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We have extended classical pattern avoidance to a newwgteuchultiple task-precedence posets whose Hasse diagrams
have three levels, which we will call diamonds. The verticEsach diamond are assigned labels which are compatible
with the poset. A corresponding permutation is formed bylirgthese labels by increasing levels, and then from left
to right. We used Sage to form enumerative conjectures ®asisociated permutations avoiding collections of pagtern
of length three, which we then proved. We have discoveredegtibn between diamonds avoiding 132 and certain
generalized Dyck paths. We have also found the generatirgjifun for descents, and therefore the number of avoiders,
in these permutations for the majority of collections oftpats of length three. An interesting application of thiskvo
(and the motivating example) can be found when task-prexadposets represent warehouse package fulfillment by
robots, in which case avoidance of both 231 and 321 ensuresewer stack two heavier packages on top of a lighter
package.
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1 Introduction

In this paper, we continue a rich tradition of extending tban of classical pattern avoidance in permuta-
tions to other structures. Given permutations- 7o - - - m, andp = p1p2 - - - p.,, We say thatr contains

p as a pattern if there exi$t< iy < iz < --- < i, < nsuchthatr;, < m;, if and onlyif p, < pp. In this
case we say that;, ;, - - - m;, is order-isomorphido p and thatr;, 7;, - - - m;,, reduces t. If = does not
containp, thenr is said toavoid p. The classical definition of pattern avoidance in permatetihas shown
itself to be worthwhile in many fields including algebraicogeetry [17] and theoretical computer science
[9]. Analogues of pattern avoidance have been developed f@riety of combinatorial objects including
Dyck paths [1], tableaux [11], set partitions [15], treed][Iosets [8], and many more. We use a definition
of pattern avoidance that is similar to that used in the stofdiyeaps [10], but distinct from that used in
previous studies of trees. Unlike the question studied bgkitts and Weiler [8] which identified classes of
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Fig. 1.1: An element ofDs 2(321).

posets for which certain properties are preserved, we esxttenenumerative question of pattern avoidance
to a particular class of posets.

A task-precedence posista poset which represents the order relations betweenadéasks to be com-
pleted. We are particularly interested in considerindentical task-precedence posets, and here we focus
our attention on those sets of tasks that require one taskropleted before any others, and one final task
after any others, with no restrictions on the rest of thedaskhe list. When considering a list dftasks,
the Hasse diagram of this poset is a diamond, and as such Wweefgil to a task-precedence poset of this
type with v tasks as aliamondwith v vertices (each withy — 2 vertices in the middle level). We then
assign unique labels fro#l, 2, . .., vd} to each vertex such that the labels obey the order relatibeaah
diamond. We then refer to the set of all such labelled caiestof diamonds a®,, 4.

Given an elemenb of D, ; we associate a permutatian, by recording the vertex labels as they are
encountered reading the labels on each diamond consdygutefé to right by levels, beginning with the
least element. For example,ii# is as pictured in Figure 1.1, therp, = 156273498(10). We say thatD
contains (respectively avoidgys a pattern ifrp contains (respectively avoidg)hs a classical pattern, using
the definition above. We will abuse notation and sometimis te an element oD, 4 and it's associated
permutation interchangeably. L&, 4(P) be the elements db, 4 that avoid all patterns in lisP. While
Figure 1.1 contain$23, 132,213, 231, 312, it is a member oD;5 5(321). Two patterns on diamonds,and
B, are said to be-Wilf-equivalentf they have the same enumeration, that i$7f, 4(«)| = |Dy,a(8)| for
all v andd. If so, we writea: ~y B.

Our motivation comes from a real-life application, namelffeget of robots all completing the same se-
quence of tasks in a warehouse for package fulfillment. In2bttead of having human employees walk
the warehouse floor retrieving items one after another topteta an order, Amazon began utilizing Kiva
robots in their package fulfilment warehouses [12]. Eadbotexecuted pieces of the larger task. We
assign robots to diamonds ordered by the weight of the otijegtwill deliver, heaviest object first, so that
the tasks to retrieve the first, heaviest object are reptedémdiamond, and the lightest object by the final
diamond. First the robot drives to the appropriate invgntack and mounts the rack on its back. Then it
can either drive through the warehouse highways to its piftke human employee who will retrieve the
item off the rack without leaving their station), or it cartate itself so that the appropriate side of the rack
is facing the picker. Both of these need to be completed befe final step: having the item picked off the
rack by the human employee in order to place it in its shipfiag. In this way, completing one order of
d items from Amazon.com is exactly the task-precedence pepetsented by diamonds withd vertices
each.

We now give an example of this process, referring througtmhigure 1.2. A customer has made an order
for 3 objects,o1, 02, 03, With weightsw(o1) > w(o2) > w(o3). Thus the leftmost diamond will represent
the tasks completed by the robot retrieving objecthe center diamond for retrieving objext and the
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rightmost diamond for retrieving obje8t The labels represent the order in which each task of thetal
tasks is executed. Each robot operates autonomously aegendently, and each faces its own challenges.
For example one of the objects may be at the back of the wasehthere may be significant traffic along
some of the paths the robots travel through the warehouskeapbot assigned to retrieve an object may
still be executing its previous assignment. Thus the labelthe least elements of each diamond can vary
significantly, and there can be a large difference in thelliaigeof the least element of a particular diamond
and its greatest element. In Figure 1.2, the first task catiegbis that the robot for obje6tarrives and picks

up the rack containing obje8t Next, the robot retrieving objedtarrives at the rack containing objelt
Next, the robot carrying objedt rotates its rack on its back to have the correct orientatiotingé picker.
This continues, and based on the labelling of the elememse® that objec (the lightest) is placed in its
shipping box first (in step), then object (in step11), and then objec (in step12). So our human picker
has placed two heavier objects on a lighter object (unlessiarrange the objects after packing). Then a
a sufficient (though not necessary) condition to ensuretit@heavier objects do not arrive after a lighter
object is that the associated permutation a@sitiand321.

11 12 9
1005 GQS 7<>3
2 4 1

Fig. 1.2: An example of & robot task-precedence poset whose associated permutagsmot avoid31 and321.

One could consider other applications that arise from taskedence problems, but our motivating ex-
ample can be generalized most appropriately by changtagks per autonomous robotiddasks.

The generating function for descents (gfd) for D, 4(P) is flfd(gmy) = ZDGDM(P) zdesyd, and
[ (@y) = Y2, fra(x,y). For exampleDy2(213) is the set of diamonds with associated permuta-
tions12345678,12384567,12783456,16782345,and56781234.So,fi(z,y) =
y*(1 + 4x). '

Throughout this paper, the main question we answer is “Howyngdements are i, 4(P)?” for any
collectionP of patterns of lengtB. In general we fixy > 4 and a set of pattern3 and then determine a for-
mula for the sequencgD, 4(P)|} -~ With key results fow = 4 shown in Table 1. The third column of the
table gives entries from the Online Encyclopedia of Integmguences [13]. Our results for pattern-avoiding
diamonds have connections with many other combinatoriglotd as evidenced by the low reference num-
bers. Sequences A260331, A260332 and A260579, howevareareesults particular to this study of task
precedence posets.

Our task, which answers our primary question, is to ﬁﬁg(x, y). Then when we substitute= 1 and
take the coefficient of, we obtainD, 4(P)|.

In Section 2 we consider collections of diamonds that avosihgle pattern of length 3. In Section 3
we consider collections of diamonds that avoid a pair ofguatt of length 3, and in Section 4 we consider
collections of diamonds avoiding three or more patterngofth 3. Finally in Section 5, we list some open
problems relating to this work.
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PatternsP {IDa,a(P)} 44 OEIS Result

0 2,280, 277200, 10090080000, . . . A260331| Theorem 1
123 0,0,0,0,0,0,0,0,0, ... A000007 | Theorem 2
;i’; 1,5, 35,285, 2530, 23751, 231880, 2330445, ... | A002294 | Theorem 3
gi’; 2,18, 226, 3298, 52450, 881970, . . . A260332| Theorem 4
321 2,106, 5976, . .. A260579| OPEN
132,213 1,2,4,8,16,32, 64, 128, 256, . . . A000079] Theorem5
132,312

213. 231 1,2,4,8,16, 32,64, 128, 256, . .. A000079| Theorem 6
132,321

213. 321 1,5,13,25,41,61,85,113,145, ... A001844| Theorem 7
231,312 2.8,32,128,512, 2048, . ... A004171| Theorem 8
;?;’ g;i 2,14,98,686,4802, 33614, 235298, . .. A109808| Theorem 9
132,213,321 [ 1,2,3,4,5,6,7,8.9, . .. A000027] Theorem 10
231,312,321 | 2,8,32,128,512, 2048, 8192, 32768, 131072... | A081294 | Theorem 11

Tab. 1: Enumeration of pattern-avoiding diamonds whes 4

2 Diamonds avoiding a single pattern of length 3
Before we count pattern-avoiding diamonds, it is usefultoreerateall diamonds.
Theorem 1. |D,, 4(0)] = — 24X

vd(v—1)4

Proof: Letv > 4 andd > 1, first we choose labels for each diamond, and then there(are- 2)! ways to
arrange the internal vertex labels of any given diamond. idtein

R

(vd)!
vd(v —1)d’

Theorem 2. |D,4(123)] = 0.

Proof: Itisimpossible to avoid 23 while having a diamond since the pattern is inherent in didhdiamond
labellings. O

2.1 The patterns 132 and 213

The complemenbf a permutationr of lengthn, denoted byr¢, is obtained by replacing each letteby
the lettern — j + 1. Thereverseof r = w7 ... m,, denoted byr", is m,m,_1 ... 7. We letx"¢ be the
reverse-complemenf © andD, 4(p)"° be{r5 | D € D, 4(p)}.
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Proposition 1. The reverse-complement of a task precedence poset remkggalgoset and, 4(p)™¢ =
D.,,q(p™°). In addition, fork > 1, D, 4(p1,p2, - - -, Pk)"¢ = Dy a(piC, P5°, . . ., D).

Proof: This is clear from the definitions and from hdw, 4(p)"° is created fronp. O

Thus we immediately see thatE)2 ~y 213, b)231 ~y 312,¢€) 132,312 ~yr 213,231,d) 132,321 ~y
213,321, and e)231, 321 ~y 312, 321.

Given a permutation in S,,, lis() is the length of a longest increasing subsequenge for example, in
the permutation 2 5 6 3 4 7 8 alongest increasing subsequences5 6 7 8 andlis(1256347 8 = 6.
Given a permutation in S,,, rlmax(r) is the number of right-left maxima in. For example, in the permu-
tation2 4 6 8 1 3 5 7 a maximum is reached when reading right-to-left twice aindaz(246 81357 =
2. Let Dyck, 4 be the set of all paths fror0, 0) to (d, vd) using only(0,1) and(1,0) steps (East and
North steps) which stay weakly undgr= vz. Given anyp € Dyck, 4, touchpoints(p) is the number of
timesp touches the ling = vz, excluding the pointv, vd). In Figure 2.1, the Dyck path touches the line
y = 4z three times andouchpoints(p) = 3. Given anyp € Dyck, 4, corners(p) is the number of North
steps that are followed by one or more East steps im Figure 2.1, there are three places where the Dyck
path has one or more North steps followed by one or more Egs$ sindcorners(p) = 3. Given anyp €
Dyck, 4, height(p) is the greatest vertical distance from any pointpaio the liney = vz. In figure 2.1,
the longest distance from a corner in the Dyck path to thegire 4« is seven (fron(3, 5) to (3, 12)) and
height(p) = T7.

Lemmal. Any element oD, 4(132) has the elements on each diamond labelled in increasing.orde

Otherwise the label of the first element of the diamond togretbith the first descent would form1s2
pattern.

Theorem 3.
Z wrlmaz(a) xdes(d) ydzlis(a) _ Z wtouchpoints(p) xcorners(p)ydzheight(p) )

0€D, d(132) pEDycky 4

Proof:

We define a map from Dyck, 4 to D,, 4(132). To find ¢(p), first write out the heights of the East steps.
For each height, include a subscripthat indicates how many East steps are at that height. Rettess
sequence and addto every item in the list, leaving the subscripts unchangssth of the elements of this
list becomes the first label of a diamond, and then placébels in increasing order using the smallest
elements that have not already been used as labels.

As an example, refer to Figure 2.1. The heights of the Eapssiee0, 4,5, 12. When this sequence
is reversed and is added to each term, the resulting sequenceis6,51,1;. Thus the permutation
associated with this Dyck path18 14151667895 1011 121 2 3 4.

The importance of the subscriptsare evident from the image of Figure 2.3 ungefThe heights of the
East steps ar@ 3, 3, 10, and the resulting sequencelis;, 45, 1;. Thus the permutation associated to image
i$1112131445678910151 2 3 16.

This map is certainly reversible, with the first label on ed@mond forming a list, unless there is an
increase between diamonds, in which case the first labelpisated. Then the list is reversed ahds
subtracted from each element, giving us the heights of tis¢ $aps in the Dyck path.

This bijection is particularly natural when you examine ¢oan statistics on both paths and permutations.
Following touchpoints, corners, and height through thedtipn, we find they correspond exactly to right-
left maximum, descents, and longest increasing sequenitee@ermutation.

O
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(4,16j
(3,12

(2.5)

(1,4),
(0,0)

Fig. 2.1: A Dyck path from (0,0) to (4,16)

16 9 12 4
14015 708 10@11 2<>3
13 6 5 1

Fig. 2.2: Diamonds labelled according to the image of Figure 2.1 utitkebijection

(0,0)

Fig. 2.3: A second Dyck path fronf0, 0) to (4, 16).
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Fig. 2.4: An unlabelled member aP¢ ; for d/geq3, v/geq5, and;j/geq4.

Corollary 1. [D,,(132)| = [Dy.4(213)] = |Dyck, ;| = L4 (5]
Proof: These equalities hold by the bijection in Theorem 3 andatiWilf equivalence from Proposition

1. O

2.2 The patterns 231 and 312

ConsiderD in D, 4(231), and suppose labekl occurs in positiork. Then for alli < k& and for allj >
k, a; < aj. Consequently, if labeld is in positionk, then labels(1,...,k — 1) appear in positions
(1,...,k—1). We defineDg_’j to be the collection of labelled diamonds f@r 1 full diamonds withv
vertices each followed by an incomplete diamond wyitertices forj = 1,...,v — 1. Likewise Dgyj (p)
are those diamonds that avoid pattgrriNote, whenj = 1 there exist no order relations in the final partial
diamond. An example is shown in Figure 2.4.

ajj(x) (or sometimes simplyyﬁd» for brevity) is the generating function for descentsD[jj(231). In

other words,
o= Y ),
DeDg ;(231)

For example, D3 | (231) contains the diamonds with the following associated peatins: 123456,
124356, 142356, 132456, 143256, 123465, 124365, 142365, 132465, 143265. Counting descents in these
ten permutations gives the generating function for desoﬁj{(x) =1+ 4z + 422 + 23

Theorem 4.
231 i -
ff},d )(.I', 1) = ag,u(x) = ag,(vfl) + xzav,(ufl)ad
=1

where

1, ifj=1

O‘};,j: Cj_l, ifj:27...7’U—1.
Cy_o, fj=w

andC; is thei** Catalan number.

Proof: We proceed by partitioning elementsﬁtj 231) by where the largest label occurs. Let =
v(d — 1) + j be the largest label itd — 1) dlamonds withv vertices followed by an incomplete diamond
with j vertices.
Now, assumg = 1. Them label can appear on the final element or on the greatest eterhany of the
full diamonds. Whenn occurs on the final least element there Gte- 1) diamonds withv vertices that
preceden, so we then havezg;1 as the generating function for descents (gfd) for the vestiweforen that
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d—1 1
« Qyp

Fig. 2.5: ofj_yl whenm appears on the greatest element of the last full diamond.

=

1
v

«

d
Qo (j—g) \9

Fig. 2.6: ad ; whenm appears on the final (partial) diamond.

will avoid 231. Whenm appears on the greatest element ofitfiecomplete diamond, /leqi/leqd — 1, we
haveo, , ; as the gfd for the vertices befone, anda?7* as the gfd for the vertices following. Because
we have created a descent framto the least element of the next diamond or partial diamormdnwst also
multiply by z to account for this extra descent.

Hence

d—1
d _ d-1 7 —1
av,l(‘r) - au,v +x E av,(ufl)av 1
=1

Now, assume we have — 1) diamonds followed by an incomplete diamond wjtkiertices wherg =
2,...,v — 1. Them!" element can appear on any of the interior vertices but noheteast element of the
incomplete diamond, an can appear on the greatest element of any complete diamohen® appears
on any of the interior vertices of the final diamond we needdont the descents before, afterm, and
fromm itself. The descents that occur beferecan be counted by? _j—g Whereg is the number of interior
vertices followingm includingm. The descents following: are counted byy because the same number
of descents can occur in the remaining interior verticeslasnwe have a smgle incomplete diamond. We
then count the descent that results fromby multiplying our gfd byz, but we do not get a descent from
m when it appears on the final interior vertex. We then sum oNguoasible values of to give us the gfd

Jj—1
whenm appears on the interior vertices of the final diamond whigkgiisn? o1+ Z Qg gai g
g=2

Also, m can appear on the greatest element of any of the full diamatienm appears on the greatest
element of the'" complete diamond the gfd for vertices that appear befois o/ 1 anda ~ for the
vertices followingm. We count the descent from by multiplying our gfd byz. SI'he total gfd whenn

appears on the greatest element ofitfiediamond is them;,(v_l) v;Z:z:.
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v=5
d 1 2 3
of | 11 1+ 4z + 42? + 2° 1 4+ 13z + 542% + 952 +
T4z* + 2525 + 325
of , |1 1+ 5z + 727 + 223 1 + 15z + 7222 + 14923 +
1382* + 532° 4 72"
afy [ 1+2 1+72x+1522+1023+22% | 1 + 18z + 10622 + 28123 +
362z + 2252° + 6525 + 77
of , || 143z +2? | 14105+ 312% 4 362° + | 1 + 22z + 1612? + 5442° +
15z + 227 93824 + 840z° + 38325 +
8427 + Ta®
of o | 143z +2” | 141104 3727 +472% + | 1+ 242 + 18827 + 6772° +
212 + 32° 12462 + 11932° + 57925 +
13527 4 122°

Tab. 2: The recursive steps necessary to find the generating funftialescents ifDs 3(231).

Thus
d—1
d _d
au,j(x)_CYUJ 14y 1+xzaﬂj g vg'HCZav(v 1)avﬂ
g=2 i=1

forj=2,...,0—1.

Lastly, we look at when we havecomplete diamonds. The'” element can appear on any of the greatest
elements. Whem appears on the greatest element of the last diamond, the gﬁj;} 1 which counts
descents before:.

Whenm appears on the greatest element ofitheomplete diamondl(< i < d— 1), the gfd for vertices

that appear before: is o andad- for vertices followingm. We count the descent from to the
following least element by muIt|pIy|ng the gfd by
Hence .
1

() f(231((E 1)_au(v 1)+.I'ZOé ulad Z'
i=1

O
We can use this result to recursively obtdffi/ (x, 1) for anyv andd.
Corollary 2. f23'(1 y) =a? (1) = |Dy,a(231)|
Tables 2 and 3 are an example of the steps of such a compuﬂmtmgl ) andDs 5(231).
Corollary 3. |D, 4(231)| = |D,,4(312)] .
Proof: By Proposition 1231 is d-Wilf-equivalent to312. O

2.3 The pattern 321

We were unable to find a closed formula for the patté2n. In Table 4, we present the first few terms
of the sequence and the first few generating functions focetgs, which we found using Sage. We are
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v=5
d 1 2 3
of | 1 10 265
of, 1 15 435
af 2 35 1065
of, 5 95 2980
od, 5 120 | 4055

Tab. 3: The total number of permutations fo¥; 4 that avoid the patterd31 ford = 1, 2, 3.

| v=4
d Dy,a(321)] oa (2)
1 2 14z
2 106 1+ 71z + 2922 + 523
3 5976 1+ 991z + 274722 + 176525 + 4302 + 422°

Tab. 4: |D, 4(321)| and £33 (z) for d = 1,2, 3.

confident that a technique recently used by Bevan, et.alwf]ld be successful in this case too. Their
technique involved refining a bivariate generating functita a statistic called last inversion foot, using
a result of Bousquet-Mélou, and finding a functional equgtito eventually give a growth rate for the
sequence. This suspicion was confirmed by Bevan, and inHacdquence begins: 2, 106, 5976, 387564,
27247446, 2020632046, 155622020610, 1232793784492403225615208, 82224228576059340 [3].
However the authors were unable, in the time available figr ghoject, to learn all the tools necessary to
enact the technique and so the problem remains officiallpope

3 Diamonds avoiding a pair of patterns of length 3

Next, we study pairs of patterns of length While there arel5 such pairs of patterns, we focus on the
pairs of patterns, p where|D, 4(o, p)| is non-trivial.

3.1 Diamonds avoiding the set of patterns 132,213

Lemma 2. In order to avoidl32 and213, the labels on each diamond must be increasing and consecuti

Proof: By Lemma 1, the labels appear in increasing order on eachatidmThen any label “missing”
from consecutive labelling would either create if it occurred before its surrounding labels, ot & if it

occurred after. Therefore the labels on each diamond mustieecutive and increasing. O
Theorem 5. f, " (x,y) = i S ydeste) o 1T
e | T=y(l+a)

d=15€D(132,213)

Proof: By Lemma 2, we know that the labels on each diamond are cotiseand increasing, so there is a
diamond labelled, 2, ..., v, another labelled + 1, .. ., 2v, etc. So the only thing we must ensure is that
the entire collection of diamonds avoiti32 and213 between the respective diamonds. In their foundational
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paper, Simion and Schmidt enumerated permutations agpldihand213 [16], and the recursive nature of
their proof can also be adapted to find our generating funétiodescents.

The labelsu(d — 1) + 1, ..., vd must occur on either the first diamond, or the last. In the éiase, they
create a descent. In the second, they do not, givifig-a =) term in the generating function. We continue
recursively and obtain:

Z ydxdes(a(D)) =1+ Zyd(l + ,T)d_l

DeD, 4(132,213) d=1

1 1
1+ <_1+1—y(1+x)>
T 1
Itz (+0(1-y(l+2)
z(l-y(l+2)+1
(14 2)(1—-y(1+2)
1—yx
1—y(1+x).

Corollary 4. f,%%(1,y)| = =Dy (132,213)] = 24,
Y

3.2 Diamonds avoiding 132,312 and 213, 231

Lemma3. In order to avoidl32 and312, the final diamond is labelled with eithetd — 1) + 1,v(d — 1) +
2,...,vdorLo(d—1)4+2,...,vd

Proof: Sincev > 4, the labelvd must appear on the final diamond in order to awdid. Likewise the
interior vertices on the final diamond must be in consecutigeeasing order in order to avoid2, so the
v — 1 final vertices are/(d — 1) + 2,. .., vd. If the label on the first vertex of the last diamond were some
number; other thanl orv(d — 1) + 1, then the first vertex of whichever diamon( — 1) + 1, along with
v(d —1) + 1, andj would form a132. O

1—yx
Theorem 6. f132312( d ydes(o) _ _
& ;aeDlzBQ 312)y 1-y(+u2)

Proof: We proceed similarly to the proof of Theorem 5 with a reclesitgument. By Lemma 2, the final
diamond has only two possibilities, one of which forms a éesavith the previous diamond, and one of
which doesn’t. Thus our descent generating function gaifisiaz) term for each additional diamond, and
exactly as in Theorem 5, the result follows. O

Corollary 5. f,%°(1,y)| = =Dy 4(132,312)| = [D,,a(213,231)] = 271,
Y

Proof: By Proposition 1213, 231 is d-Wilf-equivalent to132, 312. O
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3.3 Diamonds avoiding 132,321 or 213, 321
Lemma 4. Any diamond avoiding32 and321 has at most one descent. Moreover, if there is a descent, it
involves the label.

Proof: By examination of cases, any arrangement of two descentssfeither al 32 or a321. If a descent
does not involve thé, then either thé occurs before, causingld2, or thel occurs after, causing3®1. O

S 1-2y+y? 2
Theorem 7. f,°2% (z,y) => Y gyl = %j_y ;g vty
d=10eD(132,321) Y

Proof:

By Lemma 4, we need only enumerate those diamonds with oreedieshere the descent involves the
1. Everything after thd increases, as does everything beforelthén fact, the permutations associated to
diamonds that avoidi32 and321 look like a portion of the identity permutation was deleteahfi the front
and inserted after positiom, fori = 1,...,d — 1. Wheni = d — 1, there are possibilities for how many
numbers appear consecutively withincludingl. Wheni = d — 2, there ar€v possibilities, etc. When
i = 1, there argd — 1)v possibilities. Thus we havkd(d — 1) diamonds with one descent, and one with
zero descents. Thus,

s v
Z ydzdes(@) = Z yL+ gd(d — 1)a]
d=0

=Y v+ Yo yldd-1)
d=0 d=0

50 ()

1 vay?
l—y (I1-y)
(L-y?  _vay’
(1-y? (A-y)?
- 1— 2y + y? + vry?

(1 —y)?
O
Corollary 6. 1,7 (1,y)| , = [Dy.a(132,321)| = |D.4(213,321)] = 1 +v (452
Proof: D, 4(213,321) andD, 4(132, 321) ared-Wilf Equivalent by Proposition 1. O

3.4 Diamonds avoiding 231, 312

N r+yr(1+2)"2+1
Theorem8. f23 % (w,y) => " Y yha®l?) = 1
d=105€D(231,312) (1+2)(1-y(l+z)*2)
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Proof: Letn = vd be the largest label on a diamosde D, 4(231, 312). Avoiding the patterr231 means
the 1 must be at the beginning and avoiding the patardimplies everything aften. must be decreasing
which forcesn to the end of the permutation. By a result of Simion and Schondpermutations, there are
2v=3 ways to arrange the middle-level vertices within each oftdéamonds in order to avoid bof#$1 and
312 creating betweefl andv — 3 descents [16]. There are also two ways to either swap or reqt sive last
element of each diamond with the first element of the nexts ghies the following generating function.

Z ydxdes(a(D)) =14 Zyd(l + I)(u72)d71
DeD, 4(231,312) d=1

_ Ly 2))@=2)
_1+(1+x);(y(1+ )2

1 1

(+a)  (A+a)(-—yd+a)?)
r+yr(l+x)""2+1

14+z)(1 -yl +z)v2).

U7

Corollary 7. f231%2(1,y)| = = |Dy a(231,312)] = 24(-2)-1
Y

3.5 Avoiding 231, 321
Lemma 5. All labels that appear aften = vd must be consecutive and increasing, and,if# n, then
a, =n—1.

Let ﬂjjj be the generating function for descentsItp ;(231,321). Recall Figure 2.4 is an example of
d — 1 full diamonds withv vertices followed by an incomplete diamond wjtkertices for; = 1,...,v— 1.

Theorem 9.
d—1

231,321 —1
fv,d (:Ea 1) = g,v = ﬁg,(vfl) + xzﬁg,(v—l)
=1

where
1, ifj=1
1 _ ji—1 o
b =2, fi=2.. 01
272 ifj=w

is the generating function for descents @y 4(231, 321).

Proof:

We approach the proof similarly to that of Theorem 4 and partiour diamonds by the position of the
largest element and proceed recursively. Because thegasefvery similar, we omit the details of this
proof for brevity. The only differences are that since we mow avoiding321, we have no descents after
the appearance of the largest label, and we have differitial iconditions on one diamond.

O

Table 5 is an example of using this recursive technique totfiedgenerating function for descents in
D5 3(231,321).



14 Mitchell Paukner, Lucy Pepin, Manda Riehl, Jarred Wieser

v=5
d 1 2 3
g,l 1 1+ 4z + 327 1+ 13z +412% 43723 + 1222
7,1 1+ 5z + 622 14152+ 5427 4 6227 + 2427
By [ 1+42 1+ 7z + 1327 + 323 1 + 18z + 8027 + 12827 +
732* 4 122°
a7, | 1432 1+ 10z + 2527 + 1223 1+ 227 + 12122 + 24823 +
184x* + 4825
g75 143z 1+ 11z + 2822 + 1223 1+ 24x + 13422 + 27323 +
1962 + 48z°

Tab. 5: The recursive steps necessary to find the generating funfci@lescents iDs 3(231, 321).

v=5
d 1 2 3
BZ, 1 8 104
Be, 1 12 156
Be, 2 24 312
BZ, 4 48 624
EfE [ 52 | 676 |

Tab. 6: The total number of permutations fd¥; 4 that avoid the pattern®31, 321) whend = 1, 2, 3.

Corollary 8. f23%21(1,y)

= 55,1;(1) = |D,,q(231,321)| = |D, 4(312,321)|.

Proof: By Proposition 1231, 321 is d-Wilf-equivalent to312, 321. O

4 Diamonds avoiding three or four patterns of length 3

There are only two nontrivial cases to examine when we avwoiktpatterns of length 332,213, 321 and
231,312, 321.

4.1 Diamonds avoiding 132,213, 321

1— 2
Theorem 10. f132 ,213, 321 Z Z ydIdes(d) _ (1y_+ )1729 .
d=10€eD(132,213,321) 4

Proof: Letn = vd be the largest label id diamonds withv vertices. Avoiding the patteri32 forces alll
labels beforen to be larger than all labels after. Avoiding the patteii3 forces all labels before to be
increasing. Avoiding the pattef21 forces all labels aften to be increasing. This indicates that all vertices
that appear before will be the consecutive numbers priortcand all vertices aften will be the remaining
elements ordered consecutively. A label= n iff i = vs for somes = 1,...,d, and there is only one
arrangement for the rest of the elements. Therefore, tterenly be, at most, one descent and it occurs
between diamonds. So,
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Z ddes(o’) 1+Zy 1_|_ )

Corollary 9. f,57*"%%21 (1, y)|,a = Dy a(132,213,321)| = d.

4.2 Diamonds avoiding 231, 312, 321

We will proceed by examining what changes can be made to #reitg permutation while still avoiding
231,312, and321.

Lemma 6. For labelsa;, aj, ai if a;, a; < ag, theni < k or j < k in order to avoid the pattern312 and
321.

A swapis when two consecutive labels from the identity permutasiwitch positions in the permutation.
Since any permutation can be created from the identity usivaps, restricting our changes to swaps will
not exclude any possibilities.

Lemma 7. All swaps must be disjoint in order to avaid1.

Proof: We simply examine the cases when two swaps overlap in someeitlagr with two swaps executed
on 3 elements, or two overlapping swaps4alements. O

Theorem 11. The generating function for descentsIy 4(231, 312, 321) is

[452]
v—2—
ff?d1,312,321( )= (1+2) -1, Z ( )xk.

Proof: Every final element of a diamond can either remain unchangbd swapped with the least element
of the next diamond. This then gives the generating function x)?~! for each possible swap. Lét
represent the nonconsecutive positions from which to ahacsvap among the interior vertices. Note that
in a diamond there ane— 3 positions to swap since there are 2 interior vertices. By Lemma 6 and Lemma
7 any consecutive interior vertices can only be swappedidity. Since the swaps must be nonconsecutive,
k must be chosen from — 3 — (k — 1). This gives(”_i_k). We then sum over alt in order to generate
all possible descents for a single diamond. Since we Haliamonds in which to execute these swaps, we

raise to thei'" power. The gfd foD, 4(231, 312, 321) is then(1 + z)¢~! (E]L;T:J (”_i_k):ck)d. O

Corollary 10. f2%/ %1721 (1,y)| = |D,,a(231,312,321)] = 24971,
’ Y

Coroallary 11. {|D,,1(231,312,321)|},>1 is the Fibonacci numbers.
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Proof: The base cases afP; (231, 312,321)| = 1 which is the identity, andiD, 1 (231, 312, 321)| = 2,
which is the identity permutation and the permutation whik tnterior vertices swapped. Let there be
a single diamond withy vertices, where are — 2 interior vertices that can be swapped which gives
the theD, 1(231, 312, 321) permutations that avoid the three patterns. Now considéngiesdiamond
with v + 1 vertices. The final interior vertex will either be theelement when there is no descent in
the last two interior vertices, or the — 1 element when there is a descent between the final two inte-
rior vertices. Whenv is the final interior vertex, there are— 2 vertices that can be re-arranged. Thus
there are théD, (231, 312, 321) permutations. When there is a descent in the final two inteeatices,
there arev — 3 interior vertices that can be re-arranged, thus there aéth ; ;(231,312,321) per-
mutations. HencéD, 1 1(231,312,321)| = |D,,1(231,312,321)| + |D,—_1,1(231, 312, 321)|. Therefore,
|D.,1(231, 312, 321)| follows the Fibonacci numbers. O

4.3 Diamonds avoiding four patterns of length 3

Theorem 12. LetS be a set of at least distinct permutations of length

0, if123¢e 58
Then|D, 4(5)| = {1 if123¢ S

Proof: Let n be the largest label in any permutation. Due to the struabfithe diamonds, any set of
permutations involving 23 cannot be avoided. For any other collectioradr more patterns, the result is
easily seen using the lemmas for avoiding a single pattetieee the paper. O

5 Open problems

This investigation leaves several directions open forriustudy. We did not touch on patterns of length
4, they all remain open. We are confident the techniques of Beval. [2] will give the growth rate and
minimal polynomial for diamonds avoiding21, but in addition it is likely that these techniques would
also work for some patterns of length Although the minimal polynomials are unlikely to genezali
the transition operators in particular cases could paéinteven generalize to lengthfor the decreasing
patternk k — 1...2 1. There are also a wide variety of other poset classes thdd t@muapproached in
this manner other than diamonds. We generalized our diamby@dding additional elements and order
relations between the least and greatest elements, buboigtalso imagine creating a diamond-type poset
with more thars levels as another generalization.
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