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We consider the avoidance of patterns in inversion sequences that relate sorting via sorting machines including data
structures such as stacks and pop stacks. Such machines have been studied under a variety of additional constraints
and generalizations, some of which we apply here. We give the classification of several classes of sortable inversion
sequences in terms of pattern avoidance. We are able to provide an exact enumeration of some of the sortable classes
in question using both classical approaches and a more recent strategy utilizing generating trees.
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1 Introduction

An inversion in a permutation π = π1π2π3 · · ·πn is a pair of entries πi, πj where i < j, but πi > πj .
An inversion sequence of length n is a word e = e1 . . . en which satisfies for each i ∈ {1, . . . , n} the
inequalities 0 ≤ ei ≤ i − 1. These sequences correspond to permutations via a variant of the Lehmer
code Laisant (1888); Lehmer (1960) by mapping each entry πj of the permutation π to ej−1 where ej−1

is the number of inversions in π where πj is the second, smaller entry of the pair. The set of inversion
sequences (respectively the set of inversion sequences of length n) is denoted I (respectively In).

Example 1.1. The permutation π = 51743862 corresponds to the inversion sequence e = 01023026.

The study of pattern avoidance in inversion sequences began with the work of Corteel, Martinez, Sav-
age, and Weselcouch 2016 as well as that of Shattuck and the first author 2015. Since then, extensive
work has been done in this area, including Lin (2020); Lin and Kim (2021); Yan and Lin (2020–2021)
to list a few. Recently, Kotsireas, Yıldırım, and the first author 2024 introduced an algorithmic technique
involving generating trees to enumerate many pattern classes of inversion sequences (also see Callan et al.
(2023); Callan and Mansour (2023) and the references therein). We utilize this algorithm in Section 4 to
obtain a generating function for the number of inversion sequences sortable by two particular machines
and give the succession rules to build the generating tree for a third machine.

There remain many open problems in characterizing and enumerating the inversion sequences that
avoid a class consisting of a small number of relatively short (length less than five) patterns. Our interest
is in the characterization and enumeration of inversion sequences sortable by stacks and pop stacks. We
also study the characterization of inversion sequences sortable by data structures obtained by generalizing
or further restricting the pop stacks.
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A stack is a last-in, first-out sorting device with push and pop operations. Knuth 1969 showed the
permutation π can be sorted by a stack (that is, by applying push and pop operations to the sequence
π1, . . . , πn one can output the identity permutation 1, . . . , n) if and only if π avoids the permutation 231.

Definition 1.2. A permutation π = π1π2 . . . πn ∈ Sn is said to contain a permutation σ = σ1σ2 . . . σk if

there exist indices 1 ≤ α1 < α2 < . . . < αk ≤ n such that παi
< παj

if and only if σi < σj . Otherwise,

we say π avoids σ.

These definitions of containment and avoidance have been naturally extended to words (and specifically

inversion sequences) with the added allowance of entries being equal to one another.

Example 1.3. The permutation π = 241563 contains 312 since the 4, 1, 3 appear in the same relative

order as 3, 1, 2. However, π avoids 321 since there is no decreasing subsequence of length three in π.

Similarly, the inversion sequence τ = 0021104 contains 1002 from 2, 1, 1, 4, but avoids 201.

Describing the permutations that are sortable by machines consisting of one or more data structures
(such as stacks or pop stacks) is a point of interest in the field. To this end, it is often possible to describe
the sortable machine in terms of its basis.

Definition 1.4. A permutation class is a downset of permutations under the containment order. Every

permutation class can be specified by the set of minimal permutations which are not in the class called its

basis. For a set B of permutations, we denote by Av(B) the class of permutations which do not contain

any element of B.

In the same vein, for any set of words R, denote by I(R) the set of inversion sequences in I that avoid
every word in R. Similarly, denote by In(R) the set of inversion sequences of length n that avoid every
word in R.

As mentioned above, the stack-sortable permutations are the class Av(231).
A restricted version of a stack that has received a fair amount of attention is a pop stack, first introduced

by Avis and Newborn 1981. A pop stack supports the same push and pop operations as a standard stack,
but whenever a pop operation occurs, every entry in the pop stack is popped immediately. One founda-
tional result is that the permutations that can be sorted by a single pop stack are exactly those that avoid
231 and 312. Some later works involving pop stacks include Asinowski et al. (2019); Atkinson and Sack
(1999); Cerbai (2021); Claesson and Guðmundsson (2019); Defant and Williams (2022); Elder and Goh
(2021); Hong (2022); Pudwell and Smith (2019); Smith and Vatter (2009).

Atkinson 1998 explored a variation of a stack called an (r, s)-stack which extends the traditional push
and pop operations. Specifically, the first index of an (r, s) stack allowed one to push an entry not only to
the top of the stack but to any of the top r spots. Similarly, the second index expanded the options of the
pop operation to allow one to pop any of the top s entries from the stack. Thus a (1, 1)-stack is simply a
traditional stack. Atkinson was able to characterize these permutations when one of r, s was fixed at 1, as
well as in the case when r = s = 2. Natural variations on stacks arise when studying inversion sequences
that are similar in flavor to these generalized stacks.

Elder 2006 considered restricting the depth of a stack, that is the maximum number of entries allowed
in a stack at any given time, in the context of generating permutations with two stacks in series. Elder later
continued this study with Lee and Rechnitzer 2015 and then extended to sorting and pop stack sorting with
Goh 2018; 2021. Although this work focused on a permutation sorting (or generating) machine consisting
of two stacks in series, we will consider a similar restriction for a single stack or pop stack when sorting
inversion sequences.
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Note that natural sorting machines consisting of stacks and/or pop stacks do not give any advantage
in sorting a sequence by inserting extra entries that might force a stack or pop stack to be popped at an
earlier stage. As such, the sortable words from any such machine form a class and can be completely
characterized by classical pattern avoidance.

2 Stack sorting inversion sequences

We give the standard optimal stack sorting algorithm extended to words in Algorithm 1. Note that a word
is considered sorted if all of its entries appear in weakly increasing order.

Algorithm 1 Stack Sorting Algorithm

w = w1w2 · · ·wn is a word of length [n].
S is a stack.
O is an empty array.
i = 1.
procedure STACKSORT(w, n)

while i < n+ 1 do

if S is empty then

push wi to the top of S
i = i+ 1

else if wi ≤ top element of S then

push wi to the top of S
i = i+ 1

else

pop the top entry of S to the end of O
end if

end while

return O

end procedure

For a word w to be stack sortable, w must avoid 120, the same as avoiding 231 which is required
for permutations to be sortable. The repetition allowed in words does not change this requirement from
being both necessary and sufficient and so the proof does not change either. It is included below for
completeness.

Proposition 2.1. The words that are stack sortable are exactly the words that avoid 120.

Proof: The 2 of a 120 pattern forces the smaller entry 1 to the output before the 0 even enters the stack
which creates an inversion with the 1, 0. Hence words containing a 120 pattern are not stack sortable.

Next consider a word w that is not stack sortable. The output S(w) must contain an inversion, say an
entry b > a that appears before a. For a to not have exited the stack before b, we know a appears after b in
w. Furthermore, for b to have been forced out of the stack before a entered, there must have been a larger
entry c that appeared after b, but before a to force b out before a could enter the stack. Thus w contains a
120 pattern bca.
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As inversion sequences are words with added restrictions, Proposition 2.1 also gives us a basis for the
stack sortable inversion sequences.

Corollary 2.2. The inversion sequences that are stack sortable are exactly those that avoid 120.

The enumeration of these sortable inversion sequences has been studied, but thus far remains open. See
(Mansour and Shattuck, 2015, Section 4) and Corteel et al. (2016) for initial study and further work on
avoiding 120 in Yan and Lin (2020–2021).

3 Pop stack sorting inversion sequences

The optimal pop stack sorting algorithm is mostly the same procedure as that for stacks, but when a pop
stack is popped, all entries must exit the stack as described in Algorithm 2. Note that the end result of this
algorithm is a reversal of each maximal weakly descending run of the input sequence.

Algorithm 2 Pop Stack Sorting Algorithm

w = w1w2 · · ·wn is a word of length [n].
PS is a pop stack.
O is an empty array.
i = 1.
procedure POPSTACKSORT(w, n)

while i < n+ 1 do

if PS is empty then

push wi to the top of PS

i = i+ 1
else if wi ≤ top element of PS then

push wi to the top of PS

i = i+ 1
else

while PS is nonempty do

pop the top entry of PS to the end of O
end while

end if

end while

return O

end procedure

Note that 120, 201 are the patterns whose avoidance completely determines the pop stack sortability of
a permutation. However, due to the repetition allowed in words, a copy of a larger element already in the
stack can force the entire stack to be popped while there is still a copy of a smaller entry appearing later
in the permutation.

We note that Cerbai 2021, Theorem 5.2 found the basis for sortable Cayley words in the context of a
hare pop stack which is simply a pop stack that only allows entries to appear in weakly decreasing order
from top to bottom (which is a necessary requirement for sorting with a single stack). This basis is the
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· · · · · · y · · · bd · · ·x · · ·

...

· · · d · · · x

...

y

...

b

Fig. 1: Moving to the state where y will be forced to exit the pop stack before x enters

same as the one in Theorem 3.1 below. Cerbai’s argument could also be extended to sorting general words
by a pop stack as we have done here.

Theorem 3.1. The words that are pop stack sortable are exactly the words that avoid 120, 201, and 1010.

Proof: One can check that none of 120, 201, and 1010 are pop stack sortable. As such, a word that
contains any of these patterns cannot be sorted by a pop stack.

Conversely, suppose w is not pop stack sortable. Then the image of w under the pop stack operator,
which we will denote by PS(w), must contain an inversion (y, x). That is, y > x and y appears before x
in PS(w). Consider what happens to force the entry y to the output before x.

Using Algorithm 2, there must be a point when y is in the stack and an entry d that appears (immedi-
ately) after a smaller entry b in w. Because b < d and b appears on the top of the pop stack when d is the
next entry of w, the pop stack must be popped before d can enter. As x appears after y in PS(w), it must
be that x is still in the input at this state. These entries (if they are all distinct) are shown before entering
the pop stack (left) and in the state where b just entered the pop stack (right) in Figure 1.

If y = b, then x appears after d in w. Thus bdx forms a 120 pattern in w.
Otherwise, there exists an entry y > b that is also forced out before d enters the pop stack but before x.

Thus, y appears before b in w. Either we can assume x = d (that is, y > d) or if x < d, then x appears
after d in w. In the former case, ybd is a 201 pattern in w. In the latter case, x < d appears after d, so
consider the pattern ybdx in w where we are reduced to the options d ≥ y > x, b. Thus, ybdx is one of
the following patterns 1010, 1020, 2021, 2120, 2031, 2130. Of these patterns, only 1010 does not contain
one of the smaller forbidden patterns 120, 201.

As inversion sequences are words with added restrictions, Theorem 3.1 also gives us a basis for the pop
stack sortable inversion sequences.

Corollary 3.2. The inversion sequences that are pop stack sortable are those in I(120, 201, 1010).

The pop stack sortable permutations are also known as layered permutations which are permutations
of the form π = σ1σ2 · · ·σk where each layer σi is a maximal length contiguous decreasing sequence
such that all of the entries of σi are less than all of the entries of σi+1. For example, the permutation
π = 543216987 is a layered permutation with layers σ1 = 54321, σ2 = 6, σ3 = 987 as shown on the left
in Figure 2.

We can define layered words similarly as follows.

Definition 3.3. A layered word w is a word w = τ1τ2 · · · τk where each τi is

1. maximal in length,
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π = 543216987 w = 211033275

Fig. 2: The layered permutation π = 543216987 and the layered word w = 211033275.

2. weakly decreasing, and

3. such that the last (weakly smallest) entry of τi+1 is at least as large as the first (weakly largest)

entry of τi for all i.

For example, the word w = 211033275 is a layered word with layers 2110, 332, 75 shown on the right
in Figure 2.

It can then be seen that these layered words are exactly the pop stack sortable words.

Proposition 3.4. Layered words are exactly the words that avoid 120, 201, 1010.

Proof: Suppose w is layered. Then w cannot contain 120 because if not, the layer containing the 0 of the
pattern must appear after the layer containing the 1 which violates the third condition. The same argument
can be made for the 1 of the 201 pattern appearing in a later consecutive decreasing pattern than that of the
2 and once again for the second 0 of the 1010 pattern appearing in a later consecutive decreasing pattern
than that of the first 1.

Now suppose w avoids 120, 201, 1010. Then w is pop stack sortable. Consider the output from sorting
w broken into segments based on the pops. Reversing those segments reverts the word back to w. In
addition, according to the algorithm, these breaks occur exactly at the strict ascents in w. The segments
then are weakly decreasing so that the smallest entry of any segment is at least as large as the largest entry
of the previous segment for w to be sortable and also maximal in length. Hence w is layered.

In Section 4.2, we are able to describe the generating tree for layered inversion sequences. There are
also some partial results we can obtain combinatorially based on the number of layers (which is also the
number of pops needed to sort the sequence). Recall that the Eulerian numbers E(n, k) count the number
of permutations of length n with k − 1 descents.

Proposition 3.5. The number of pop stack sortable inversion sequences of length n with k = 1, 2 layers

are counted by E(n, k).

Proof: In fact, the pop sortable inversion sequences of length n with k = 1, 2 layers correspond exactly
to the permutations of length n with k− 1 descents by the variant of Lehmer code used to create inversion
sequences. In the trivial case of k = 1, a permutation of length n with k − 1 = 0 descents is the identity
permutation which is the only permutation of length n to have an inversion sequence with one layer,
namely the inversion sequence consisting of all 0s.
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Now consider the case when k = 2. A permutation π with exactly one descent, say at index i, will have
an inversion sequence that begins with i 0s which will be the first layer. Since the permutation π is such
that πi+1 is the smaller entry in an inversion with at least πi, the corresponding inversion sequence now
has a positive entry in position i+ 1. As the remainder of the entries of π are all in increasing order, each
subsequent entry of π can be the smaller entry of at most as many inversions as the previous entry. Thus,
the rest of the inversion sequence is in weakly decreasing order meaning that the entries from position
i+ 1 to position n form the second and final layer.

As not all inversion sequences are pop stack sortable, this correspondence can clearly not continue
indefinitely. Indeed, a permutation with even k − 1 = 2 descents is not guaranteed a corresponding pop
stack sortable inversion sequence. For example, the permutation π = 3214 has the inversion sequence
e(π) = 0120, which cannot be sorted by a pop stack.

At the other extreme, only one inversion sequence of any given length n ≥ 1 can have n layers, namely
the increasing sequence 012 . . . (n−1). Reducing the number of layers by one to n−1 layers gives a set of
inversion sequences enumerated by the Tetrahedral numbers, sequence number A000292 in OEIS Sloane
(2025).

Proposition 3.6. The number of pop stack sortable inversion sequences of length n ≥ 1 with n− 1 layers

is
(

n+1

3

)

.

Proof: A pop stack sortable inversion sequence e of length n ≥ 1 with n− 1 layers will have exactly one
entry ei as the second entry of a layer where i ∈ {2, 3, 4, . . . , n}. It must be the case that em = m− 1 for
all m < i for those entries to have all started new layers. Note that ei ≥ ei−2 as otherwise ei−2, ei−1, ei
would form a forbidden 120 pattern in e. This means ei = ei−1 = i − 2 or ei = ei−2 = i − 3. Further,
we know ei, ei+1, ei+2, . . . , en are in strictly increasing order as they are all in different layers.

In the case that ei = i − 2, since we must have i − 1 ≤ ei+1 < ei+2 < · · · < en ≤ n − 1, we
can select up to one of these later entries to be two greater than the previous entry. Consider positions
{2, 3, 4, . . . , n, n+ 1} where we pick two positions; the first to be the position of the second entry in the
layer of length two and the second to be the position of the entry that is two more (as opposed to one
more) than the previous. In the case that n + 1 is one of the selected options, then we do not have any
entry that is two more than the one before it. Hence there are

(

n

2

)

such inversion sequences.
Otherwise, ei = i − 3 and so i ≥ 3. Now because i − 2 ≤ ei+1 < ei+2 < · · · < en ≤ n − 1, up to

two of these later entries could be two greater than the previous entry or one of these later entries could be
three greater than the previous entry. For the cases where no entry is three more than the previous entry,
we have

(

n−2

1

)

+
(

n−2

2

)

+
(

n−2

3

)

ways to select the second entry of the length two layer and the entries that
are two greater than the entry they follow. In the case where we have one entry that is three more than the
previous entry, there are

(

n−2

2

)

ways to select this entry and the entry that was the second in the longest
layer. This gives us a total of

(

n−2

1

)

+ 2
(

n−2

2

)

+
(

n−2

3

)

=
(

n
3

)

via a generalization of Pascal’s Identity.
By another application of Pascal’s Identity, there are

(

n

2

)

+
(

n

3

)

=
(

n+1

3

)

pop stack sortable inversion
sequences of length n ≥ 1 with n− 1 layers.

One last special case is when the sortable inversion sequence contains only 0s and 1s and thus only
needs to avoid 1010, thereby having at most three layers. The number of such sequences is the number
of compositions of n into at most four parts because we must begin with a 0 and can only alternate
values at most three times after that. These numbers (with an offset of one) are better known as the
“Cake numbers" Yaglom and Yaglom (1987), sequence number A000125 in OEIS Sloane (2025), which
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count the maximum number of slices of a cylindrical cake one can have after making n − 1 planar cuts
perpendicular to the top circular surface.

Proposition 3.7. The number of pop stack sortable inversion sequences of length n only containing 0, 1
is the (n− 1)st Cake number:

(

n−1

0

)

+
(

n−1

1

)

+
(

n−1

2

)

+
(

n−1

3

)

.

We note that Cerbai 2021 also considered a tortoise pop stack for sorting Cayley words that had an
additional pattern restriction of not allowing a 00 pattern to appear in the pop stack. (Restricting the
content of stacks in terms of pattern avoidance was initially considered in Atkinson et al. (2002); Smith
(2014); Cerbai et al. (2020).) Cerbai’s characterization of sortable Cayley words can be easily extended
to all words, so we omit the proof here.

Proposition 3.8. The words (and thus inversion sequences) that are tortoise pop stack sortable are those

which avoid 120, 201, 110, and 100.

Given this classification, the generating function for the enumeration of tortoise pop stack sortable
inversion sequences is given in Theorem 12 in recent work by Callan and Mansour 2023.

3.1 Restricting pop stack depth

When extending the notion of the depth of a stack to words, we could continue to use the definition in
terms of the number of elements allowed in the stack as introduced by Elder 2006. This could be more
practical in some applications. However, given the repetition that distinguishes words from permutations
and considering the storage in terms of distinct elements to remember, it also makes sense to consider
another definition that is still consistent with the original definition when applied to permutations. The
content of the stack could be stored as a limited number (the depth) of lists of positions in the stack where
these positions are counted from the bottom. We consider the latter notion as given in the following
definition.

Definition 3.9. The depth of a stack (or pop stack) is the number of entries with distinct values allowed

in the stack (or pop stack) at any stage.

For example, a stack of depth three under this definition would still only allow three entries of a per-
mutation to be in the stack at one time. However, this same restricted stack could allow arbitrarily many
entries of a word in the stack, provided that no more than three distinct letters were represented at any
time. Using this definition, we begin by characterizing words and specifically inversion sequences sortable
by pop stacks of limited depth.

Proposition 3.10. A word w is sortable by a pop stack of depth k if and only if w avoids 120, 201, 1010
and also k(k − 1) · · · 10.

Proof: As before any word w must avoid 120, 201, 1010 to be pop stack sortable. Additionally, a decreas-
ing sequence that is too long to fit in a limited depth pop stack is also not sortable.

Conversely, if w is not pop stack sortable by a pop stack of depth k and avoids 120, 201, 1010, then the
problem is a result of the limitation of the pop stack’s capacity. Hence w must contain the k(k− 1) · · · 10
pattern.

Corollary 3.11. Inversion sequences sortable by a pop stack of depth k are exactly those in

I(120, 201, 1010, k(k− 1) · · · 10).
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In the case of depth one, the number of sortable inversion sequences is the number of weakly increasing
inversion sequences which are known to be enumerated by the Catalan numbers due to Martinez and
Savage 2018. The proof shows these inversion sequences to correspond to the 213 avoiding permutations,
which were enumerated by Simion and Schmidt 1985.

Theorem 3.12. (Martinez and Savage) The number of inversion sequences of length n which avoid 10

and thus are sortable by a pop stack of depth 1 is the nth Catalan number Cn =
(2nn )
n+1

.

For a pop stack of depth two, the sortable inversion sequences would need to avoid 120, 201, 210, 1010.
The first few terms of the enumeration sequence are: 1, 1, 2, 6, 23, 100, 471, 2349. We define the succes-
sion rules for the generating tree for these inversion sequences (using the algorithm introduced in Kotsireas
et al. (2024)) in Section 4.3. However, it is hard to get an explicit formula by translating this generating
tree to a system of equations and it is even more difficult for larger values of k.

Another approach is to count the inversion sequences recursively directly, but this too is not as nice as
we would hope. One recursive characterization is given below.

A weakly decreasing word of length n has depth k if it has the form a1 . . . a1a2 . . . a2 . . . ak+1 . . . ak+1

where for each i, ai > ai+1 ≥ 0 (so there are k descents). Let WDk(n, a) be the set of all such words
whose first value is a and whose depth is at most k.

Lemma 3.13. For all n, k ∈ Z
+ with k < n, we have

|WDk(n, a)| = 1 +

k
∑

j=1

(

n− 1

j

)(

a

j

)

. (1)

Note that we assume
(

n

k

)

= 0 if k > n. The result follows from choosing j locations for a descent,
then j values for the weakly decreasing sequence, and one for the sequence with no descents.

We say a word w of length n is a layered weakly decreasing word of depth at most k if w can be
split into a sequence of subwords (in the factor sense) w1, w2, ... where each wi ∈ WDk(mi, ai) with
∑

imi = n, and for each i, ai ≥ 0, and min(wi+1) ≥ max(wi) (i.e. the largest (first) value of each
word is bounded by the smallest value of the succeeding word). Further, we consider the words of this
type which are also inversion sequences, i.e. max(wi) ≤

∑i−1

j=1
mj . Let LDIk(n) be the set of all such

layered depth at most k inversion sequences of length n.

Lemma 3.14. The set of sortable inversion sequences by a depth k pop stack is exactly LDIk(n).

The proof is simply to note that when the stack is popped, there are at most k distinct values, and they
must be less than any later sequence values.

Let w1w2...wt ∈ LDIk(n), where w1, w2, ..., wt are the subwords as defined above with each value
of wi+1 bounded below by the largest value in wi. Subtracting ai from every value in wi+1 yields an
element of WDk(mi, ai+1 − ai).

As a result we get the following formula.

Proposition 3.15. For all n, k > 0,

|LDIk(n)| =
∑

m1+m2+...mt=n,
mi≥0

∗
∑

a1,a2,...at

|WDk(mi, ai)|, (2)
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where a1 = 0, and
∑∗

means for all j > 1 to sum on values of aj such that 0 ≤ aj ≤
( j−1
∑

h=1

mh − ah

)

.

Since the first word in an element of LDIk(n) must be a string of zeros, we let LDIk(n,m1) de-
note the elements of LDIk(n) that begin with m1 zeros followed by a non-zero value. Further, let
LDIk(n,m1, a2) be the subset of these layered decreasing inversion sequences which begin with m1

zeros, and have first non-zero value a2 (and a2 ≤ m1). We now decompose our sequence of words as
{0m1

, w2, ŵ} where ŵ = {w3, ...wt}. Now w2 ∈ WDk(m2, a2) for some 0 ≤ m2 ≤ n−m1, a2 > 0.
If we subtract a2 from all the elements in ŵ the result is in LDI(n − m2 − m1,m1 + m2 − a2, a) for
some a with a ≤ m1 +m2 − a2. Note that the number of starting zeros guarantees that adding a2 to all
of these entries will still yield an element of LDIk(n).

Hence we get the following formula.

Proposition 3.16. For all n, k,m1 ∈ Z
+ with m1 < n,

|LDIk(n,m1)| =
n−m1
∑

m2=0

∑

a2≤m1

|WDk(m2, a2)|
∑

a≤m1+m2−a2

|LDIk(n−m1 −m2,m1 +m2 − a2, a)|.

(3)

Equations 2 and 3 are rather difficult to use for computation. However they are presented to give some
insight into directly enumerating these inversion sequences.

For completeness, we give some characterizations of words sortable by stacks of depth k.

Proposition 3.17. A word w is sortable by a stack of depth k if and only if w avoids 120 and also

k(k − 1) · · · 10.

Corollary 3.18. The number of words of length n on an alphabet [k] sortable by a stack of depth 1, i.e.

avoiding 10 is
(

n+k−1

k−1

)

.

Proof: These weakly increasing words can be thought of as weak compositions of n into k parts where
each part represents the next largest letter.

The depth 2 stack sortable words are enumerated by Burstein 1988 in the context of avoiding 120, 210.

Theorem 3.19. (Burstein) The number of words of length n on an alphabet [k] avoiding 120, 210 and

thus sortable by a stack of depth 2 is given by

1− (−1)k

2
+ 2n

⌊ k−2

2
⌋

∑

i=0

(

n+ k − 3− 2i

n− 1

)

.

Finally, we note that Kotsireas, Yıldırım, and the first author 2024 give a functional equation for the
inversion sequences of length n avoiding 120, 210 and thereby sortable by a stack of depth 2.

3.2 Generalizing pop stacks

We can also expand the ability of our sorting machine using a similarly defined version of Atkinson’s 1998
extension of push and pop operations. Specifically, we will define a (r, 1)-pop stack that is also modified to
take into account the repetition of letters in inversion sequences (and more generally words). In Atkinson’s
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Fig. 3: A (3, 1)-stack shown at several stages.

work, an (r, 1)-stack would have allowed for push operations to push entries into the stack in any of the
top r positions. We can again naturally redefine generalized stacks for words in a way that is consistent
with Atkinson’s work on permutations.

Definition 3.20. Let an (r, 1)-stack allow the push operation to push an entry to any of the top r “value

positions” in the stack where consecutive entries of the same value in the stack are grouped together.

Note that the above definition could be extended to the broader notion of an (r, s) stack where we allow
the pop operation to be defined in terms of these same value positions.

Example 3.21. Suppose a (3, 1)-stack contained the values 0, 0, 3, 4, 6, 6 as shown in Figure 3 with the

remainder of the word being 230. The available positions for new entries to enter the stack at each stage

are indicated by the �s.

Varying the restrictions of depth and generalizations of the push operation as described above, we get a
family of stacks and a family of pop stacks. There are some variations that no longer give us new machines
though. Specifically, if our stack or pop stack has limited depth, having the option to push entries to (or
pop entries from) spaces that do not exist does add any sorting power.

Proposition 3.22. For a (r, 1)-stack or (r, 1)-pop stack of depth d, if r > d, the machine sorts the same

words as if r = d.

As such, we will restrict r ≤ d.
We will first consider the case where r = d = 2.
The (2, 1)-pop stack of depth two has the nice characteristic where it sorts words (and permutations)

that avoid three patterns of length three.

Theorem 3.23. A (2, 1)-pop stack of depth two sorts exactly the words that avoid 120, 201, 210.

Proof: Because the (2, 1)-pop-stack we are using only has depth two, any pattern of length three with
three distinct values will have at least the first entry popped out before the third entry can enter. For all of
120, 201, 210, this means the larger first entry is popped out before the smaller last entry enters the stack.
Thus no word containing 120, 201, 210 is sortable by a (2, 1)-pop stack of depth two.

Now consider a word w that cannot be sorted by a (2, 1)-pop stack of depth two. If a larger entry was
forced out before a smaller entry could be pushed into the stack due to the limited depth, there are two
ways this could have happened. One is that two distinct larger entries appeared before a smaller entry, that
is w contains a 120 or 210 pattern. Otherwise, we have a large entry that is below a small entry in the pop
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stack, and our third entry waiting to enter is between the small and large entry in value. Because of the
(2, 1) generalization, in theory, the first two entries could appear in either order in w to form either a 021
or a 201 pattern. However, in the case of a 021 pattern, the 0 entry could be popped out before pushing
the 2 into the pop stack, so only the 201 pattern presents a problem.

Note: Algorithm 3 gives a procedure for sorting with a (2, 1)-pop stack of depth 2. Because there are
only two possible values in PS2, it would be equivalent to simply push wi to the bottom of PS2 if it
matched the larger value in the (2, 1)-pop stack of depth 2 rather than keep track of how many smaller
entries there are. However, we present the algorithm in this form for the option of generalization if desired.

Theorem 3.24. Algorithm 3 is optimal for sorting words with an (r, 1)-pop stack of depth 2.

Proof: By way of contradiction, let w be a sortable word that is not sorted by our algorithm on a (2, 1)-
pop stack of depth 2. Specifically, S(w) must contain a descent, say wjwk. Because Algorithm 3 never
allows a descent in the pop stack, wj must have been the last entry popped from one pop operation and
wk must have been the first entry popped from the next pop operation. The entries wj and wk must have
appeared in the same relative order (forming an inversion) in w. The only way to remove this inversion
would be for both entries to be in the pop stack at the same time.

Notice Algorithm 3 only pops the pop stack in two cases. In the first case, the pop stack already
contained two distinct values that are different from the next input value. In this case, wj is one of the
larger entries in the pop stack. Also, wj is the first entry in w from the all of entries of the same value
popped at the same time as wj because a new entry only enters in the pop stack if it is smaller than the
other value represented or the new entry matches a value already there and is placed above it in the pop
stack. In fact, wj must be pushed into an empty pop stack as we are not inserting any unmatched larger
entries into the pop stack after a smaller entry. Thus there must be a smaller entry wm popped at the same
time as wj and was inserted into the pop stack after wj . Notice wjwmwk form a 201 or 210 pattern in w

which is forbidden.
Otherwise, when wj is popped from the pop stack, only values matching wj can be in the pop stack.

For the next entry wi, not to enter the pop stack, we must have wj < wi. In this case, wjwiwk form a 120
pattern in w which is also forbidden.

The enumeration problem for this (2, 1)-pop stack of depth 2 can be considered for permutations,
words, and specifically inversion sequences. The permutations of length n avoiding 231, 312, 321, i.e.
120, 201, 210, are known as the layered permutations where each layer can have size one or two. Note
that layered permutations are exactly the permutations that avoid 231, 312. Furthermore, the restric-
tion of avoiding 321 forces each layer (consecutive decreasing subsequence) to have size at most two.
These restricted layered permutations are enumerated by the Fibonacci numbers as shown by Simion and
Schmidt 1985. As a consequence of their result and Theorem 3.23 we have the following corollary.

Corollary 3.25. (Simion and Schmidt) The number of permutations of length n sortable by a (2, 1)-pop

stack of depth 2 is the (n+ 1)st Fibonacci number Fn+1.

Burstein 1988, Theorem 5.1 enumerated the words of lengthn over an alphabet [k] avoiding 120, 201, 210.

Theorem 3.26. (Burstein) The generating function for the number of words of length n over an alphabet

[k] sortable by a (2, 1)-pop stack of depth 2 is given by the coefficient of xnyk in F (x, y) where

F (x, y) =
(1− x)(1 − 2x)− ((1− x)(1 − 2x) + x2)y

(1− x)(1 − 2x)− (1 − x)(2 − 3x)y + (1− 2x)y2
.



Sorting inversion sequences 13

Algorithm 3 (2, 1)-Pop Stack of Depth 2 Sorting Algorithm
w = w1w2 · · ·wn is a word of length n.
PS2 is a (2, 1)-Pop Stack of Depth 2 .
O is an empty array.
i = 1 is the index of the next entry in the input.
s = 0 is the counter for the number of copies of the smallest value in the (2, 1)-Pop Stack of Depth 2.
procedure POPSTACKSORT2(w, n)

while i < n+ 1 do

if PS2 is empty then

push wi to the top of PS2
i = i+ 1
s = 1

else if wi = the top/smallest element(s) in PS2 then

push wi to the top of PS2
i = i+ 1
s = s+ 1

else if wi = the larger element(s) in PS2 then

push wi to the (s+ 1)st position of PS2
i = i+ 1

else if there are already two distinct values in PS2 then

while PS2 is nonempty do

pop the top entry of PS2 to the end of O
end while

else if pi < top element of PS2 then

push pi to the top of PS2
i = i+ 1
s = 1

else

while PS2 is nonempty do

pop the top entry of PS2 to the end of O
end while

end if

end while

return O

end procedure
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The case for the enumeration of sortable inversion sequences by a (2, 1)-pop stack of depth 2 (in the
form of avoidance of 120, 201, 210 or otherwise) does not appear in the literature prior to this work, but
can be solved using generating trees as demonstrated in Section 4.1. Specifically, the generating function
for these sortable inversion sequences is given in Theorem 4.3.

4 The generating tree method

4.1 A formula for the generating function for the number of inversion sequences
of length n that avoid 120, 201, 210

To enumerate the inversion sequences of length n avoiding 120, 201, 210, i.e. the inversion sequences
sortable by a (2, 1)-pop stack of depth 2, we use the generating tree method shown by Kotsireas, Yıldırım,
and the first author 2024. See the recent paper of Pantone 2024 for another nice description of using
succession rules to enumerate pattern avoiding inversion sequences.

Let A = ∪∞
n=0In(120, 201, 210). We construct a pattern-avoidance tree T for the class of pattern-

avoiding inversion sequences A as follows.

1. The root is 0 (inversion sequence with one letter), that is, 0 ∈ T at level 1.

2. Recursively construct the nodes at level n+1 of tree T from the nodes at level n by inserting a new
letter at the end of the inversion sequence. That is, the children of e = e0 · · · en ∈ In ∩A are the
inversion sequences e∗ = e0 · · · enj with j = 0, 1, . . . , n+ 1 where e∗ ∈ In+1 ∩A.

Now, we relabel the vertices of the tree T as follows. Define T(e) to be the subtree consisting of the
inversion sequence e as the root and its descendants in T. We say that e is equivalent to e′, denoted by
e ∼ e′, if and only if T(e) ∼= T(e′) (in the sense of plane trees). Define an order on the nodes of any tree
to be from top to bottom, and within a level from left to right. Denote by T

′ the tree T where we have
replaced, in order, each node e ∈ T by the first node e′ ∈ T (from top to bottom and within a level from
left to right) in T such that T(e) ∼= T(e′) assuming that such a node e′ exists.

Definition 4.1. A succession rule, denoted x y1, y2, . . . , yk, will indicate that the set {y1, y2, . . . , yk}
will be such that the generating subtrees rooted at y1, y2, . . . , yk are equivalent to those rooted at

z1, z2, . . . , zk where {z1, z2, . . . , zk} is the complete set of children of x.

Note that exponents are used in two ways below based on context. Specifically, when describing suc-
cession rules, an exponent of j on a child indicates the number of copies of that child the parent has.
For example, in Lemma 4.2, bm,j has j children of the form bm+2−j,1. However, when describing the
individual nodes that make up the tree, the exponent refers to copies of the letter in the word (in particular,
inversion sequence). Again, referring to Lemma 4.2, we have am is the word made up of exactly m 0s.

Lemma 4.2. The generating tree T′ is given by root 0 and the following succession rules

am  am+1, bm,1, . . . , bm,m,

bm,j  (bm+2−j,1)
j , bm+1,j , bm+1−j,1, . . . , bm+1−j,m+1−j,

where am = 0m and bm,j = amj for 1 ≤ j ≤ m.



Sorting inversion sequences 15

Proof: We label the inversion sequence 0 ∈ I0 by a1. Thus, a1  a2, b1,1. More generally, by the defini-
tions, the children of am ∈ T

′ are am0, am1, . . . , amm, which can also be denoted am+1, bm,1, . . . , bm,m,
respectively. Thus, the rule am  am+1, bm,1, . . . , bm,m holds.

Also, the children of bm,j ∈ T
′ are bm,j0, bm,j1, . . . , bm,j(m+ 1). Notice T(bm,jk) ∼= T(bm+2−j,1)

with k = 0, 1, . . . , j− 1. To show this, we map any inversion sequence π = 0mjkπ′ ∈ In(120, 201, 210)
to 0m+2−j1π′′, where π′′ is obtained from π′ (there are no letters in π′ belonging to the set {0, . . . , k −
1, k + 1, . . . , j − 1}) by replacing each letter x ≥ j by x+ 1− j and replacing the letter k by 0. Hence,
we see that π ∈ In(120, 201, 210) if and only if 0m+2−j1π′′ ∈ In+2−j(120, 201, 210).

As none of our patterns have repeated letters, it is not hard to see T(bm,jj) ∼= T(bm+1,j). Here we
map any inversion sequence 0mjjπ′ ∈ In to 0m+1jπ′ ∈ In with 1 ≤ j ≤ m, so this map respects the
rule of avoiding 120, 201, 210.

In the last cases when k = j+1, j+2, . . . ,m+1, we have a similar mapping as with the smaller k val-
ues. Specifically, T(bm,jk) ∼= T(bm+1−j,k−j). To see this, again, let π = 0mjkπ′ ∈ In(120, 201, 210).
Since π avoids 120, we see that each letter of π′ is at least j. Let π′′ be the obtained sequence from
π′ by decreasing each nonzero letter of π′ by j. Then the map from π = 0mjkπ′ ∈ In(120, 201, 210)
to 0m+1−j(k − j)π′′ ∈ In−j(120, 201, 210) is a bijection. Hence, we have the following rule bm,j  

(bm+2−j,1)
j , bm+1,j, bm+1−j,1, . . . , bm+1−j,m+1−j , which completes the proof.

Define Am(x) (respectively, Bm,j(x)) to be the generating function for the number of nodes at level
n ≥ 1 for the subtree of T(B; am) (respectively, T(B; bm,j)), where the root stays at level 1. Thus, by
Lemma 4.2, we have

Am(x) = x+ xAm+1(x) + x

m
∑

j=1

Bm,j(x), (4)

Bm,j(x) = x+ jxBm+2−j,1(x) + xBm+1,j(x) + x

m+1−j
∑

k=1

Bm+1−j,k(x), (5)

for all 1 ≤ j ≤ m.

In order to solve the above recurrence relations, we define

A(v) =
∑

m≥1

Am(x)vm−1,

B(v, u) =
∑

m≥1

m
∑

j=1

Bm,j(x)u
m−jvm−1, and

C(v) =
∑

m≥1

Bm,1(x)v
m−1.
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Thus Equations (4)-(5) can be written as

A(v) =
x

1− v
+

x

v
(A(v) −A(0)) + xB(v, 1), (6)

B(v, u) =
x

(1− v)(1 − uv)
+

x

uv(1− v)2
(C(vu) − C(0)) +

x

uv
(B(v, u)− B(v, 0)) +

x

1− v
B(uv, 1),

(7)

C(v) =
x

1− v
+

2x

v
(C(v)− C(0)) + xB(v, 1), (8)

where Equation (8) is the translation of (5) with j = 1.

To solve the system from Equations (7)-(8), we make the following guess based on the first terms of
the generating functions B(v, 1), C(v), and A(v):

B(v, 1) =
1

(1− v)2
C(v)− v

(1− v)2
A(v). (9)

Next, we solve the system from Equations (7)-(9), which satisfies the original system from Equations
(7)-(8). By substituting the expression of B(v, 1) from Equation (9) into Equation (7), and solving for
C(v), we obtain

C(v) =
v3 − 2v2 + 2vx+ v − x

vx
A(v) +

(1− v)2

v
A(0) + v − 1. (10)

From here, use Equation (9) and Equation (10) to rewrite Equation (8) as

2x2 − 3x(x+ 1)v + (5x+ 1)v2 − 2(x+ 1)v3 + v4

v2x
A(v)

=
2x− (3x+ 1)v + 2(x+ 1)v2 − v3

v2
A(0)− 2x

v
C(0)− (v − 2x)(v − 1)

v
. (11)

Let K(v) = 2x2 − 3x(x+ 1)v+ (5x+ 1)v2 − 2(x+ 1)v3 + v4 be the kernel of this equation. Note that
for the kernel equation K(v) = 0 there are four roots, say v1, v2, v3, v4, where

v1 = 1 +
−1 +

√
5

2
x+

−5 + 4
√
5

5
x2 + · · · ,

v2 = 1 +
−1−

√
5

2
x+

−5− 4
√
5

5
x2 + · · · ,

v3 = 2x+ 2x2 + 10x3 + · · · ,
v4 = x− x3 − x4 + · · · .

By taking Equation (11) with either v = v3 or v = v4, we obtain a system of equations in A(0) and C(0).
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We solve this system, obtaining

A(0) = − (v1 + v2 − 2x− 1)v1v2
v1v2(v1 + v2)− 2(1 + x)v1v2 + 2x

,

C(0) = −v1v2(v2 − 1)(v1 − 1)− (v21v2 + v1v
2
2 − 2v21 − 3v1v2 − 2v22 + 2v1 + 2v2)x

2x(v1v2(v1 + v2)− 2(1 + x)v1v2 + 2x)

+
2(v1v2 − 2v1 − 2v2 + 2)x2

2x(v1v2(v1 + v2)− 2(1 + x)v1v2 + 2x)
..

Using the expressions of A(0), C(0), we obtain an explicit formula for A(v) from Equation (11). We
can then obtain an explicit formula for C(v) from Equation (10). Then we can use that formula to get
an explicit formula for B(v, 1) from Equation (9). Finally, we have the information we need to ob-
tain an explicit formula for B(v, u) from Equation (7). We omit the presentations of the expressions
A(v), C(v), B(v, 1), B(v, u) because they are very lengthy. However, these expressions satisfy the sys-
tem of Equations (6)-(8). Hence, we can state the following result.

Theorem 4.3. The generating function for the number of inversion sequences in In that avoid 120, 201, 210
and thus are sortable by a (2, 1)-pop stack of depth 2 is given by

A(0) = − (v1 + v2 − 2x− 1)v1v2
v1v2(v1 + v2)− 2(1 + x)v1v2 + 2x

= x+ 2x2 + 6x3 + 23x4 + 101x5 + 484x6 + 2468x7 + 13166x8 + 72630x9 + 411076x10

+ 2374188x11 + 13938018x12 + 82932254x13 + 499031324x14 + 3031610924x15

+ 18568429963x16 + 114541486785x17+ 710973143614x18 + 4437415155234x19

+ 27831038618735x20+ 175318861863701x21+ 1108762012137252x22

+ 7037137177329268x23 + 44808588430903068x24+ · · · .

4.2 The generating tree for the pop stack sortable inversion sequences

As in the previous case, one can show that the generating tree (based on the algorithm given in Kotsireas
et al. (2024)) of In(120, 201, 1010), that is, of the pop stack sortable inversion sequences, is given by a
root a1 and the rules

am  am+1, bm,1, . . . , bm,m,

bm,j  cm+1−j,1, . . . , cm,j , bm+1,j, bm+1−j,1, . . . , bm+1−j,m+1−j,

cm,j  cm+2−j,1, . . . , cm+1,j , am+3−j, bm+2−j,1, . . . , bm+2−j,m+2−j,

where am = 0m, bm,j = 0mj and cm,j = 0mj(j − 1).

For any sequence of nodes fm,j , we define Fm,j(x) as the generating functions for the number of nodes
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in the subtrees T (B; fm,j), where f ∈ {a, b, c}, F ∈ {A,B,C}. Define

A(v) =
∑

m≥1

Am(x)vm−1,

B(v, u) =
∑

m≥1

m
∑

i=1

Bm,iv
m−1um−i,

C(v, u) =
∑

m≥1

m
∑

i=1

Cm,iv
m−1um−i.

Then the generating function for the case 120,201,1010 is x
1−x

+ xB(x, 1), where B(x, v) satisfies

A(v) =
x

1− v
+

x

v
(A(v) −A(0)) + xB(v, 1),

B(v, u) =
x

(1− v)(1 − uv)
+

x

uv
(B(v, u)−B(v, 0)) +

x

1− v
C(v, u) +

x

1− v
B(vu, 1),

C(v, u) =
x

(1− v)(1 − uv)
+

x

uv(1− v)
(C(v, u)− C(v, 0))

+
x

u2v2(1− v)
(A(uv)−A(0)− uv

∂

∂v
A(v) |v=0) +

x

uv(1− v)
(B(vu, 1)−B(0, 0)).

By applying this system 20 times starting from A(x, v) = B(x, v, u) = C(x, v, u) = 0, we obtain the
first 20 coefficients of A(0) as

A(0) = x+ 2x2 + 6x3 + 23x4 + 101x5 + 485x6 + 2488x7 + 13414x8 + 75126x9 + 433546x10

+ 2563335x11 + 15461646x12 + 94835817x13 + 589997530x14 + 3715451178x15

+ 23645541066x16 + 151874732111x17+ 983428159871x18

+ 6413887925931x19+ 42100271440339x20+ · · · .

4.3 Inversion sequences sortable by a pop stack of depth two

Recall from Corollary 3.11 that the inversion sequences sorted by a pop stack of depth two are pre-
cisely those which avoid P = {120, 201, 210, 1010}. We can define the generating tree TP for inversion
sequences that avoid P as having a root a1 and satisfying the following rules:

am  am+1, bm,1, . . . , bm,m,

bm,j  (cm+1−j)
j , bm+1,j, bm+1−j,1, . . . , bm+1−j,m+1−j, 1 ≤ j ≤ m,

cm  cm+1, am+2, bm+1,1, . . . , bm+1,m+1,

where am = 0m, bm,j = 0mj, and cm = 0m10. We label the inversion sequence 0 by a1, so the root of
the tree TP is indeed a1. Now, let us show that the succession rules hold in TP . Based on the algorithm
introduced in [17] (for more examples and proofs, see Callan et al. (2023); Callan and Mansour (2023)),
we have the following:
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• The children of am in TP are amj with j = 0, 1, . . . ,m, which are equal to am+1, bm,1, . . . , bm,m.
Hence, the first succession rule holds.

• The children of bm,j in TP are 0mji with i = 0, 1, . . . ,m + 1. But, note that the set of inversion
sequences of the form 0mjiπ′ with 0 ≤ i ≤ j − 1 that avoid P can be mapped bijectively to
the set of inversion sequences of the form 0m+1−j10π′′ that avoid P (by mapping each letter i
to 0 and each letter s ≥ j to s + 1 − j and writing the first initial 0m as 0m+1−j). Hence,
TP (0

mji) ∼= TP (cm+1+j), for all i = 0, 1, . . . , j − 1.

Now, let us look at the remaining children of bm,j in TP , which are 0mji with i = j, j + 1, j +
2, . . . ,m+1. Clearly, an inversion sequence 0mjjπ′ avoids P if and only if the inversion sequence
0m+1jπ′ avoidsP , so TP (0

mjj) ∼= TP (0
m+1j). Next consider the inversion sequenceπ = 0mjiπ′

with j+1 ≤ i ≤ m+1. Notice that π avoidsP if and only if 0m+1−j(i−j)π′′ avoids P (by mapping
each letter s ≥ j to s− j and writing the initial 0mj as 0m+1−j). Hence, the children of bm,j in TP

are (cm+1−j)
j , bm+1,j, bm+1−j,1, . . . , bm+1−j,m+1−j , which proves the second succession rule.

• The children of cm in TP are 0m100, 0m101, . . . , 0m10(m + 2). Clearly, an inversion sequence
0m100π′ avoids P if and only if 0m+110π′ avoids P . Also, an inversion sequence 0m10iπ′ avoids
P if and only if 0m+2π′′ avoids P (here π′′ is obtained by mapping each letter s in iπ′ to s − 1).
Thus the children of cm in TP are cm+1, am+2, bm+1,1, . . . , bm+1,m+1, which shows that the third
succession rule holds.

5 Open Problems

There are many directions left to continue the study of sortable inversion sequences. The most obvious
question is the elusive enumeration problem for the inversion sequences of length n which avoid 120.
Already interesting as a standalone pattern avoidance question, the fact that these inversion sequences are
exactly those sortable by the classic stack sorting algorithm by Knuth 1969 increases the intrigue. The first
author and Shattuck 2015, Section 4 obtained a recurrence relation for these inversion sequences yielding
a functional equation in three variables (sequence number A263778 in OEIS Sloane (2025)). We note that
the construction method used here was later generalized by Testart 2024 as part of his work to complete
the enumeration of 22 open cases of pattern-avoiding inversion sequences.

Open Question 5.1. Is there a nicer combinatorial formula for the number of inversion sequences of

length n are stack sortable, i.e. avoid 120?

Next, while we have classified the pop stack sortable inversion sequences and words and provided a
generating tree for the inversion sequence case in Section 4.2, the following combinatorial enumeration is
also still open.

Open Question 5.2. How many inversion sequences of length n are pop stack sortable, i.e. avoid

120, 201, 1010?

And the cases restricting pop stacks to particular depths in an analogous way to Elder (2006); Elder and
Goh (2018, 2021); Elder et al. (2015) and/or the expansion in allowable pushes analogous to Atkinson
(1998) can be interesting for words and inversion sequences.
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Open Question 5.3. Classify and enumerate the inversion sequences of length n that are (r, 1)-pop stack

sortable for pop stacks of depth k for r ≥ 2 and/or k ≥ 2.

Another avenue of exploration is to consider other sorting machines or algorithms. For instance, the
authors considered a sorting algorithm on a single stack prioritizing outputting the next correct entry of the
sequence until no other moves were available and then either returning the elements in order to be sorted
again Mansour et al. (2019a) or reversing the output for the next pass Mansour et al. (2019b). In particular,
the 2-reverse-pass sortable permutation class has a reasonably small basis, namely {2413, 2431, 23154}=
{1302, 1320, 12043} that may prove tractable.

Open Question 5.4. How many inversion sequences of length n are 2-reverse-pass sortable?

Acknowledgements

The authors are grateful for the helpful comments from the referees.

References

Andrei Asinowski, Cyril Banderier, Sara Billey, Benjamin Hackl, and Svante Linusson. Pop-stack sorting
and its image: permutations with overlapping runs. Acta Math. Univ. Comenian. (N.S.), 88(3):395–402,
2019. ISSN 0862-9544,1336-0310.

Mike D. Atkinson. Generalized stack permutations. Combin. Probab. Comput., 7:239–246, 1998.

Mike D. Atkinson and Jörg-Rüdiger Sack. Pop-stacks in parallel. Inform. Process. Lett., 70:63–67, 1999.

Mike D. Atkinson, Maximillian M. Murphy, and Nik Ruškuc. Sorting with two ordered stacks in series.
Theoret. Comput. Sci., 289(1):205–223, 2002. ISSN 0304-3975.

David Avis and Monroe Newborn. On pop-stacks in series. Utilitas Math., 19:129–140, 1981.

Alexander Burstein. Enumeration of Words with Forbidden Patterns. PhD thesis, University of Pennsyl-
vania, 1988.

David Callan and Toufik Mansour. Inversion sequences avoiding quadruple length-3 patterns. Integers,
23:Paper No. A78, 64, 2023. ISSN 1553-1732.

David Callan, Vít Jelínek, and Toufik Mansour. Inversion sequences avoiding a triple of patterns of 3
letters. Electron. J. Combin., 30(3):Paper No. 3.19, 39, 2023. ISSN 1077-8926. doi: 10.37236/11603.

Giulio Cerbai. Sorting Cayley permutations with pattern-avoiding machines. Australas. J. Combin., 80:
322–341, 2021. ISSN 1034-4942,2202-3518.

Giulio Cerbai, Anders Claesson, and Luca Ferrari. Stack sorting with restricted stacks. J. Combin. Theory

Ser. A, 173:105230, 19, 2020. ISSN 0097-3165,1096-0899.

Anders Claesson and Bjarki Ágúst Guðmundsson. Enumerating permutations sortable by k passes through
a pop-stack. Adv. in Appl. Math., 108:79–96, 2019. ISSN 0196-8858,1090-2074.



Sorting inversion sequences 21

Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch. Patterns in inversion
sequences I. Discrete Math. Theor. Comput. Sci., 18(2):Paper No. 2, 21, 2016. ISSN 1365-8050.

Colin Defant and Nathan Williams. Crystal pop-stack sorting and type A crystal lattices. European J.

Combin., 103:Paper No. 103514, 19, 2022. ISSN 0195-6698.

Murray Elder. Permutations generated by a stack of depth 2 and an infinite stack in series. Electron. J.

Combin., 13:Research paper 68, 12 pp., 2006.

Murray Elder and Yoong Kuan Goh. Permutations sorted by a finite and an infinite stack in series. In
Language and automata theory and applications, volume 10792 of Lecture Notes in Comput. Sci.,
pages 220–231. Springer, Cham, 2018.

Murray Elder and Yoong Kuan Goh. k-pop stack sortable permutations and 2-avoidance. Electron. J.

Combin., 28(1):Paper No. 1.54, 15, 2021.

Murray Elder, Geoffrey Lee, and Andrew Rechnitzer. Permutations generated by a depth 2 stack and an
infinite stack in series are algebraic. Electron. J. Combin., 22(2):Paper 2.16, 23, 2015.

Letong Hong. The pop-stack-sorting operator on Tamari lattices. Adv. in Appl. Math., 139:Paper No.
102362, 13, 2022. ISSN 0196-8858.

Donald E. Knuth. The art of computer programming. Volume 1. Addison-Wesley Publishing Co., Reading,
Mass., 1969. Fundamental Algorithms.

Ilias Kotsireas, Toufik Mansour, and Gökhan Yıldı rım. An algorithmic approach based on generating trees
for enumerating pattern-avoiding inversion sequences. J. Symbolic Comput., 120:Paper No. 102231,
18, 2024. ISSN 0747-7171,1095-855X.

Charles-Ange Laisant. Sur la numération factorielle, application aux permutations. Bull. Soc. Math.

France, 16:176–183, 1888.

Derrick H. Lehmer. Teaching combinatorial tricks to a computer. In Proc. Sympos. Appl. Math., Vol. 10,
pages 179–193. American Mathematical Society, Providence, R.I., 1960.

Zhicong Lin. Patterns of relation triples in inversion and ascent sequences. Theoret. Comput. Sci., 804:
115–125, 2020. ISSN 0304-3975,1879-2294.

Zhicong Lin and Dongsu Kim. Refined restricted inversion sequences. Ann. Comb., 25(4):849–875, 2021.
ISSN 0218-0006,0219-3094.

Toufik Mansour and Mark Shattuck. Pattern avoidance in inversion sequences. Pure Math. Appl.

(PU.M.A.), 25(2):157–176, 2015. ISSN 1218-4586,1788-800X.

Toufik Mansour, Howard Skogman, and Rebecca Smith. Passing through a stack k times. Discrete Math.

Algorithms Appl., 11(1):1950003, 22, 2019a. ISSN 1793-8309.

Toufik Mansour, Howard Skogman, and Rebecca Smith. Passing through a stack k times with reversals.
European J. Combin., 81:309–327, 2019b. ISSN 0195-6698.



22 Toufik Mansour, Howard Skogman, Rebecca Smith

Megan Martinez and Carla Savage. Patterns in inversion sequences II: inversion sequences avoiding triples
of relations. J. Integer Seq., 21(2):Art. 18.2.2, 44, 2018.

Jay Pantone. The enumeration of inversion sequences avoiding the patterns 201 and 210. Enumer. Comb.

Appl., 4(4):Paper No. S2R25, 12, 2024. ISSN 2710-2335.

Lara Pudwell and Rebecca Smith. Two-stack-sorting with pop stacks. Australas. J. Combin., 74:179–195,
2019. ISSN 1034-4942.

Rodica Simion and Frank W. Schmidt. Restricted permutations. European J. Combin., 6(4):383–406,
1985. ISSN 0195-6698.

Neil J. A. Sloane. The Online Encyclopedia of Integer Sequences. http://oeis.org, 2025.

Rebecca Smith. Two stacks in series: A decreasing stack followed by an increasing stack. Ann. Comb.,
18:359–363, 2014.

Rebecca Smith and Vincent Vatter. The enumeration of permutations sortable by pop stacks in parallel.
Inform. Process. Lett., 109(12):626–629, 2009.

Benjamin Testart. Completing the enumeration of inversion sequences avoiding one or two patterns of
length 3. arXiv:2407.07701, 2024. URL https://arxiv.org/abs/2407.07701.

Akiva M. Yaglom and Isaak M. Yaglom. Challenging Mathematical Problems with Elementary Solutions,
volume 1. Dover Publications Inc., New York, 1987.

Chunyan Yan and Zhicong Lin. Inversion sequences avoiding pairs of patterns. Discrete Math. Theor.

Comput. Sci., 22(1):Paper No. 23, 35, 2020–2021. ISSN 1365-8050.

http://oeis.org
https://arxiv.org/abs/2407.07701

