum over all possible subdivisions of edges. It turns out that tree-partition-width, stable tree-
partition-width, and weighted tree-partition-width (with edge weights one) are bounded by polynomial
functions of each other; see Section 5 and Corollary 5.5. In Section 6, we obtain some results on the
complexity of computing and approximating the weighted tree-partition-width, as corollaries of earlier
results.

Related to tree-partition-width is the notion of domino treewidth, first studied by Bodlaender and En-
gelfriet [8]. A domino tree decomposition is a tree decomposition where each vertex is in at most two
bags. Where graphs of small tree-partition-width can have large degree, a graph of domino treewidth k
has maximum degree at most 2k. Bodlaender and Engelfriet show that DOMINO TREEWIDTH is hard for
each class W [t], t ∈ N; we improve this result and show XALP-completeness.

Theorem 1.2. DOMINO TREEWIDTH and TREE-PARTITION-WIDTH are XALP-complete.

(i) Formulae with quantification over sets of edges or vertices, quantification over vertices and edges, and with the incidence predi-
cate.

(ii) In earlier versions of [6], the parameter was called treebreadth, but to avoid confusion, the term weighted tree-partition-width is
now used.

On the parameterized complexity of computing tree-partitions 3

In [5], Bodlaender gave an algorithm to compute a domino tree decomposition of width O(tw∆2) in
f(tw)n2 time for n-vertex graphs of treewidth tw and maximum degree ∆, where f is a fixed computable
function. This implies an approximation algorithm for domino treewidth.

We also consider the parameter tree-cut width introduced by Wollan in [32]. As the tractability results
of Bodlaender et al. [6] use techniques similar to a previous work on algorithmic applications of tree-cut
width [24], one may wonder whether there is a relationship between tree-cut width and tree-partition-
width.

We show the following results.

• We obtain a parameter that is polynomially tied to tree-partition-width and is topological minor
monotone (see Theorem 5.4). We use this to show that tree-partition-width is relatively stable with
respect to subdivisions: if we define tpw(G) (resp. tpw(G)) as the minimum (resp. maximum)
tree-partition-width over subdivisions of G, then tpw, tpw and tpw are polynomially tied. The
parameter tpw(G) corresponds to ‘stable tree-partition-width’.

• We show tree-partition-width is polynomially upper bounded by tree-cut width (see Theorem 5.6)
by relating the tree-cut width to the tree-partition-width of a subdivision.

• On the other hand, a bound on tree-partition-width does not imply a bound on tree-cut width (see
Observation 5.1).

Paper overview In Section 3, we provide our results on approximating the tree-partition-width. In
Section 4, we show that computing the tree-partition-width is XALP-complete. We then derive XALP-
completeness of computing the domino treewidth. In Section 5, we give our results relating tree-cut
width to tree-partition-width. In Section 6, we give the results for weighted tree-partition-width. Some
concluding remarks are made in Section 7.

2 Preliminaries
The set of positive integers is denoted by Z+; the set of non-negative integers is denoted by N.

A tree-partition of a graph G = (V,E) is a tuple (T, (Bi)i∈V (T)), where Bi ⊆ V (G), with the
following properties.

• T is a tree.

• For each v ∈ V there is a unique i(v) ∈ V (T) such that v ∈ Bi(v).

• For any edge uv ∈ E, either i(v) = i(u) or i(u)i(v) is an edge of T .

The size of a bag Bi is |Bi|, the number of vertices it contains. The width of the decomposition is given
by maxi∈V (T) |Bi|. The tree-partition-width (tpw) of a graph G is the minimum width of a tree-partition
of G.

We also consider a variant of the notion for weighted graphs. The notion was introduced in [6]. We use
a slight generalization where we allow also weights of vertices, to facilitate some of our proofs.

Let G = (V,E) be a graph, with a weight function for vertices wV : V → Z+, and a weight function
wE : E → N. The breadth of a tree-partition (T, (Bi)i∈V (T)) of G is the maximum over total weights of

4 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

bags:
max

i∈V (T)

∑
v∈Bi

wV (v)

and total weights of edge cuts between pairs of adjacent bags:

max
ii′∈E(T)

∑
vw∈E,v∈Bi,w′∈Bi′

wE(vw)

The weighted tree-partition-width of a graph G with vertex and edge weights is the minimum breadth
over all tree-partitions of G.

In other words, we take the maximum over all bags of the total weight of the vertices in the bag, and
maximum over all pairs of adjacent bags of the total weight of edges between these bags; and then, we
take the maximum over these two values. The tree-partition-width of a graph equals the weighted tree-
partition-width where all vertices have weight 1 and all edges have weight 0.

A tree decomposition of a graph G = (V,E) is a pair (T = (I, F), {Xi | i ∈ T}) with T = (I, F) a tree
and {Xi | i ∈ I}) a family of (not necessarily disjoint) subsets of V (called bags) such that

⋃
i∈I Xi = V ,

for all edges vw ∈ E, there is an i with v, w ∈ Xi, and for all v, the nodes {i ∈ I | v ∈ Xi} form a
connected subtree of T . The width of a tree decomposition (T, {Xi | i ∈ T}) is maxi∈I |Xi| − 1, and
the treewidth (tw) of a graph G is the minimum width over all tree decompositions of G. The domino
treewidth is the minimum width over all tree decompositions of G such that each vertex appears in at most
two bags.

We say that two parameters α, β are (polynomially) tied if there exist (polynomial) functions f, g such
that α ≤ f(β) and β ≤ g(α).

3 Approximation algorithm for tree-partition-width
We first describe our algorithm, then prove correctness and finally discuss the trade-offs between running
time and solution quality.

3.1 Description of the algorithm
Let G be a graph, and k any positive integer. We describe a scheme that produces a tree-partition of G of
width O(wbk3) = kO(1), or reports that tpw(G) > k. We will use various different functions of k for b
and w, depending on the quality/time trade-offs of the black-box algorithms inserted into our algorithm
(e.g. for approximating treewidth).

Step 1 Compute a tree decomposition for G of width w(k) or conclude that tpw(G) > k.
As mentioned above, we do not directly specify the function w = w(k), since different algorithms for
step 1 give different solution qualities (bounds for w(k)) and running times. Since tw+1 ≤ 2 · tpw, if
tw(G) > 2k − 1 it follows that tpw(G) > k. Suppose that we obtained a decomposition of width w
(which could be larger than tw(G)). If tpw(G) ≤ k, then tw(G) ≤ 2k − 1, and so there are at most
(2k − 1)n edges in G. If G has more than (2k − 1)n edges, we directly reject.

We set a threshold b ≥ max{2k − 1, w + 1}. We define an auxiliary graph Gb as follows. The vertex
set of Gb is V (G). The edges of Gb are given by the pairs of vertices u, v ∈ V (G) with minimum u-v
separator of size at least b.

On the parameterized complexity of computing tree-partitions 5

Step 2 Construct the auxiliary graph Gb with connected components of size at most k or report that
tpw(G) > k.
We later describe several ways of computing the edges of Gb. We will show in Claim 3.1 that vertices in
the same connected component of Gb must be in the same bag for any tree-partition of width at most k.
For this reason, we conclude that tpw(G) > k if a component of Gb has more than k vertices.

We define H , the b-reduction of G, which is the graph obtained from G by identifying the connected
components of Gb.

Step 3 We compute a tree decomposition of width w for each 2-connected component of H .
Given the components of Gb, we can compute H , and its 2-connected components in time O(kO(1)n). Us-
ing Claim 3.2, we obtain a tree decomposition of H by replacing vertices of G, in the tree decomposition
of G, by their component in Gb.

By Claim 3.3, the maximum degree ∆H within the 2-connected components of H is at most Cbk2 for
some constant C when tpw(G) ≤ k.

Step 4 If ∆H > Cbk2, report tpw(G) > k. Else, compute a tree partition of width O(w∆H) =
O(wbk2) for H .
By rooting the decomposition of H in 2-connected components, we can define a parent cut-vertex for
each 2-connected component except the root. We separately compute tree partitions for each 2-connected
component of H with the constraint that their parent cut-vertex should be the single vertex of its bag.
A construction of Wood [33] enables us to compute a tree-partition of width O(∆w) for any graph of
maximum degree ∆ and treewidth w; this can be adjusted to allow for this isolation constraint without
increasing the upper bound on the width. We give the details of this in Corollary 3.5. After doing this, the
partitions of each component can be combined without increasing the width. Indeed, although cut-vertices
are shared, only one 2-connected component will consider putting other vertices in its bag. We obtain a
tree-partition of H of width O(wbk2).

Step 5 Deduce a tree partition of width O(wbk3) for G.
We ‘expand’ the vertices of H . In the tree-partition of H , each vertex of H is replaced by the vertices of
the corresponding connected component of Gb. This gives a tree-partition of G of width O(wbk3).

3.2 Correctness
For s, t ∈ V (G) we denote by µ(s, t) the size of a minimum s-t separator in G− st.

Claim 3.1. Let G be a graph and s, t ∈ V (G).

• If µ(s, t) ≥ k+1, then in any tree-partition of width at most k, s and t must be in adjacent bags or
the same bag;

• If µ(s, t) ≥ 2k − 1, then in any tree-partition of width at most k, s and t must be in the same bag.

Proof: Assume that s and t are not in adjacent bags nor in the same bag of a tree-partition of width at
most k, then any internal bag on the path between their respective bags is an s-t separator. In particular,
µ(s, t) ≤ k. This proves the first point by contraposition.

Assume that s and t are in adjacent bags but not in the same bag for some tree-partition of width at
most k. We denote their respective bags by Bs and Bt. Then, (Bs ∪ Bt) \ {s, t} is an s-t separator of
G− st. Consequently, µ(s, t) ≤ 2k − 2. This proves the second point.

6 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Claim 3.2. Consider (T, (Xi)i∈V (T)) a tree decomposition of width w of G, b ≥ w+1, and let Yi be the
set of connected components of Gb that intersect with Xi. Then (T, (Yi)i∈V (T)) is a tree decomposition
of the b-reduction H of G.

Proof: Every component of Gb appears in at least one Yi, because it contains a vertex which must appear
in at least one Xi. Furthermore, for each edge UV of H , there must be vertices u ∈ U, v ∈ V such that
uv is an edge of G. Hence, there is a bag Xi containing u and v so Yi contains U and V . Finally, suppose
that there is a bag Yi not containing a component C of Gb, and several components of T − i have bags
containing C. There must be an edge of Gb connecting vertices u and v of C such that u is in bags of X
and v is in bags of X ′, where X and X ′ are in different components of T − i. By definition of Gb, the
minimal size of a separator of u and v in G is at least b ≥ w + 1. However, since the tree decomposition
(T, (Xi)) has width w and the bags containing u are disjoint from the bags containing v (in particular
Xi separates them), there is a separator of u and v of size at most w, a contradiction. This concludes the
proof that (T, (Yi)) is a tree decomposition of H .

Claim 3.3. If H is the b-reduction of G, tpw(G) ≤ k, and B is one of its 2-connected components, then
the maximum degree in B is O(bk2).

Proof: Consider u a vertex achieving maximum degree in B. By definition of B, B − u is connected.
We denote by N the neighborhood of u in B. Let T be a spanning tree of B − u. We iteratively remove
leaves that are not in N . This produces the reduced tree T ′. The maximum degree in this tree is b − 1
as the set of edges incident to a given vertex can be extended to disjoint paths leading to vertices in N ,
hence leading to u. Since H is a b-reduction, the number of disjoint paths between two vertices must be
less than b.

Clearly the neighbors of u must be either in the same bag as u or in a neighboring bag. Since the bag
of u will be a separator of vertices that are in distinct neighboring bags, in particular, it splits the graph
into several components each containing at most k neighbors of u.

There must exist a subset of vertices of T ′ of size at most k− 1 whose removal splits T ′ in components
containing vertices of N of total weight at most k. Since the degree of a vertex of T ′ is at most b − 1,
removing one of its vertices adds at most b − 2 new components. Hence, after removing k − 1 vertices,
there are at most 1 + (k − 1)(b− 2) components. We conclude that |N | ≤ k(1 + (k − 1)(b− 2)). Since
u had maximum degree in B, we conclude.

In [33], Wood shows the following lemma.

Lemma 3.4. Let α = 1 + 1/
√
2 and γ = 1 +

√
2. Let G be a graph with treewidth at most k ≥ 1 and

maximum degree at most ∆ ≥ 1. Then G has tree-partition-width tpw(G) ≤ γ(k + 1)(3γ∆− 1).
Moreover, for each set S ⊆ V (G) such that (γ + 1)(k + 1) ≤ |S| ≤ 3(γ + 1)(k + 1)∆, there is

a tree-partition of G with width at most γ(k + 1)(3γ∆ − 1) such that S is contained in a single bag
containing at most α|S| − γ(k + 1) vertices.

We deduce this slightly stronger version of [33, Theorem 1]

Corollary 3.5. From a tree decomposition of width w in a graph G of maximum degree ∆, for any vertex
v of G, we can produce a tree-partition of G of width O(∆w) in which v is the only vertex of its bag.

On the parameterized complexity of computing tree-partitions 7

Proof: We wish to apply Lemma 3.4 to S ⊇ N(v). Let γ = 1 +
√
2. We have |N(v)| ≤ ∆, so in

particular, |N(v)| ≤ 3(γ+1)(w+1)∆. In case |N(v)| < (γ+1)(w+1), we can add arbitrary vertices to
N(v) to form S satisfying |S| ≥ (γ+1)(w+1). Otherwise, we simply set S = N(v). We then apply the
lemma to S in G−v. There is a single bag that contains N(v), and so we may add the bag {v} adjacent to
this in order to deduce a tree partition of G of width O(∆w) in which v is the only vertex of its bag.

3.3 Time/quality trade-offs
For Step 1, we consider the following algorithms to compute tree decompositions:

• An algorithm of Korhonen [28] computes a tree decomposition of width at most 2k + 1 or reports
that tw(G) > k in time 2O(k)n.

• An algorithm of Fomin et al. [22] computes a tree decomposition of width O(k2) or reports that
tw(G) > k in time O(k7n log n).

• An algorithm of Feige et al. [21] computes a tree decomposition of width O(k
√
log k) or reports

that tw(G) > k in time O(nO(1)).

Recall that we denote by w the width of the computed tree decomposition of G.
We give two methods to compute Gb in step 2 of the algorithm.

• We can use a maximum-flow algorithm (e.g. Ford-Fulkerson [23]) to compute for each pair {s, t}
of vertices of G whether there are at least b vertex disjoint paths from s to t, in time O(bkn). To
compute a minimum vertex cut, replace each vertex v by two vertices vin, vout with an arc from vin
to vout. All arcs going to v should go to vin, and all arcs leaving v should leave vout. All arcs are
given capacity 1. We may stop the maximum flow algorithm as soon as a flow of at least b was
found. Furthermore, we can reduce the number of pairs {s, t} of vertices to check to O(wn), as
each pair must be contained in a bag due to b ≥ w + 1. This results in a total time of O(wbkn2).

• We can also use dynamic programming to enumerate all possible ways of connecting pairs of ver-
tices that are in the same bag in time 2O(w logw)n, which is sufficient to compute Gb. A state of the
dynamic programming consists of the subset of vertices of the bag that are used by the partial solu-
tion, a matching on some of these vertices, up to two vertices that were decided as endpoints of the
constructed paths, the number of already constructed paths between the endpoints, and two disjoint
subsets of the used vertices that are not endpoints, nor in the matching such that we found a disjoint
path from the first or second endpoint to them. The bound of 2O(w logw) follows from the fact that
this is a subset of the labeled forests on w vertices. We may assume that our tree decomposition is
rooted and binary. We first tabulate answers for each subtree of the decomposition by starting from
the leaves, and then tabulate answers for each complement of a subtree by starting from the root
and, when branching to some child, combining with the partial solutions of the subtree of the other
child. By combining tabulated values for subtrees and their complements, we obtain the sought
information.

The b-reduction H of G and its 2-connected components can be computed in O(kO(1)n) time (see e.g.
[27]), since the size of the graph is O(kO(1)n) here.

We will now make use of the following result due to Bodlaender and Hagerup [10]:

8 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Lemma 3.6. There is an algorithm that given a tree decomposition of width k with O(n) nodes of a graph
G, finds a rooted binary tree decomposition of G of width at most 3k + 2 with depth O(log n) in O(kn)
time.

When implementing the construction of Wood for 2-connected components of H , the running time is
dominated by O(n) queries to find a balanced separator with respect to a set S of size kO(1). After a
preprocessing in time O(kn), we can do this in time kO(1)d where d is the diameter of our tree decom-
position. We first obtain a binary balanced decomposition using Lemma 3.6, then reindex the vertices
in such a way that we can check if a vertex is in some bag of a given subtree of tree decomposition in
constant time. Using this, we can in time kO(1) determine whether a bag is a balanced separator of S, and
if not move to the subtree containing the most vertices of S. This procedure will consider at most d bags,
hence the total running time of kO(1)d. Since the decomposition has depth O(log n), it also has diameter
d = O(log n). Hence, the construction of Wood can be executed in time kO(1)n log n.

Lemma 3.7. We can compute a tree partition of width O(∆w) in time O(kO(1)n log n) when given a tree
decomposition of width w = kO(1).

To improve on the function of n in the running time of our procedure to compute tree-partitions of width
O(∆w), we can use some of the techniques introduced in [7]. If we use separators that are balanced with
respect to the subgraph that has to be decomposed, we obtain a balanced decomposition as observed by
Reed [29] which gave an approximation algorithm for tree decompositions with running time f(k)n log n.
If, in addition, we stop processing once we reach components of size O(log n), we have computed at most
f(k)n/ log n separators which can each be found in time f(k) log n using the data structure introduced
in [7]. This means that getting to components of size O(log n) takes time f(k)n. On each of the obtained
components, we can either apply our previous f(k)n log n construction, which leads to an f(k)n log log n

algorithm, or apply our construction recursively to obtain an f(k)n log(α) n algorithm where log(α) is the
α-fold composition of log.

Lemma 3.8. A balanced tree-partition of width O(∆w) can be computed in time 2O(k)n log(α) n, for all
integers α ≥ 1, for a graph of maximum degree ∆ = kO(1) when given a tree decomposition of width
w = O(k).

Proof: We first observe that to make the decomposition balanced, we only need to add a balanced separa-
tor once per bag of the tree-partition which still gives a width of O(∆w). For each bag of the constructed
tree-partition, we compute a balanced separator once and we compute O(∆) S-balanced separators. These
can be computed in time 2O(k) log n by the data structure after its initialization in time 2O(k)n. One might
worry that because we look at sets S of size polynomial in k and not linear unlike [7], the data structure
does not work or has a running time 2O(|S|) instead of 2O(k). However, the exponential part in the analysis
is an exponential in the width of the tree decomposition. The size of S does have an impact on the running
time, but only appears in a polynomial factor. Since we bound the size of S by a polynomial in k, the
polynomial in |S| still gives a polynomial in k in our setting, and it is still dominated by the exponential
in k.

We prove the existence of an algorithm of running time O(2O(k)n log(α) n) for every α ≥ 1 by induc-
tion on α.

First, we initialize the data structure to compute separators of [7]. Then we use this data structure to
compute separators. We will compute only kO(1) separators per bag, each in time 2O(k) log n, which
takes 2O(k) log n time per bag. If α = 1, we fully process subinstances and obtain a running time of

On the parameterized complexity of computing tree-partitions 9

2O(k)n log n. Otherwise, we stop processing subinstances once they have size O(log n). If we stop
processing subinstances when they reach size O(log n), we compute only O(n/ log n) bags because the
tree-partition is balanced see [7, Lemma 4.3 and Claim 4.4]. We then compute new tree decompositions
for each of the O(log n) size components in total time 2O(k)n. For each of them, we apply the algorithm
with α′ = α− 1, the total running time is then bounded by 2O(k)n log(α

′) log n = 2O(k)n log(α) n.

The above algorithm can be turned into an algorithm running in time 2O(k)n using the following obser-
vation: the number of different configurations to be solved for components of size O(log log(n)) is small
enough to allow us to enumerate all distinct configurations in sublinear time.

Claim 3.9. We can enumerate all configurations of pairs (H,S) with H a graph on O(log log(n)) ver-
tices, S a subset of vertices of H , compute a tree-partition of H having a superset of S as its root bag for
each configuration, and tabulate all results in time o(n) in some table T .

Proof: The number of pairs (H,S) is 2O((log log(n))2) · 2O(log log(n)) = 2O((log log(n))2). Let n′ be the
number of vertices of H . If k ≥ n′, we may use a single bag containing all vertices of H . Otherwise, for
each such pair, we can compute a tree-partition using the algorithm running in time 2O(k)n′ log n′. Using
the fact that k ≤ n′, we can bound this running time by 2O(n′)n′ log n′ = 2O(n′) = 2O(log log(n)). We can
then store the tree-partition of H which has size O(n′) in table entry T [H,S].

The total computation time and space is bounded by 2O((log log(n))2) = o(n)

Lemma 3.10. A balanced tree-partition of width O(∆w) can be computed in time 2O(k)n for a graph of
maximum degree ∆ = kO(1) when given a tree decomposition of width w = O(k).

Proof: We first compute suitable decompositions for all pairs (H,S) of graphs on O(log log(n)) vertices
and subsets of vertices as described in Claim 3.9. We then recursively decompose similarly to Lemma 3.8
with α = 2 except that now when reaching components of size O(log log(n)), we simply have to look at
a relevant entry of table T to obtain a decomposition for the component.

This is done as follows. We first compute an arbitrary bijection of the vertex set of the component
with [1, n′] where n′ is the size of the component. It is then straightforward to obtain an adjacency list
describing the component and the list of vertices with neighbors outside the component, both using the
new indices. Using this description, we obtain a pair (H,S) allowing us to lookup a decomposition at
entry T [H,S]. We then obtain a tree-partition with the new indices, and only have to replace all indices
by the original indices of vertices in the component. This procedure takes time linear in the size of the
component.

The overall running time of the algorithm is 2O(k)n, since we spend n + o(n) time in total for com-
ponents of size O(log log(n)), 2O(k)n log(n)/ log(n) = 2O(k)n to reduce the graph to components of
size O(log(n)), and 2O(k)(

∑
|Ci| log |Ci|/ log |Ci|) = 2O(k)n to reduce each component Ci of size

O(log(n)) to components of size O(log log(n)).

By combining the previous algorithms we obtain the following theorem.

Theorem 3.11. There is a polynomial time algorithm that constructs a tree-partition of width O(k5 log k)
or reports that the tree-partition-width is more than k.

There is an algorithm running in time 2O(k log k)n that computes a tree-partition of width O(k5) or
reports that the tree-partition-width is more than k.

10 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

There is an algorithm running in time kO(1)n2 that computes a tree-partition of width O(k7) or reports
that the tree-partition-width is more than k.

Proof: The first algorithm uses the algorithm of Feige et al. to compute the tree decomposition, then
naively computes Gb, and then finds balanced separators for Wood’s construction using the tree decom-
position in polynomial time (no need to balance the decomposition).

The second algorithm uses Korhonen’s algorithm to compute the tree decomposition, then computes Gb

using the dynamic programming approach, and then applies Lemma 3.10 to implement the tree-partition
construction on each 2-connected component of H .

The third algorithm uses the algorithm of Fomin et al. to compute the tree decomposition, then com-
putes Gb via a maximum-flow algorithm in time O(wbkn2) = O(k5n2), and then computes the tree-
partition for each 2-connected component of H using Lemma 3.7.

The guarantees on the width follow from the analysis of our scheme (see 3.1 and 3.2).

4 XALP-completeness of Tree-Partition-Width
In this section, we show that the TREE-PARTITION-WIDTH problem is XALP-complete, even when we
use the target width and the degree as combined parameter. As a relatively simple consequence, we obtain
that DOMINO TREEWIDTH is XALP-complete.

XALP is the class of all parameterized problems that can be solved in f(k)nO(1) time and f(k) log n
space on a nondeterministic Turing Machine with access to a push-down automaton, or equivalently
the class of problems that can be solved by an alternating Turing Machine in f(k)nO(1) treesize and
f(k) log(n) space. An alternating Turing Machine (ATM) is nondeterministic Turing Machine with some
extra states where we ask for all of the transitions to lead to acceptance. This creates independent config-
urations that must all lead to acceptance, and we call ‘co-nondeterministic step’ the process of obtaining
these independent configurations.

XALP is closed by reductions using at most f(k) log n space and running in FPT time. These two
conditions are implied by using at most f(k) + O(log n) space. We call reductions respecting the latter
condition parameterized log-space reductions (or pl-reductions).

This class is relevant here because the problems we consider are complete for it. Completeness for
XALP has the following consequences: W[t]-hardness for all positive integers t, membership in XP, and
there is a conjecture that XP space is required for algorithms running in XP time. If the conjecture holds,
this roughly means that the dynamic programming algorithm used for membership is optimal.

Lemma 4.1. TREE-PARTITION-WIDTH is in XALP.

Proof: To keep things simple, we will use as a black box the fact that reachability in undirected graphs
can be decided in log-space [30]. We assume that the vertices have some arbitrary ordering σ.

For now, assume that the given graph is connected.
We begin by guessing at most k vertices to form an initial bag B0, and have an empty parent bag P0

. We will recursively extend a partial tree-partition in the following manner. Suppose that we have a bag
B with parent bag P , we must find a child bag for B in each connected component of G − B that does
not contain a vertex of P . We use the fact that a connected component can be identified by its vertex
appearing first in σ, that the restriction of σ to these representatives gives an ordering on σ, and that we
can compute such representatives in log-space. Let us denote by c the current vertex representative of a

On the parameterized complexity of computing tree-partitions 11

connected component of G − B. c is initially the first vertex in σ that is not in B and cannot reach P in
G−B. We do a co-nondeterministic step so that in one branch of the computation we find a tree-partition
for the connected component with representative c, and in the other branch we find the representative of
the next connected component. The representative c′ of the next component is the first vertex in σ such
that it cannot reach a vertex appearing before c (inclusive) in σ, nor a vertex of P in G−B. When found,
c is replaced by c′ and we repeat this computation. If we don’t find such a vertex c′, then c must have
represented the last connected component, so we simply accept.

Let us now describe what happens in the computation branch where we compute a new bag. We can
iterate on vertices in the component of c, by iterating on vertices of G − B and then skipping if they are
not reachable from c in G− B. In particular, we can guess a subset B′ of size at most k of vertices from
this component. We then check that the neighborhood of B in this component is contained in B′. If it is
the case, we can set P := B and B := B′ and recurse. If not, we reject.

If the graph is not connected, we can iterate on its connected components by using the same technique
of remembering a vertex representative. For each of these components, we apply the above algorithm,
with the modification that in each enumeration of the vertices we skip the vertex if it is not contained in
the current component.

During these computations, we store at most 3k + O(1) vertices and use log-space subroutines. Fur-
thermore, the described computation tree is of polynomial size.

The following problem is shown to be XALP-complete in [9] and is the starting point of our reduction.

TREE-CHAINED MULTICOLORED INDEPENDENT SET

Input: A tree T = (VT , ET), an integer k, and for each i ∈ VT , a collection of k pairwise disjoint
sets of vertices Vi,1, . . . , Vi,k and a graph G with vertex set V =

⋃
i∈VT ,j∈[1,k] Vi,j

Parameter: k
Question: Is there a set of vertices W ⊂ V , such that W contains exactly one vertex from each Vi,j

(i ∈ VT , j ∈ [1, k]), and for each pair Vi,j , Vi′,j′ with i = i′ or ii′ ∈ ET , j, j′ ∈ [1, k], (i, j) ̸= (i′, j′),
the vertex in W ∩ Vi,j is non-adjacent to the vertex in W ∩ Vi′,j′?

We remark that in the definition above, Vi,j ∩ Vi′,j′ = ∅ whenever (i, j) ̸= (i′, j′). We further use that
we can assume the tree T to be binary without loss of generality (see [9] for more details). See Figure 1
for a graphical representation of how the instance is arranged locally.

We first give a brief sketch of the structure of the hardness proof. We have a trunk gadget to enforce
the shape of the tree from the TREE-CHAINED MULTICOLORED INDEPENDENT SET. On the trunk are
attached clique chains which are longer than the part of trunk between their endpoints, and have some
wider parts at some specific positions. The length of the chain gives us some slack which will be used to
encode the choice of a vertex for some subset Vi,j . Based on the edges of G, we adjust the width along
the trunk so that only one clique chain may place its wider part on each position of the trunk. In other
words, part of the trunk is a collection of gadgets representing edges of G that allow for only one incident
vertex to be chosen. See Figure 2 for a high level graphical representation of the gadgets.

Lemma 4.2. TREE-PARTITION-WIDTH with target width and maximum degree as combined parameter
is XALP-hard.

Proof: We reduce from TREE-CHAINED MULTICOLORED INDEPENDENT SET.

12 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Va

Vb Vc

Va,1Va,2Va,3Va,4

Vb,1Vb,2Vb,3Vb,4 Vc,1 Vc,2Vc,3 Vc,4

...

...
...

Fig. 1: Local structure of TREE-CHAINED MULTICOLORED INDEPENDENT SET. For each ab ∈ ET , the subgraph
of G induced by Va ∪ Vb is a MULTICOLORED INDEPENDENT SET instance.

Suppose that we are given a binary tree T = (VT , ET), and for each node i ∈ VT , a k-colored vertex
set Vi. We denote the colors by integers in [1, k], and write Vi,j for the set of vertices in Vi with color j.
We are also given a set of edges E of size m. Each edge in E is a pair of vertices in Vi × Vi′ with i = i′

or ii′ an edge in ET . We can assume the edges are numbered: E = {e1, . . . , em}.
In the TREE-CHAINED MULTICOLORED INDEPENDENT SET problem, we want to choose one vertex

from each set Vi,j , i ∈ VT , j ∈ [1, k], such that for each edge ii′ ∈ ET , the chosen vertices in Vi ∪ Vi′

form an independent set (which thus will be of size 2k).
We assume that each set Vi,j is of size r. (If not, we can add vertices adjacent to all other vertices in

Vi,j′ , for all j′ ∈ [1, k]. Such vertices cannot be in the solution.) Write Vi,j = {vi,j,1, vi,j,2, . . . , vi,j,r}.
Let N = 2(m+ 1)r. Let L = 84k + 5.

Cluster Gadgets In the construction, we use a cluster gadget. Suppose Z is a clique. Adding a cluster
gadget for Z is the following operation on the graph that is constructed. Add a clique with vertex set
CZ = {cZ,1, cZ,2, . . . , cZ,2L} of size 2L to the graph, and add an edge between each vertex in Z and each
vertex cZ,j , 1 ≤ j ≤ L, i.e, Z with the first L vertices in CZ forms a clique.

In a tree partition of a graph, the vertices of a clique can belong to at most two different bags. The
cluster gadget ensures that the vertices of clique Z belong to exactly one bag. This cluster gadget will be
used in two different steps in the construction of the reduction.

Claim 4.3. Suppose a graph H contains a clique Z with the cluster gadget for Z. In each tree partition
of H of width at most L, there is a bag that contains all vertices from Z.

Proof: There must be two adjacent bags that contain the vertices of CZ and no other vertices. Similarly,
there must be two adjacent bags containing all vertices in Z ∪{cZ,1, . . . , cZ,L}. This forces all vertices in
{cZ,1, . . . , cZ,L} to be in a single bag, and all vertices in Z to be in a single adjacent bag.

On the parameterized complexity of computing tree-partitions 13
...

Fig. 2: Local structure of our construction : a trunk with attached clique chains. All clique chains have to be folded
at their endpoints to fit on the trunk as illustrated by the clique chain on the right.

A subdivision of T The first step in the construction is to build a tree T ′ = (VT ′ , ET ′), as follows.
Choose an arbitrary node i from VT . Add a new neighbor i′ to i, Add a new neighbor r0 to i′. Now
subdivide each edge N times. The resulting tree is T ′ = (VT ′ , ET ′). We view T ′ as a rooted tree, with
root r0. We will use the word grandparent to refer to the parent of the parent of a node. The nodes that do
not result from the subdivisions are referred to as original nodes (i.e. VT ∪ {i′, r0} is the set of original
nodes). Nodes i ∈ VT and their copies in T ′ will be denoted with the same name.

The graph H consists of two main parts: the trunk and the clique chains. To several cliques in these
parts, we add cluster gadgets.

The trunk The trunk is obtained by taking for each node i ∈ VT ′ a clique Ai. We specify below the
size of these cliques. For each edge ii′ in T ′, we add an edge between each vertex in Ai to each vertex in
Ai′ . We add for each Ai a cluster gadget.

To specify the sizes of sets Ai, we first need to give some definitions:

• For each node i′ ∈ VT ′ , we let p(i′) be the number of nodes i ∈ VT (i.e., ‘original nodes’), such
that i′ is on the path (including endpoints) in T ′ from i to the vertex that is the grandparent of i in
T . I.e., for each original node i, we look to the grandparent of i (if it exists), and then add 1 to the
count of each node i′ on the path between them in T ′.

• For each edge ej ∈ E, let g(ej) = 2jr.

• For each edge ej = {vi,c,s, vi′,c′,s′}, we have that i = i′ or i′ is a child of i. Let iej be the node in
T ′, obtained by making g(ej) steps up in T ′ from i: i.e., iej is the ancestor of i with distance g(ej)
in T ′.

Now, for all nodes i ∈ VT ′ ,

• |Ai| equals L− 6k · p(i)− 1, if i = iej for some ej ∈ E. At this node, we will verify that a choice
(encoded by the clique chains, explained below), indeed gives an independent set: we check that
we did not choose both endpoints of ej .

• |Ai| equals L− 6k · p(i)− 2, otherwise.

14 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

The clique chains For each i ∈ VT , and each color class c ∈ [1, k], we have a clique chain with
2N +r+5 cliques, denoted CCi,c,γ , γ ∈ [1, 2N +r+5]. All vertices in the first clique CCi,c,1 are made
incident to all vertices in Ai. All vertices in the last clique CCi,c,2N+r+5 are made incident to all vertices
in Ai′ with i′ the parent of the parent (i.e., the grandparent) of i in T . (Notice that the distance from i to
i′ in T ′ equals 2(N + 1).) All vertices in CCi,c,γ are made incident to all vertices in CCi,c,γ+1, i.e., all
vertices in a clique are adjacent to all vertices in the next clique in the chain.

To each clique CCi,c,γ we add a cluster gadget.
The cliques have different sizes, which we now specify. Informally, the first and last clique are large

enough to enforce the way they attach to the trunk, every other clique is of constant size, with some cliques
being slightly larger to enforce constraints corresponding to edges of E. More precisely, the edges within
some Vi are checked in the first half of a chain, while the edges between Va and Vb with a the parent of b
are checked in the first half of chains encoding at Va and the second half of the chains encoding Vb (these
parts of the chains share the same section of the trunk). Consider i ∈ VT , c ∈ [1, k], γ ∈ [1, 2N + r + 5].
The size of CCi,c,γ equals:

• L− 7, if γ = 1 or γ = 2N + r + 5 (i.e., for the first and last clique in the chain.)

• 7, if there is an edge ej ∈ E with one endpoint in Vi,c for which one of the following cases holds:

– ej = {vi,c,α, vi,c′,α′}, c ̸= c′, i.e., one endpoint is in Vi,c, and the other endpoint is in another
color class in Vi, and γ = g(ej) + 1 + α.

– ej = {vi,c,α, vi′,c′,α′}, i′ is a child of i, and γ = g(ej) + 1 + α.

– ej = {vi,c,α, vi′,c′,α′}, i is a child of i′, and γ = g(ej) +N + 2 + α.

• 6, otherwise

Let H be the resulting graph (see Figures 2 and 3).

Claim 4.4. H has tree-partition-width at most L, if and only if the given instance of TREE-CHAINED
MULTICOLORED INDEPENDENT SET has a solution.

Proof: Suppose we have a solution of the TREE-CHAINED MULTICOLORED INDEPENDENT SET. We
define h(i, c) for each class Vi,c, such that the vertex vi,c,h(i,c) is the vertex chosen by the solution in this
class. Now, we can construct the tree partition as follows. First, we take the tree T ′, and for each node i
in T ′, we take a bag initially containing the vertices in Ai; we later add more vertices to these bags in the
construction.

Now, we add the chains, one by one. For a chain for Vi,c, take a new bag that contains CCi,c,1, and make
this bag adjacent to the bag of i. We add the vertices of CCi,c,h(i,c)+1 to the bag of i. If h(i, c) > 1, then
we place the vertices of cliques CCi,c,α+1 with 1 < α < h(i, c) in bags outside the trunk: CCi,c,h(i,c)

goes to the bag with CCi,c,1; to this bag, we add an adjacent bag with CCi,c,2 ∪ CCi,c,h(i,c)−1; to this,
we add an adjacent bag with CCi,c,3 ∪ CCi,c,h(i,c)−2, etc.

Now, add the vertices of CCi,c,h(i,c)+2 to the bag of the parent of i, and continue this: each next clique
is added to the next parent bag, until we add a clique to the bag of grandparent of i in T ; name this node
here i′′. Add a new bag incident to i′′ and put CCi,c,2N+r+5 in this bag (i.e., the last clique of the chain).
Similar as at the start of the chain, fold the end of the chain (with possibly some additional new bags) such
that a bag containing CCi,c,2N+r+4 is adjacent to the bag with CCi,c,2N+r+5.

On the parameterized complexity of computing tree-partitions 15

...

Aie1

Aie2

cluster gadgets Trunk

...
...

...
...

Clique chains

(i)

(ii)

(iii)

Fig. 3: Local structure of the gadgets. (i) If two larger cliques from the clique chains are aligned with the edge
constraint of the trunk (encoding that we chose the two endpoints of the edge), then the width is slightly too large
locally. (ii) If two larger cliques from clique chains are aligned but not aligned with an edge constraint, this fits the
expected width (there cannot be more than 2). (iii) If at most one larger clique from clique chains is aligned with an
edge constraint of the trunk, it fits the expected width.

Finally, for each cluster gadget, add two new bags, with the first incident to the bag containing the
respective clique.

One easily verifies that this gives a tree partition of H . For bags outside the trunk, one easily observes
that the size is at most L. Bags i in the trunk contain a set Ai, and precisely p(i) · k cliques of the clique
chains: for each path that counts for the bag, and each color class in [1, k], we have one chain with one
clique. Each of these cliques has size six or seven. Now, we can notice that a clique of size 7 corresponds
to an edge ej′ with endpoint in the class. This clique will be mapped to a node in the trunk that equals iej′ ,
if and only if this endpoint is chosen; otherwise, the clique will be mapped to a trunk node with distance
less than r to iej′ . Thus, there are two cases for a trunk node i:

• There is no edge ej with i = iej . Then, a close observation of the clique chains shows that there are
at most two clique chains with size 7 mapped to i. Indeed, the construction is such that each edge
has its private interval, and affects the trunk both between i and its parent i′, and between i′ and its
parent i′′.

• i = iej . Now, at most one endpoint of ej is in the solution. The clique chain of the color class of
that endpoint can have a clique of size 7 mapped to i. The ‘offset’ of the clique chain for the color

16 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

class of the other endpoint is such that there is a clique of size 6 for that chain at i.

In both cases, the total size of the bag at i is at most L. Thus, the width of the tree partition is at most L.

Suppose we have a tree partition of H of width L. First, by the use of the cluster gadgets, each clique
Ai is in one bag. A bag cannot contain two cliques Ai as each has size larger than L/2. Now, the bags
containing Ai form a subtree of the partition tree that is isomorphic to T ′. For each clique chain of a
class Vi,c, we have that the first clique CCi,c,1 is in a bag adjacent to i, and the last clique CCi,c,2N+r+5

is in a bag adjacent to the trunk bag that corresponds to the grandparent of i in T , say i′′. Each trunk
bag from i to i′′ thus must contain a clique (of size 6 or 7) from the clique chain of Vi,c. It follows that
each trunk bag i′ contains at least p(i′) · k cliques of size at least 6 each of the clique chains. Now,
|Ai′ | + 6p(i′) · k ∈ {L − 1, L − 2}, and thus we cannot add another clique of a clique chain to a trunk
bag.

For a clique chain of Vi,c, there is a clique mapped to the trunk bag of i. Suppose CCi,c,h(i,c) is mapped
to i. We claim that choosing from each Vi,c the vertex vi,c,h(i,c) gives an independent set, and thus, we
have a solution of the TREE CHAINED MULTICOLORED INDEPENDENT SET problem.

The vertices of CCi,c,h(i,c)+2 must be mapped to the bag of the parent of i, as otherwise, i will contain
an additional clique of size at least 6, and the size of the bag of i will become larger than L. By induction,
we have that the αth parent of i, α ∈ [1, 2N + 2] contains the vertices of CCi,c,h(i,c)+α+1. (Note that the
(2N + 2)nd parent equals the node corresponding the grandparent of i in T .)

We now consider the node iej for edge ej ∈ E. Suppose ej = vi,c,αvi′,c′,α′ . Without loss of generality,
suppose i = i′ or i′ is a child of i; otherwise, switch roles of i and i′. For each endpoint of this edge, if the
endpoint is chosen (i.e., α = h(i, c) or α′ = h(i′, c′)), then the corresponding clique chain has a clique of
size 7 in the bag iej . This can be seen by the following case analysis:

• By assumption, CCi,c,h(i,c)+1 is placed in the bag of i. As each successive clique in the chain
is placed in one higher bag along the path from i to the grandparent of i (in T), we have that
CCi,c,h(i,c)+g(ej)+1 is placed in the bag of iej , as this node is the g(ej)th parent of i in T ′. This
clique has size 7.

• If i′ = i, the same argument shows that CCi′,c′,h(i′,c′)+1 is a clique of size 7 placed in the bag of
iej .

• If i′ is a child of i in T , then CCi′,c′,h(i′,c′)+1 is placed in the bag of i′. Again, each successive
clique in the chain of Vi′,c′ is placed in the next parent bag, for all nodes on the path from i′ to
the grandparent of i′ in T (which is the parent of i in T .) This implies that CCi′,c′,h(i′,c′)+N+2 is
placed in the bag of i and CCi′,c′,h(i′,c′)+N+2+g(ej) is placed in the bag of iej ; this bag has size 7.

Now, if both endpoints were to be chosen, then the size of the bag of iej would be larger than L: it contains
Aiej

(which has size L− 6kp(iej)− 1), kp(iej) cliques from clique chains, of which all have size at least
6 and two have size 7; contradiction. So, at most one endpoint is chosen, so choosing vertices vi,c,h(i,c)
gives an independent set.

The maximum degree of a vertex in H is less than 5kL+ 5L = O(k2):

• Vertices in cluster gadgets have maximum degree less than 2L.

On the parameterized complexity of computing tree-partitions 17

• A vertex in a trunk clique Ai of a node i that resulted from a subdivision has maximum degree less
than 4L as i has two incident nodes, each with a trunk clique of size less than L, and there is a
cluster gadget attached to Ai.

• A vertex in a trunk clique Ai of a node i that is an original node (i.e., also in T) has less than L
neighbors in Ai, less than 3L neighbors in Ai′ with i′ incident to i in T ′, less than kL neighbors
of cliques CCi,c,1 (one clique of size L − 7 for each class c ∈ [1, k]), less than 4kL neighbors of
cliques CCi′,c,2N+r+5 (one clique of size L − 7 for each node of which i is the grandparent in T
for each class c ∈ [1, k]), and less than L neighbors in the cluster gadget attached to Ai.

Finally, we conclude that the transformation can be carried out in f(k) log n space, thus the result
follows.

From Lemmas 4.1 and Lemma 4.2, the following result directly follows.

Theorem 4.5. TREE-PARTITION-WIDTH is XALP-complete, when the target width is the parameter, or
when the target width plus the maximum degree is the parameter.

Theorem 4.6. DOMINO TREEWIDTH is XALP-complete.

Proof: We first prove membership in XALP.
We use the fact that the maximum degree of the graph is bounded by 2k where k is the domino

treewidth. We can discard an instance where this condition on the maximum degree is not satisfied in
log-space. We first assume that the given graph is connected.

The “certificate” used for this computation will be of size O(k2 + k log(n)) and consists of:

• The current bag and for each of its vertices whether it was contained in a previous bag or not. This
requires at most k + k log(n) bits.

• For each neighbor of the bag, whether it was already covered by a bag. This requires O(k2) bits
(We use some fixed ordering on the vertices to decode which bit corresponds to which vertex in
log-space).

The algorithm works as follows. Given the current certificate, if all neighbors have been covered we
accept. Otherwise, we guess a new child bag by picking a non-empty subset of k + 1 vertices among the
vertices of the current bag that were contained only in this bag, and the neighbors that were not already
covered. We then check that each vertex that is in both the current bag and child bag has all of its neighbors
in these two bags. We then guess for each not already covered neighbor of the current bag if it should
be covered by the subtree of this child. These vertices are then considered as covered in the current bag
certificate. In the child bag certificate, the non covered neighbors are these vertices and the neighbors of
the child bag that are not neighbors of the parent bag. We then recurse with both certificates, and accept
if both recursions accept.

This computation uses O(k2 + k log n) space and the computation tree has polynomial size.
We can handle disconnected graphs by iterating on component representatives and discarding vertices

that are not reachable using the fact that reachability in undirected graphs can be computed in log-space
(see membership for TREE-PARTITION-WIDTH for more details).

Hardness follows from a reduction from TREE-PARTITION-WIDTH when we use the target value and
maximum degree as parameter.

18 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Suppose we are given a graph G = (V,E) of maximum degree d and an integer k.
Let L = kd + 1, and M = (k + 1)L − 1. Now, build a graph H as follows. For each vertex v ∈ V ,

we take a clique Cv with L vertices. For each vertex w ∈ Cv , we add a set Sw with 2M − 2 vertices, and
make one of the vertices in Sw incident to w and to all other vertices in Sw; call this vertex yw.

For each edge e = vw ∈ E, we add a vertex ze, and make ze incident to all vertices in Cv and all
vertices in Cw. Let H be the resulting graph.

Claim 4.7. G has tree-partition-width at most k, if and only if H has domino treewidth at most M − 1.

Proof: Suppose H has domino treewidth at most M − 1. Suppose ({Xi|i ∈ I}, T = (I, F)) is a domino
tree decomposition of H of width at most M − 1, i.e., each bag has size at most M .

First, consider a vertex w in some Cv . The vertex yw has degree 2M − 2, which implies that there are
two adjacent bags that each contain yw, and M − 1 neighbors of yw. One of these bags contains w.

For each v ∈ V , there must be at least one bag that contains all vertices of Cv , by a well known property
of tree decompositions. There can be also at most one such bag, because each vertex w ∈ Cv is in another
bag that is filled by w, yw, and M − 2 other neighbors of yw.

For each i ∈ I , let Yi ⊆ V be the set of vertices v ∈ V with Cv ⊆ Xi. We claim that ({Yi|i ∈
I}, T = (I, F)) is a tree partition of G of width at most k (some bags are empty). First, by the discussion
above, each vertex v ∈ V belongs to exactly one bag Yi. Second, as M < (k + 1)L, each Yi has size at
most k. Third, if we have an edge e = vw ∈ E, then ze is in the bag that contains Cv , and ze is in the
bag that contains Cw. As ze is in at most two bags, these two bags must be the same, or adjacent, so in
({Yi|i ∈ I}, T = (I, F)), v and w are in the same set Yi or in sets Yi and Yi′ with i and i′ adjacent in the
decomposition tree T .

Now, suppose G has tree-partition-width at most k, say with tree partition ({Yi|i ∈ I}, T = (I, F)).
For each i ∈ I , let Xi =

⋃
v∈Yi

Cv ∪ {ze | ∃v ∈ Yi, w ∈ V : e = vw}. For each v ∈ V , w ∈ Cv ,
add two bags, one containing w, yw, and M − 2 other neighbors of yw, and the other containing yw and
the remaining M − 1 neighbors of yw, and make these bags adjacent, with the first adjacent to the bag
in T that also contains w. One easily verifies that this results in a domino tree decomposition of H with
maximum bag size at most M , hence H has domino treewidth at most M − 1.

It is easy to see that H can be constructed from G with f(k) log |V | memory. So, the hardness of
DOMINO TREEWIDTH follows from the previous lemma.

5 Tree-cut width and the stability of tree-partition-width
In this section, we consider the relation of the notion of tree-cut width with (stable) tree-partition-width.
Tree-cut width was introduced by Wollan [32]. Ganian et al. [24] showed that several problems that are
W [1]-hard with treewidth as parameter are fixed parameter tractable with tree-cut width as parameter.

We begin by defining the tree-cut width of a graph G = (V,E). A tree-cut decomposition (T,X)
consists of a rooted tree T and a family X of bags (Xi)i∈V (T) which form a near partition of V (G) (i.e.
some bags may be empty, but nonempty bags form a partition of V (G)). For t ∈ V (T), we denote by e(t)
the edge of T incident to t and its parent. For e ∈ E(T), let T1, T2 denote the two connected components
of T −e. We denote by cut(e) the set of edges with an endpoint in both of

⋃
i∈V (T1)

Xi and
⋃

i∈V (T2)
Xi.

The adhesion of t ∈ V (T) is adh(t) = | cut(e(t))|, and its torso-size is tor(t) = |Xt|+ bt where bt is the
number of edges e ∈ E(T) incident to t such that | cut(e)| ≥ 3. The width of the decomposition is then

On the parameterized complexity of computing tree-partitions 19

maxt∈V (T){adh(t), tor(t)}. Note that edges are allowed to go between vertices that are not in the same
bag. The tree-cut width of a graph is the minimal width of tree-cut decomposition. When | cut(e)| ≥ 3,
the edge e is called bold, and otherwise, e is called thin. When adh(t) ≤ 2, node t is called thin, otherwise
it is called bold. In [24], it is shown that a tree-cut decomposition can be assumed to be nice, meaning that
if t ∈ V (T) is thin then N(Yt) ∩

(⋃
b sibling of t Yb

)
= ∅, where Yi is the union of Xj for j in the subtree

of i.
Wollan [32] shows that having bounded tree-cut width is equivalent to only having wall immersions of

bounded size.

Observation 5.1. tpw(K3,n) ≤ 3 and tcw(K3,n) = Θ(
√
n).

Proof: Let (A,B) denote the bipartition of K3,n with |A| = 3.
A tree-partition of K3,n achieving width 3 is the partition with A in one bag and every other vertex in

a separate bag.
It is easy to see that K3,n has a tree-cut decomposition of width O(

√
n): we place A as the center of

a star, with about
√
n leaves of size

√
n. Now we consider an arbitrary tree-cut decomposition of K3,n

achieving width O(
√
n). We first note that the vertices of A cannot be split into separate bags because

if they were, any edge of the decomposition on the path between such bags would have adhesion at least
n/2. Hence, there is a bag containing A and we may root the tree of our decomposition in this bag. Each
subtree of the decomposition will contribute to the torso-size, and each vertex will contribute linearly to
the adhesion of the edge from its subtree to the root. Since we assume the width to be O(

√
n), we must

have at most O(
√
n) vertices per subtree. Consequently, there must be Ω(

√
n) subtrees, so the torso-size

of the root is Ω(
√
n).

Note that any graph on n vertices with maximum degree 3 can be immersed in K3,n. In particular, this
works for any wall. The lower bound given by Wollan shows that the tree-cut width of K3,n is Ω(n

1
4).

We denote by tpw(G) the minimum tree-partition-width over subdivisions of G (stable tree-partition-
width), and by tpw(G) the maximum tree-partition-width of subdivisions of G. We will show that both
are polynomially tied to the tree-partition-width of G, which proves useful in polynomially bounding
tree-partition-width by tree-cut width due to the following lemma.

Lemma 5.2. tpw = O(tcw2).

Proof: Consider a nice tree-cut decomposition (T,X) of a graph G of width k. We will construct a tree-
partition for a subdivision of G. Note that the bags are already disjoint, but some edges are not between
neighboring bags of T .

Each edge uv of G is subdivided dT (u, v) times, which is the distance between the nodes containing u
and v respectively in their bag (recall that the bags form a near partition). We then add the vertices of the
subdivided edge in the bags on the path in the decomposition between the bags containing their endpoints.
This is sufficient to make the decomposition a tree-partition T ′ of a subdivision of G.

We now argue that T ′ has a width of O(k2). A bag Yt of T ′ contains at most:

• k initial vertices

• max(2, k) vertices from subdivisions of edges in cut(e(t)) accounting for edges going from a child
of t to an ancestor of t

20 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

• k2/2 vertices from edges that are between bold children of t. For u, v children of T , there are
only edges between Tu and Tv if both are bold. There are at most k bold children in a tree-cut
decomposition. There are also at most k such edges incident to Tu for any child u of T , and we
may divide by 2 since each edge will be counted twice this way. We stress that thin children do not
contribute because the tree-cut decomposition is nice.

Hence, tpw(G) ≤ k + (k + 2) + k2/2 = O(tcw(G)2)

Next, we consider the parameters tpw and tpw.

Lemma 5.3. tpw ≤ tpw ≤ tpw(tpw+1)

Proof: The lower bound is immediate. We prove the upper bound.
Consider a graph G with a tree-partition (T,X) of width k, and a subdivision G′ of G. We construct a

tree-partition (T ′,X ′) of G′ of width at most k(k + 1).
We root the decomposition T arbitrarily.
Suppose that u, v are in the same bag of T and the edge uv was subdivided to form the path u, a1, . . . ,

aℓ, v. We add the vertices ai in new bags containing, {a1, aℓ}, {a2, aℓ−1}, . . . which corresponds to a
new branch of the decomposition of width at most 2.

Consider next the vertices obtained by subdividing an edge uv for u in the child bag of the bag of v. If
a subdivided edge was between two vertices of adjacent bags, we order the vertices of the path obtained
by subdividing the edge from the vertex in the child bag to the vertex in the parent bag. We add the
penultimate vertex to the child bag, and fold the remaining vertices of the path in a fresh branch of the
decomposition of width at most 2 similarly to the previous case.

This gives a tree partition T ′. Bags of T ′ that are not in T have size at most 2, and, to bags of T ′ that
are also in T , we added at most k2 vertices (at most one per edge between the bag and its parent). We
conclude that T ′ has width at most k(k + 1).

A result of Ding and Oporowski [18] shows that tree-partition-width is tied to a parameter γ that is
(by design) monotonic with respect to the topological minor relation. We adapt their proof to derive the
following stronger result.

Theorem 5.4. There exists a parameter γ which is polynomially tied to the tree-partition-width, and
is monotonic with respect to the topological minor relation. More precisely, tpw = Ω(γ) and tpw =
O(γ24).

We deduce the following statement.

Corollary 5.5. tpw, tpw, and tpw are polynomially tied.

Proof: Lemma 5.3 shows that tpw and tpw are polynomially tied. Note that, by definition, tpw ≤
tpw. Then, for a fixed graph G, consider H a subdivision of G achieving tpw(H) = tpw(G). Then
tpw(G)O(1) ≤ γ(G) ≤ γ(H) ≤ tpw(H)O(1) = tpw(G)O(1). The first and last inequalities come from
the fact that γ and tpw are polynomially tied. The middle inequality is because γ is monotonic with
respect to the topological minor relation.

From Lemma 5.2 and Corollary 5.5, we deduce the following theorem.

On the parameterized complexity of computing tree-partitions 21

Theorem 5.6. The parameter tree-partition-width is polynomially bounded by the parameter tree-cut
width. In other words, we show that there exist constants C, c > 0 such that for any graph G, tpw(G) ≤
C tcw(G)c.

We now turn our focus to the technical proof of Theorem 5.4, for which we first need some further
definitions and results.

We define the m-grid as the graph on the vertex set [m] × [m] with edges (i, j)(i′, j′) when |i − i′| +
|j − j′| ≤ 1. We then define the m-wall as the graph obtained from the m-grid by removing edges
(i, j)(i + 1, j) for i + j even. The wall number of a graph G is then defined as the largest m such that
G contains the m-wall as a (topological)(iii) minor, and the grid number of G is the largest m such that G
contains the m-grid as a minor. We denote them by wn(G) and gn(G) respectively.

Observation 5.7. The wall number and the grid number are linearly tied: wn(G) = Θ(gn(G)).

We use the following result of Chuzhoy and Tan [14] (the bound is weakened to have a lighter formula).

Lemma 5.8 (Chuzhoy and Tan [14]). The treewidth is polynomially tied to the grid number: tw = Ω(gn)
and tw = O(gn10).

Hence, the treewidth is polynomially tied to the wall number: tw = Ω(wn) and tw = O(wn10).

We are now ready to prove the theorem.

Proof of Theorem 5.4: We call m-fan the graph that consists of a path of order m with an additional
vertex adjacent to all of the vertices of the path. We call m-branching-fans the graphs that consist of a
tree T and a vertex v adjacent to a subset N of the vertices of T containing at least the leaves, such that m
is the minimum size of a subset of vertices X of T such that each component of T −X contains at most
m vertices of N . In particular, the (m + 1)2-fan is an (m + 1)-branching-fan. We call m-multiple of a
tree of order m a graph obtained from a tree of order m after replacing its edges by m parallel edges and
then subdividing each edge once to keep the graph simple.

Let γ1(G) be the largest m such that G contains an m-branching-fan as a topological minor. Let γ2(G)
be the largest m such that G contains an m-multiple of a tree of order m as a topological minor.

Let γ(G) be the maximum of wn(G), γ1(G), and γ2(G).

Claim 5.9. The parameter γ is monotonic with respect to the topological minor relation.

Proof: Let G be a graph and H be a topological minor of G. Any topological minor of H is also a
topological minor of G, hence wn(G) ≥ wn(H), γ1(G) ≥ γ1(H), γ2(G) ≥ γ2(H). We conclude that
γ(G) ≥ γ(H).

We remark that the m-branching-fans, the m-multiples of trees of order m and the m-wall have tree-
partition-width Ω(m). Hence, we have tpw(G) = Ω(γ(G)).

We fix a graph G and let m = γ(G). Note that m ≥ γ2(G) > 0.
We denote by Gb the graph on the vertex set of G, where xy is an edge if and only if there are at least

b vertex disjoint paths from x to y. We now consider Gb for b = Ω(m10).

Claim 5.10. The connected components of Gb have size at most m.

(iii) The notions of minor and topological minor coincide for graphs of maximum degree at most 3.

22 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

Proof: We proceed by contradiction, and assume there is a connected component C of size at least m+1.
Since C is connected, it contains a spanning tree T . We number its edges e1, . . . , eℓ such that every

prefix induces a connected subtree of T . We construct a subgraph H of G that should be an (m + 1)-
multiple of a tree of order m+ 1, contradicting the definition of m. For each edge uv, in order, we try to
add to H m + 1 vertex disjoint paths from u to v that avoid vertices of C and the vertices already in H .
If we manage to do this for at most m edges, then we have placed at most m(m+ 1) paths. Let uv be the
first edge for which we could not find m + 1 vertex disjoint paths that do not intersect previous vertices
(except for u or v). By definition of Gb, there are b vertex disjoint u, v-paths in G, we denote the set of
such paths by π. At most m of the paths of π hit vertices of C already in H . Then, since at least b −m
are hit by previous paths and there are at most m(m + 1) previous paths. By the pigeon hole principle,
one of the previous paths P0 must hit b−m

m(m+1) ≥ (m + 1)2 paths in π. By considering P0 and the paths
it hits in π, we easily obtain a subdivision of an (m+ 1)2-fan. This is a contradiction with the definition
of m. Hence, we must have been able to process m edges. Which means we obtained a subdivision of an
(m+1)-multiple of a tree of order m+1. This is a contradiction to the definition of m. We conclude that
the connected component must have size at most m.

Let H be the quotient of G by the connected components of Gb. We call it the b-reduction of G.

Claim 5.11. The blocks of H have maximum degree at most bm3.

Proof: Assume by contradiction that the maximum degree is more than bm3. Let B be a block of H , and
X be one if its vertices of maximum degree. X contains at most m vertices of G by Claim 5.10. The
vertices of G in B − X must be in the same connected component C of G since b > m. There are at
least bm3 + 1 edges between X and C. By the pigeon hole principle, one vertex v of X must have at
least bm2 +1 neighbors in C. Consider a spanning tree T of C. We iteratively remove leaves that are not
neighbors of v, and then replace any vertex of degree 2 that is not a neighbor of v by an edge between its
neighbors. We denote this reduced tree by T ′.

First, note that the degree in T ′ is bounded by b − 1 because incident edges can be extended to vertex
disjoint paths to leaves of T ′ which are neighbors of v by construction. We now use the fact that G
contains no (m+1)-branching-fans as topological minors. In particular, there must be a set U of vertices
of T ′ of size at most m such that components of T ′−U contain at most m neighbors of v. By removing at
most m vertices of degree at most (b− 1), we have at most 1+ (b− 2)m components in T ′ −U meaning
v has degree bounded by (b− 1)m2. We found our contradiction.

Claim 5.12. The treewidth of H is at most O(b).

Proof: We first apply Lemma 5.8 to bound the treewidth of G by O(b). Consider a tree decomposition of
G of adequate width Θ(b), and replace each bag by the components of Gb that intersect it. By Claim 3.2,
this is a decomposition of H .

Using Claim 5.11 and Claim 5.12 and the construction of Wood as we did in the approximation algo-
rithm, we obtain a tree-partition of H of width O(b2m3). We then replace components of Gb by their
vertices, obtaining a tree-partition of G of width O(b2m4) due to Claim 5.10.

We have obtained a tree-partition of width O(b2m4) = O(m24). This concludes the proof of Theo-
rem 5.4.

On the parameterized complexity of computing tree-partitions 23

6 Weighted Tree-Partition-Width
Recent investigations in algorithmic applications of tree-partition-width [6, 11] give algorithms that are
fixed parameter tractable with the weighted tree-partition-width as parameter. In these cases, all vertices
have weight one, and all edges have a positive weight. In this section, we show XALP-completeness
for WEIGHTED TREE-PARTITION-WIDTH when all vertices and edges have weight one, and give an
approximation algorithm similar to Theorem 3.11. The latter result can be regarded as a corollary of
Theorem 3.11.

Corollary 6.1. There is an algorithm that given an n-vertex graph G with vertex and edge weights, and
an integer k, constructs a tree-partition of breadth O(k15) for G or reports that G has weighted tree-
partition-width more than k, in time kO(1)n2.

Proof: First, observe that when an edge vw has weight more than k, then v and w must belong to the
same bag in any tree-partition of breadth at most k. Repeat the following step: if there is an edge vw ∈ E
of weight larger than k, contract the edge. Suppose x is the new vertex. Set the weight of x to the sum of
the weights of v and w: wV (x) = wV (v) + wV (w). If a vertex y is a neighbor to v or w, then take an
edge xy, with weight equal to the weight of an original edge vy or wy if one of these exists, or to the sum
of these weights if both exist.

If we have a vertex of weight larger than k, we can safely conclude that the weighted tree-partition-
width of G is larger than k, and we stop.

Let G′ be the resulting graph. Note that all vertex and edge weights in G′ are at most k. Now, run the
third algorithm of Theorem 3.11 on G′ ignoring all edge weights. Note that we can safely have the weight
of vertices in the b-reduction of G′ to be the sum of the weights of the corresponding vertices of G′. If this
algorithm concludes that the tree-partition-width of G′ is larger than k, then we can also conclude that the
weighted tree-partition-width of G is larger than k. Otherwise, we obtain a tree-partition (T, (Bi)i∈V (T))
of G′ of width at most k. Note that each bag Bi has total weight at most O(k7). More precisely, in step
4 of the algorithm, we obtain a tree-partition of the b-reduction of G′ of width O(wbk2) = O(k6), with
each vertex of weight at most k.

Now, obtain a tree-partition of G by undoing all contractions. I.e., if we contracted vw to x and x ∈ Bi,
then replace x by v and w in Bi. Repeat this step in the reverse order of which we did the contraction
steps. The result is a tree-partition of G. Undoing contractions does not change the total weight of vertices
in bags, so the total weight of vertices in a bag is bounded by O(k7). Now, for each pair ii′ of adjacent
bags, there are O(k14) pairs of vertices with one endpoint in each bag, and each edge between these bags
has weight at most k, so the total weight of edges with one endpoint in Bi and one endpoint in Bi′ is
bounded by O(k15). Thus, the breadth of the obtained tree-partition is O(k15).

Corollary 6.2. There is an algorithm running in polynomial time that constructs a tree-partition of
breadth O(k11 log2 k) or reports that the weighted tree-partition-width is more than k.

There is an algorithm running in time 2O(k log k)n, that computes a tree-partition of breadth O(k11) or
reports that the weighted tree-partition-width is more than k.

Proof: Use the same approach as in the previous algorithm, but use different subroutines to compute the
approximate tree-partition, as in the different cases in Theorem 3.11.

As tree-partition-width is the special case of weighted tree-partition-width with all vertex weights one,
and all edge weights zero, we directly have that deciding weighted tree-partition-width is XALP-hard.

24 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

v

Cv,1

Cv,2

xv,1

xv,2

xv,3

Fig. 4: An example of the subgraph for a vertex v of weight 3; here k = 5, and an illustration of how a tree-partition
of G is transformed to a tree-partition of G′.

However, in applications, the case where all edges have positive weights is of main interest [6, 11]. In
the following, we show that similar hardness also holds in some simple cases with edges having positive
weights. We give a few intermediate results.

Lemma 6.3. WEIGHTED TREE-PARTITION-WIDTH is in XALP.

Proof: This can be proved in the same way as Lemma 4.1.

Lemma 6.4. WEIGHTED TREE-PARTITION-WIDTH with all edges weight 1 is XALP-hard.

Proof: Take an instance of TREE-PARTITION-WIDTH: (G, k). Now, set the weight of all edges to 1, and
all vertices to L = k2 + 1. Now, for each tree-partition of G, its width (where we ignore weights) is at
most k, if and only if the maximum over all bags of the total weight of vertices in a bag is at most kL, if
and only if its breadth is at most kL. The latter follows as there are at most k2 edges between bags each
of weight one. The result now directly follows.

Theorem 6.5. WEIGHTED TREE-PARTITION-WIDTH with all vertex and edge weights equal to 1 is
XALP-complete.

Proof: For membership in XALP, see Lemma 6.3.
For hardness, we take an instance (G, k) of WEIGHTED TREE-PARTITION-WIDTH with all edge

weights equal to 1. We may assume that all vertices have weight at most k, otherwise we have a triv-
ial no-instance.

Now, for every vertex v with wv = r, we replace v by a subgraph with r+k+2 vertices. Take a clique
Cv,1 with r vertices, a second clique Cv,2 with k vertices, and two vertices xv,1, xv,2.

Add the following edges: xv,1 and xv,2 are adjacent to all vertices in Cv,2. Take a vertex xv,3 ∈ Cv,2

and make it adjacent to all vertices in Cv,1. For each edge {v, w} ∈ E(G), add an edge between an
arbitrary vertex from Cv,1 and an arbitrary vertex from Cw,1. See Figure 4 for an illustration.

Let G′ be the resulting graph. All vertices and edges in G′ have weight 1.
The following observation follows directly from the definition.

Claim 6.6. Let C be a clique in a graph G. In each tree-partition of G, all vertices in G are in one bag,
or in two adjacent bags.

Claim 6.7. For each vertex v ∈ V and each tree-partition of G′ of breadth at most k, all vertices of Cv,2

belong to the same bag.

On the parameterized complexity of computing tree-partitions 25

Proof: Suppose (T, (Bi)i∈V (T)) is a tree partition of G′ of breadth at most k.
Suppose the vertices in Cv,2 do not belong to the same bag. Then, by Claim 6.6, they belong to two

adjacent bags, say i1 and i2. Now, xv,1 and xv,2 must be in bags, adjacent to i1 and adjacent to i2, so
xv,1, xv,2 ∈ Bi1 ∪ Bi2 . Bi1 ∪ Bi2 contain all k + 2 vertices in Cv,2 ∪ {xv,1, xv,2}; thus, within this set,
there are at least 2k pairs of vertices with one endpoint in Bi1 and one endpoint in Bi2 ; however, only one
pair of vertices in this set is not adjacent (namely, xv,1 and xv,2), so at least 2k − 1 edges cross the cut
from i1 to i2, which contradicts the breadth of the tree-partition when k > 1.

Claim 6.8. For each vertex v ∈ V and each tree-partition of G′ of breadth at most k, all vertices of Cv,1

belong to the same bag.

Proof: Suppose xv,3 ∈ Bi. Now, as xv,3 ∪ Cv,1 is a clique, all vertices in xv,3 ∪ Cv,1 are in two incident
bags, say Bi ∪Bi′ . As Bi contains the k vertices from Cv,2 (by Claim 6.7), Cv,1 ⊆ Bi′ .

Claim 6.9. G has weighted tree-partition-width at most k, if and only if G′ has weighted tree-partition-
width at most k.

Proof: Suppose the weighted tree-partition-width of G′ is at most k. Suppose (T, (Bi)i∈V (T)) is a tree-
partition of breadth at most k of G′. Let for all i ∈ V (T), B′

i = {v ∈ V |Xv,1 ⊆ Bi}. It is easy to check
that (T, (B′

i)i∈V (T)) is a tree-partition of G of breadth at most k. By Claim 6.8, each vertex v ∈ V (G)
belongs to one set B′

i. As we replace a clique with wV (v) vertices of weight one by one vertex with
weight wV (v), the total weight of each bag is still bounded by k. For each edge {v, w} ∈ E(G), the bags
containing Cv,1 and Cw,1 must be the same or adjacent, as there is an edge between a vertex in Cv,1 and
a vertex in Cw,1. So, the weighted tree-partition-width of G is at most k.

Now, suppose the weighted tree-partition-width of G is at most k. Suppose (T, (Bi)i∈V (T)) is a tree-
partition of breadth at most k of G. Build a tree-partition of G′ as follows: set B′′

i =
⋃

v∈Bi
Cv,1, i.e.,

we replace each vertex v by the set of vertices Cv,1, for all i ∈ V (T). For each v ∈ V (G), we add three
extra bags: one bag iv,2 containing all vertices in Cv,2, one bag containing only the vertex xv,1 which is
adjacent to bag iv,2, and one bag containing only the vertex xv,1 which also is adjacent to bag iv,2. One
easily checks that this is a tree-partition of G′ of breadth at most k.

One can check that the transformation can be done with O(kO(1) + log n) memory. So, we have a
pl-reduction from an XALP-complete problem, and the result follows.

7 Conclusion
We settle the question of the exact computation of tree-partition-width, and show that its approximation
is tractable. However, many questions remain regarding approximation algorithms:

• Is a constant factor approximation tractable?

• Can we improve the approximation ratios with similar running times?

Some building blocks of the algorithm could possibly be improved in terms of running time. Is there
some value of b polynomial in w and k such that we can compute Gb in time kO(1)n log n or in time

26 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

2o(k log k)n ? This would directly give faster running times for the approximation algorithm, possibly at
the cost of a worse approximation ratio.

We gave an algorithm to approximate the weighted tree-partition-width, which was introduced in [6],
but with a relatively large factor; we leave it as an open problem to find better approximations for weighted
tree-partition-width.

Another interesting direction is to study the complexity of computing (approximate) tree decomposi-
tions on graphs of bounded tree-partition-width.

References
[1] N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into graphs with only small compo-

nents. Journal on Combinatorial Theory, Series B, 87(2):231–243, 2003.

[2] J. Barát and D. R. Wood. Notes on nonrepetitive graph colouring. The Electronic Journal of Com-
binatorics, 15(1), 2008.

[3] B. Bergougnoux, J. Dreier, and L. Jaffke. A logic-based algorithmic meta-theorem for mim-width.
In N. Bansal and V. Nagarajan, editors, 34th ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, pages 3282–3304. SIAM, 2023.

[4] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on Computing, 25(6):1305–1317, 1996.

[5] H. L. Bodlaender. A note on domino treewidth. Discrete Mathematics and Theoretical Computer
Science, 3(4):141–150, 1999.

[6] H. L. Bodlaender, G. Cornelissen, and M. van der Wegen. Problems hard for treewidth but easy for
stable gonality. In M. A. Bekos and M. Kaufmann, editors, 48th International Workshop on Graph-
Theoretic Concepts in Computer Science, WG 2022, volume 13453 of Lecture Notes in Computer
Science, pages 84–97. Springer, 2022.

[7] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. A ckn
5-approximation algorithm for treewidth. SIAM Journal on Computing, 45(2):317–378, 2016.

[8] H. L. Bodlaender and J. Engelfriet. Domino treewidth. Journal of Algorithms, 24(1):94–123, 1997.

[9] H. L. Bodlaender, C. Groenland, H. Jacob, M. Pilipczuk, and M. Pilipczuk. On the complexity of
problems on tree-structured graphs. In H. Dell and J. Nederlof, editors, 17th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2022,, volume 249 of LIPIcs, pages 6:1–6:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[10] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded treewidth.
SIAM Journal on Computing, 27(6):1725–1746, 1998.

[11] H. L. Bodlaender, I. Mannens, J. Oostveen, S. Pandey, and E. J. van Leeuwen. The parameterised
complexity of integer multicommodity flow. arXiv, 2023. Extended abstract to appear in Proceedings
IPEC 2023.

On the parameterized complexity of computing tree-partitions 27

[12] É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: tractable FO model checking.
Journal of the ACM, 69(1):3:1–3:46, 2022.

[13] P. Carmi, V. Dujmovic, P. Morin, and D. R. Wood. Distinct distances in graph drawings. The
Electronic Journal of Combinatorics, 15(1), 2008.

[14] J. Chuzhoy and Z. Tan. Towards tight(er) bounds for the excluded grid theorem. Journal of Combi-
natorial Theory, Series B, 146:219–265, 2021.

[15] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Compututation, 85(1):12–75, 1990.

[16] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs
of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

[17] G. Ding and B. Oporowski. Some results on tree decomposition of graphs. Journal of Graph Theory,
20(4):481–499, 1995.

[18] G. Ding and B. Oporowski. On tree-partitions of graphs. Discrete Mathematics, 149(1-3):45–58,
1996.

[19] V. Dujmovic, P. Morin, and D. R. Wood. Layout of graphs with bounded tree-width. SIAM Journal
on Computing, 34(3):553–579, 2005.

[20] V. Dujmovic, M. Suderman, and D. R. Wood. Graph drawings with few slopes. Computational
Geometry, 38(3):181–193, 2007.

[21] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for minimum weight
vertex separators. SIAM Journal on Computing, 38(2):629–657, 2008.

[22] F. V. Fomin, D. Lokshtanov, S. Saurabh, M. Pilipczuk, and M. Wrochna. Fully polynomial-time
parameterized computations for graphs and matrices of low treewidth. ACM Transactions on Algo-
rithms, 14(3):34:1–34:45, 2018.

[23] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956.

[24] R. Ganian, E. J. Kim, and S. Szeider. Algorithmic applications of tree-cut width. In G. F. Italiano,
G. Pighizzini, and D. Sannella, editors, 40th International Symposium on Mathematics Foundations
of Computer Science, MFCS 2015, Proceedings Part II, volume 9235 of Lecture Notes in Computer
Science, pages 348–360. Springer, 2015.

[25] E. D. Giacomo, G. Liotta, and H. Meijer. Computing straight-line 3d grid drawings of graphs in
linear volume. Computational Geometry, 32(1):26–58, 2005.

[26] R. Halin. Tree-partitions of infinite graphs. Discrete Mathematics, 97(1-3):203–217, 1991.

[27] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation. Communi-
cations of the ACM, 16(6):372–378, jun 1973.

28 Hans L. Bodlaender, Carla Groenland, Hugo Jacob

[28] T. Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, pages 184–192. IEEE, 2021.

[29] B. A. Reed. Finding approximate separators and computing tree width quickly. In S. R. Kosaraju,
M. Fellows, A. Wigderson, and J. A. Ellis, editors, 24th Annual ACM Symposium on Theory of
Computing, STOC 1992, pages 221–228. ACM, 1992.

[30] O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.

[31] D. Seese. Tree-partite graphs and the complexity of algorithms. In L. Budach, editor, 5th Inter-
national Conference on Fundamentals of Computation Theory, FCT 1985, volume 199 of Lecture
Notes in Computer Science, pages 412–421. Springer, 1985.

[32] P. Wollan. The structure of graphs not admitting a fixed immersion. Journal of Combinatorial
Theory, Series B, 110:47–66, 2015.

[33] D. R. Wood. On tree-partition-width. European Journal of Combinatorics, 30(5):1245–1253, 2009.

[34] D. R. Wood and J. A. Telle. Planar decompositions and the crossing number of graphs with an
excluded minor. In M. Kaufmann and D. Wagner, editors, 14th International Symposium on Graph
Drawing, GD 2006, volume 4372 of Lecture Notes in Computer Science, pages 150–161. Springer,
2006.

	Introduction
	Preliminaries
	Approximation algorithm for tree-partition-width
	Description of the algorithm
	Correctness
	Time/quality trade-offs

	XALP-completeness of Tree-Partition-Width
	Tree-cut width and the stability of tree-partition-width
	Weighted Tree-Partition-Width
	Conclusion

