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A k-hypergraph is a k-partite k-uniform hypergraph, that is, a hypergraph with a partition of vertices into k parts
such that each hyperedge contains exactly one vertex of each part. We propose a new geometric representation of k-
hypergraphs. Namely, given positive integers ℓ, d, and k with ℓ ≤ d− 1 and k =

(
d
ℓ

)
, any finite set P of points in Rd

represents a k-hypergraph GP as follows. Each point in P is covered by k many axis-aligned affine ℓ-dimensional
subspaces of Rd, which we call ℓ-subspaces for brevity and which form the vertex set of GP . We interpret each point
in P as a hyperedge of GP that contains each of the covering ℓ-subspaces as a vertex. The class of (d, ℓ)-hypergraphs
is the class of k-hypergraphs that can be represented in this way. The resulting classes of hypergraphs are fairly rich,
since every k-hypergraph is a (k, k − 1)-hypergraph. On the other hand, for ℓ < d − 1, there exists a k-hypergraph
which is not a (d, ℓ)-hypergraph.

In this paper we give a natural structural characterization of (d, ℓ)-hypergraphs based on vertex cuts. This characteriza-
tion leads to a polynomial-time recognition algorithm that decides for a given k-hypergraph G whether or not G is
a (d, ℓ)-hypergraph and that computes a representation of G if one exists. Here we assume that the dimension d is
constant and that the partition of the vertex set of G is prescribed.

Keywords: hypergraph, point-line cover, graph representation

1 Introduction
Geometric representations of graphs or hypergraphs provide a wide and intensively studied field of re-
search in the intersection of combinatorial geometry and graph theory. Well-known examples are ge-
ometric intersection or incidence graphs, with a large amount of literature, such as McKee and Mc-
Morris (1999), Coxeter (1950), and Pisanski and Randić (2001). The benefits of adopting these two
perspectives—the geometric and the graph-theoretic one—are as follows. On the one hand, knowing that
a given graph can be represented geometrically may give new insights about its structure, because the
geometric perspective is often rather intuitive. On the other hand, giving a graphical characterization for
certain types of geometric objects may help pin down the essential combinatorial properties that can be
exploited in the geometric setting.

One example of this interplay is the study of geometric set cover and hitting set problems, as explored by
Brönnimann and Goodrich (1995), Varadarajan (2010), and Chan et al. (2012). In this important branch of
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geometric optimization, incidence relations of two types of geometric objects are studied where one object
type is represented by vertices of a hypergraph whose hyperedges are, in turn, represented by the other
object type. In this representation a vertex is contained in a hyperedge if and only if the corresponding
geometric objects have a certain geometric relation such as containment or intersection. The objective is
to find the minimum number of vertices hitting all hyperedges(i). In this line of research, the goal is to
exploit geometric properties in order to improve upon the state of the art for general hypergraphs. This is
known to be surprisingly challenging even in many seemingly elementary settings.

For example, in the well-studied point-line cover problem, as studied by Hassin and Megiddo (1991)
and Kratsch et al. (2014), we are given a set of points in the plane and a set of lines. The goal is to identify
a smallest subset of the lines to cover all the points. This problem can be cast as a hypergraph vertex cover
problem. Points can be viewed as hyperedges containing the incident lines as vertices. The objective is to
cover all the hyperedges by the smallest number of vertices.

It seems quite clear that point-line cover instances form a heavily restricted subclass of general hyper-
graph vertex cover. For example, they have the natural intersection property that two lines can intersect in
at most one point. However, somewhat surprisingly, in terms of approximation algorithms, no worst-case
result improving the ratios for general hypergraph vertex cover is known (Aharoni et al., 1996; Guruswami
and Saket, 2010; Chvátal, 1979). In fact, it has been shown that merely exploiting the above intersection
property in the hypergraph vertex cover is not sufficient to give improved approximations, as showed
by Kumar et al. (2000). Giving a simple combinatorial characterization of the point-line cover instances
seems to be challenging.

In this paper, we study a representation of hypergraphs that arises from a natural variant of point-line
cover where we want to cover a given set P of points in Rd by axis-parallel lines, see Fig. 1 for an
illustration. While the axis-parallel case of point-line cover has been considered before by Gaur and Bhat-
tacharya (2007), the known algorithms do not improve upon the general case of hypergraph vertex cover,
as studied by Aharoni et al. (1996); Chvátal (1979). More generally, we investigate the generalization
where we are additionally given a parameter ℓ ≤ d − 1 and we would like to cover P by axis-aligned
affine ℓ-dimensional subspaces of Rd, which we call ℓ-subspaces. The resulting class of hypergraphs is
fairly rich as any k-partite k-uniform hypergraph (i.e., a hypergraph with a partition of vertices into k
parts such that each hyperedge contains exactly one vertex of each type) can be represented by a set of
points in Rk to be covered by (k− 1)-subspaces. On the other hand, for ℓ < d− 1, there exists a k-partite
k-uniform hypergraph which is not a (d, ℓ)-hypergraph, i.e., can not be represented by a set of points in
Rd to be covered by ℓ-dimentional subspaces of Rd.

Note that for any sufficiently large set X , a similar representation can be defined in the power Xd,
where hyperedges correspond to elements of Xd and vertices correspond to subsets of Xd with d − ℓ
coordinates fixed. We keep X = R to provide more intuitive representations.

Related work. The question of representing (hyper-)graphs geometrically is related to the area of graph
drawing. For example, Evans et al. (2019) study drawing hypergraphs in R3 by representing vertices as
points and hyperedges as convex polygons while preserving incidence relations. Note that in our work we
study the “dual” representation, where hyperedges are represented as points and vertices are represented
as axis-parallel lines or affine subspaces. Another related problem in graph drawing has been introduced
by Chaplick et al. (2016). They study drawings of graphs in finite-dimensional Euclidean spaces where

(i) For the sake of presentation, we use here the representation as hitting set problem rather than the equivalent and maybe more
common geometric set cover interpretation.
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Fig. 1: A graph (a) and a hypergraph (b) and their representations in R2 and R3, respectively.

the vertices (and the edges, in some variants) of the graph can be covered by a minimum number of lines
or hyperplanes.

Our contribution and outlook. We initiate the study of representing k-hypergraphs, i.e., k-partite k-
uniform hypergraphs, via axis-aligned point-subspace cover instances in this generality. Our main insight
is that the axis-aligned case of point-subspace cover allows for a natural, combinatorial characterization
contrasting what is known for the non-aligned case (see discussion above). The characterization is based
on vertex cuts and can be leveraged to obtain a polynomial time recognition algorithm for such hyper-
graphs assuming the dimension d is a constant and that we are given the partition of the vertices, which is
NP-hard to compute for k ≥ 3 (Ilie et al., 2005).

We believe that it is an interesting future research direction to exploit these combinatorial properties
in order to obtain improved results for various optimization problems in hypergraphs such as hypergraph
vertex cover or hypergraph matching. We also hope that our combinatorial characterization may help
make progress on geometric problems. We conclude our paper by an outlook containing related open
questions and some first motivating results in this direction.

Notation and problem definition. We use d and ℓ to denote the dimensions of the space and the axis-
aligned subspaces, respectively. We use k =

(
d
ℓ

)
to denote the number of parts in the corresponding

hypergraph. For the special case of point-line cover that we consider in Section 2 we have k = d. Let
[k] = {1, . . . , k} for any k ∈ N.

Let P be a finite set of points in Rd. We define the k-hypergraph GP as follows. The vertex set of
GP is the set of axis-parallel affine subspaces (lines in the special case) containing at least one point in
P . The hyperedges in GP correspond to the points in P . The hyperedge corresponding to a point p ∈ P
contains the k axis-parallel subspaces (lines) incident to p as vertices. Note that GP is k-partite and k-
uniform where the k parts of the partition correspond to

(
d
ℓ

)
(d in the special case of point-line cover) sets

of axis-aligned subspaces.
Our main task is to decide, for a given hypergraph G = (V,E) with the partition V = V1∪V2∪ . . .∪Vk

of the vertex set V of G, whether there is an axis-aligned point-subspace cover (or point-line cover in the
special case) instance P such that G and GP are isomorphic. In this case we say that G is represented by
P and, thus, representable. A representable hypergraph we also call (d, ℓ)-hypergraph. We assume that
the partition of G into k parts is given.

We remark that every bipartite graph is representable in R2 by point-line cover because we can derive a
grid-like representation as shown in Fig. 1(a) directly from the adjacency matrix of this graph. However,
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Fig. 2: Two hypergraphs that cannot be represented by a set of points in R3 to be covered by lines. In (a), any
two lines corresponding to the shared vertices already define a unique point; in (b), one of the points representing a
hyperedge would have to lie on two skew lines, which is impossible.

for k ≥ 3 the class of (k, 1)-hypergraphs forms a non-trivial subclass of all k-hypergraphs. For example,
no pair of hyperedges can share more than one vertex in any representable hypergraph, see Fig. 2(a). But
this constraint alone is not enough to characterize representable hypergraphs, see Fig. 2(b).

2 Characterization of Hypergraphs Representable by Point-Line
Cover

For the sake of an easier presentation, we first describe the result for the special case of point-line covers,
that is, for (d, 1)-hypergraphs. We later describe how the result generalizes to higher-dimensional axis-
aligned affine subspaces.

Let G = (V,E) be a k-hypergraph with the partition V = V1 ∪ · · · ∪ Vk. We aim to compute a
point-line cover instance P (if such exists) such that each e = (v1, . . . , vk) ∈ E corresponds to some
pe = (xe

1, . . . , x
e
k) ∈ P , where these correspondences are induced by the isomorphism between G and

GP . In addition, for each i ∈ [k], each vertex vi ∈ Vi corresponds to the line ℓvi that is parallel to the
i-th coordinate axis and contains pe, that is, for all j ̸= i, we fix the j-th coordinate, whereas the i-th
coordinate is free. Refer to Fig. 1 for illustrative examples.

Definition 1 For any vertices s, t ∈ V , an s–t path is a sequence of vertices s = v1, . . . , vr = t such that
vi and vi+1 are both contained in some hyperedge e ∈ E for all i ∈ [r− 1]. Similarly, for any hyperedges
e, e′ ∈ E, an e–e′ path is a v–v′ path such that v ∈ e and v′ ∈ e′.

The following two separability conditions based on vertex cuts are key for our characterization.

Definition 2 (Vertex separability) For a given k-hypergraph G we say that distinct vertices v, v′ ∈ Vi

with i ∈ [k] are separable if there exists j ∈ [k] with j ̸= i such that every v–v′ path contains a vertex
in Vj . (Informally, removing Vj from the vertex set and from the edges of G separates v and v′.) A k-
hypergraph G is called vertex-separable if every two distinct vertices from the same vertex part of G are
separable.

Definition 3 (Edge separability) For a given k-hypergraph G we say that its distinct hyperedges e, e′ ∈
E are separable if there exists j ∈ [k] such that every e–e′ path contains a vertex in Vj . A k-hypergraph G
is called edge-separable if every two distinct hyperedges of G are separable.

Note that any pair of hyperedges sharing two or more vertices are not separable. Therefore, edge-
separable k-hypergraphs do not contain such hyperedge pairs.
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Fig. 3: A hypergraph G (on the left) that is edge-separable, but not vertex-separable (the vertices v and v′ from V2

are not separable). In a hypothetical representation of G (on the right), the line ℓv
′

must simultaneously intersect ℓu
′

and ℓw
′

and therefore must be equal to ℓv , which is impossible
.

Lemma 1 Any vertex-separable k-hypergraph is edge-separable.

Proof: Let G be any vertex-separable k-hypergraph, and let e and e′ be any distinct hyperedges of G.
There are an integer i ∈ [k] and distinct vertices v, v′ ∈ Vi such that v ∈ e and v′ ∈ e′. Since G is
vertex-separable, there exists j ∈ [k] with j ̸= i such that every v–v′ path contains a vertex in Vj . Let
π be any e–e′ path. Then v, π, v′ is a v–v′ path, so it contains a vertex in Vj , and so does π. Thus G is
edge-separable. 2

The converse of Lemma 1 is not true, see Fig. 3. In the instance depicted, the two red edges containing
v, u and u′, v′ or the two black edges containing v, w and w′, v′, for example, are separated by removing
the blue vertex part V2 (which we cannot do to show that vertices v and v′ are separable).

Definition 4 Let G = (V,E) be a k-hypergraph with the partition V = V1 ∪ V2 ∪ . . . ∪ Vk. For each
i ∈ [k], let Gi = (E,Ei) be the graph whose distinct vertices e and e′ are adjacent if and only if they
have a common vertex in a part Vj with j ̸= i.

In the following theorem we state our characterization of k-hypergraphs representable by point-line
covers via vertex separability.

Theorem 1 Let k be any positive integer. A k-hypergraph G is representable if and only if G is vertex-
separable.

Proof: We construct for each hyperedge e a point pe ∈ Rk and for each vertex vi ∈ Vi with i ∈ [k] a
line ℓvi ⊆ Rk that is parallel to the xi-axis. We do this as follows. For G we construct the graphs Gi,
i ∈ [k] defined in Definition 4. For each graph Gi, i ∈ [k] we consider the connected components of Gi

and assign to each connected component a unique (integer) value in {1, 2, . . . , |V (Gi)|}.
Now, if pei is the value of the connected component in Gi that contains e then we let the point pe =

(pe1, . . . , p
e
k) represent the hyperedge e, see Fig. 4 for an example.
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Fig. 4: A hypergraph G, the graphs G1, G2, G3, and the coordinates of the points and lines corresponding to the
hyperedges and vertices. The dots placed instead of coordinates mean that those coordinates are free.

Recall that any line parallel to the xi-axis can be defined by fixing its xj-coordinate for all j ̸= i, while
leaving xi free. Now, if the hyperedge e = {v1, . . . , vk} is represented by pe = (pe1, . . . , p

e
k) then for

each i ∈ [k], the line ℓvi that represents the vertex vi is defined by coordinates pej , j ̸= i while leaving the
xi-coordinate free, see Fig. 4. It is important to note, that the representation ℓvi is well-defined although
vi may be contained in multiple hyperedges in G. This follows from the fact that all the hyperedges
containing vi belong to the same connected component in Gj , j ∈ [k], j ̸= i because each pair of
them is joined by some edge in Gj corresponding to vi and in particular these hyperedges form a clique.
Therefore, there is no disagreement in the xj-coordinate where j ̸= i. Hence, we uniquely define the
coordinates that determine a line.
(⇐) Assume that G is vertex-separable. By the construction of the point-line cover instance we have:

• every point pe is in fact covered by the lines ℓv1 , . . . , ℓvk where e = {v1, . . . , vk}, because by
construction every line ℓvi and point pe have the same xj-coordinate with j ̸= i.

• ∀v ̸= v′ ∈ V it holds that ℓv ̸= ℓv
′
. This is obviously true if vertices belong to different parts,

because then the free coordinate of v is fixed for v′ and vice versa. If v, v′ ∈ Vi for some i ∈ [k]
then, by vertex separability, there exists j ̸= i such that v and v′ are not connected in graph Gj and
get different xj-coordinates. So they represent distinct lines.

• ∀e ̸= e′ ∈ E it holds that pe ̸= pe
′
. Indeed, by Lemma 1, G is edge-separable and by definition of

edge separability (see Definition 3) distinct hyperedges are not connected in at least one graph Gi

and get different xi-coordinates. So they represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V , e ∈ E, that is, v ∈ e, the
corresponding geometric objects ℓv and pe are incident as well. We claim that if v and e are not incident,
that is, v /∈ e then ℓv and pe are not incident as well. This is because every point pe is already incident
to precisely k lines ℓv by construction, because the lines ℓv are pairwise distinct, and because pe cannot
be incident on more than k axis-parallel lines. Thus, we have constructed a point-line cover instance that
represents the hypergraph G and this means that G is representable.
(⇒) Assume that G is not vertex-separable but that it has a point-line cover representation. This means

that it contains at least two distinct vertices v and v′ from the same part Vi that are not separable. Then
for each part Vj with j ̸= i, there exists a v–v′ path v = v1, . . . , vr = v′ such that vt /∈ Vj for each
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t ∈ [r]. All lines ℓvt with t ∈ [r] that represent the vertices v1, . . . , vr lie on the same hyperplane
Hj perpendicular to the xj-axis. This is because successive line pairs are joined by a common point
(representing the hyperedge containing both) and since none of these lines is parallel to the xj-axis and
so the xj-coordinate stays fixed. Since this holds for all j ∈ [k], j ̸= i, the lines ℓv and ℓv

′
lie in the

intersection
⋂
j ̸=i

Hj . But the intersection of such hyperplanes is a single line. This contradicts that v and

v′ correspond to the distinct lines. 2

Note that our characterization in Theorem 1 directly gives rise to an efficient recognition algorithm to
check whether or not a given k-hypergraph is representable. We check for every vertex pair from the same
part whether they are separable.

Below we give an algorithm to actually compute a representation for a given k-hypergraph (or output
that a representation does not exist). The algorithm is an algorithmic implementation of the construction
used in the proof of Theorem 1 to recover a representation from a given (representable) k-hypergraph.

Computing a representation. For each i ∈ [k] we compute a graph Gi as in Definition 4. We use
the construction from the proof of Theorem 1 to assign the coordinates for all points and lines (using
connected components of Gi). In particular, we uniquely number the connected components of each
graph Gi, i ∈ [k]. Then, for any hyperedge e, we construct the point pe whose i-th coordinate is the
number of the connected components containing e in Gi. Based on the representation of the hyperedges
we can easily obtain the representation of the vertices as lines as well. To verify if the resulting candidate
representation is in fact valid, we have to check if any two points pe, pe

′
representing distinct hyperedges

e, e′ are in fact distinct, that is, differ in at least one coordinate. Similarly, we have to check distinctness of
the lines. If this is the case then the hypergraph G is representable and we get the point-line cover instance
corresponding to G.

The construction of a point-line cover instance for a given hypergraph can be done in O(k · m2),
where m is the number of hyperedges. Checking distinctness of the vertex and edge representations takes
O(k · (m logm + n log n)) using lexicographic sorting, where n is the number of vertices. In total, the
runtime of the algorithm is O(k · (m2 + n log n)).

3 Generalization to Point-Subspace Cover
In this section, we generalize the previous result for (d, 1)-hypergraphs to the general case of (d, ℓ)-
hypergraphs. That is, we want to characterize k-hypergraphs (where k =

(
d
ℓ

)
) that are representable

as sets of points in Rd covered by ℓ-dimensional axis-aligned subspaces where 1 ≤ ℓ ≤ d − 1 and
d ≥ 2. Such an axis-aligned affine subspace L in Rd is defined by fixing d − ℓ coordinates (called
fixed coordinates) to specific values and allowing ℓ coordinates (called free coordinates) to vary freely.
Formally, there exists a point (x1, . . . , xd) ∈ Rd and an index set I ⊆ [d] with |I| = ℓ such that

L = {(y1, . . . , yd) ∈ Rd | yi = xi for all i /∈ I}.

In this formulation, the coordinates in I define the ℓ-dimensional degrees of freedom, while the remaining
coordinates are fixed to the values of xi.

Note that in the case ℓ = d − 1 every k-hypergraph can be represented analogously to the case of
bipartite graphs, each of which is representable in two-dimensional space. This follows immediately from
our characterization below but can also be seen in a direct way analogously to the two-dimensional setting.
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For each positive integer ℓ ≤ d−1, each (d, ℓ)-hypergraph is a k-hypergraph, for k =
(
d
ℓ

)
. Every part of

the vertex partition in the hypergraph represents a set of ℓ-subspaces that have the same free coordinates.
In the following we assume that the labeling of the parts of the hypergraph is given. That is, for each
part of the hypergraph, we know which ℓ-subset I of free coordinates this part corresponds; we write VI

to denote this correspondence. If the labeling is not given, we guess the correct labeling in a brute-force
fashion by checking all O(dℓd

ℓ

) many labelings whether it satisfies the characterization for fixed labeling
as described below.

The following definitions and proofs are natural generalizations of these for (d, 1)-hypergraphs. In the
case of ℓ = 1 the idea of separability is related to cutting the part Vj of the graph corresponding to some
coordinate j ∈ [k]. The key idea in the generalized setting is to cut instead all parts VI that contain a
specific coordinate j. Below, we give the full definitions and proofs, which are along the lines of ℓ = 1
but rather use the generalized concept of cuts and separability.

Generalization of the vertex separability property. Let ℓ and d with ℓ ≤ d−1 be any positive integers
and let

(
[d]
ℓ

)
be the family of subsets of [d] of cardinality ℓ. Let k =

∣∣∣([d]ℓ )∣∣∣ = (
d
ℓ

)
. Let G = (V,E) be

a k-hypergraph and let V =
⋃

I∈([d]ℓ )
VI be the partition of V . For each i ∈ [d], let V̂i =

⋃
{VI | I ∈(

[d]
ℓ

)
, I ∋ i}, i.e., a set of parts of V that share the free coordinate i.

Now we generalize the vertex separability property using the definition of a path (see Definition 1 from
Section 2).

Definition 5 (Vertex separability) Let I ∈
(
[d]
ℓ

)
be any set. For a given

(
d
ℓ

)
-hypergraph G, two distinct

vertices v and v′ ∈ VI are separable if there exists j ∈ [d] \ I such that every v–v′ path contains a vertex
in V̂j . (Informally, removing V̂j from the vertex set and from the hyperedges of G separates v and v′.) A
hypergraph G is called vertex-separable if every two distinct vertices from the same vertex part of G are
separable.

In an analogous way we can generalize edge separability and Lemma 1 that vertex separability implies
edge separability.

Definition 6 (Edge separability) For a given
(
d
ℓ

)
-hypergraph G, two distinct hyperedges e and e′ of G

are separable if there exists j ∈ [d] such that every e–e′ path contains a vertex in V̂j . A hypergraph G is
called edge-separable if every two distinct hyperedges of G are separable.

Lemma 2 Any vertex-separable
(
d
ℓ

)
-hypergraph is edge-separable.

Proof: Assume that a given
(
d
ℓ

)
-hypergraph G is not edge-separable. This means that there are two

distinct hyperedges e and e′ that are not separable. Then ∀j ∈ [d] there is an e–e′ path that does not
contain a vertex from V̂j . Because e and e′ are distinct, there are distinct vertices v and v′ with v ∈ e and
v′ ∈ e′ from the same part VI for some I ∈

(
[d]
ℓ

)
. Now, for each j ∈ [d] \ I , there exists an e–e′ path πj

that does not contain a vertex from V̂j . But then v, πj , v
′ forms a v–v′ path that does not contain a vertex

from V̂j . This means that G is not vertex-separable. 2

As was already mentioned in the previous section, the converse is not true, see Fig. 3.
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Definition 7 Let G = (V,E) be a
(
d
ℓ

)
-hypergraph with the partition V =

⋃
I∈([d]ℓ )

VI . For each i ∈ [d],

let Gi = (E,Ei) be the graph whose distinct vertices e and e′ are adjacent if and only if they have a
common vertex in V \ V̂i.

Theorem 2 Let ℓ and d with ℓ ≤ d − 1 be any positive integers. A
(
d
ℓ

)
-hypergraph G is representable if

and only if G is vertex-separable.

Proof: The proof is a natural generalization of the proof of Theorem 1.
We construct for each hyperedge e a point pe ∈ Rd and for each vertex vI ∈ VI with I ∈

(
[d]
ℓ

)
a subspace ℓvI ∈ Rd that is parallel to all xi-axis where i ∈ I . We do this as follows. For G, we
construct the graphs Gi with i ∈ [d] defined in Definition 7. For each graph Gi we consider the connected
components of the graph and assign to each of them a unique (integer) value.

Now, if pei is the value of the connected component in Gi that contains e then we let the point pe =
(pe1, . . . , p

e
d) represent the hyperedge e, see Fig. 4 for an example.

Recall that any subspace parallel to all xi-axis where i ∈ I can be defined by fixing its xj-coordinate
for all j ̸= i, while leaving xi-coordinates free. Now, if the hyperedge e = {vI} for all I ∈

(
[d]
ℓ

)
is

represented by pe = (pe1, . . . , p
e
d) then for each I ∈

(
[d]
ℓ

)
, the subspace ℓvI that represents the vertex vI

is defined by coordinates pej , j /∈ I while leaving the xi-coordinates free. It is important to note, that
the representation ℓvI is well-defined although vI may be contained in multiple hyperedges in G. This
follows from the fact that all the hyperedges containing vI belong to the same connected component in Gj

with j ∈ [d] because each pair of them is joined by some edge in Gj corresponding to vI and in particular
these hyperedges form a clique. Therefore, there is no disagreement in the xj-coordinate where j ̸= i for
all i ∈ I . Hence, we uniquely define the coordinates that determine a subspace.
(⇐) Assume that G is vertex-separable. By the construction of the point-subspace cover instance we

have:

• every point pe is in fact covered by the lines ℓvI where e = {vI} for all I ∈
(
[d]
ℓ

)
. This is because

by construction every line ℓvI and point pe have the same xj-coordinate with j /∈ I .

• ∀v ̸= v′ ∈ V it holds that ℓv ̸= ℓv
′
. This is obviously true if vertices belong to different parts,

because then there exists at least one free coordinate of v that is fixed for v′ and vice versa. If
v, v′ ∈ VI for some I ∈

(
[d]
ℓ

)
then, by vertex separability, there exists j /∈ I such that v and v′ are

not connected in graph Gj and get different xj-coordinates. So they represent distinct subspaces.

• ∀e ̸= e′ ∈ E it holds that pe ̸= pe
′
. Indeed, by Lemma 2, G is edge-separable and by the definition

of edge separability (see Definition 6) distinct hyperedges are not connected in at least one graph
Gi and get different xi-coordinates. So they represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V , e ∈ E, that is, v ∈ e, the
corresponding geometric objects ℓv and pe are incident as well. We claim that if v and e are not incident,
that is, v /∈ e then ℓv and pe are not incident as well. This is because every point pe is already incident to
precisely

(
d
ℓ

)
subspaces ℓv by construction, because the subspaces ℓv are pairwise distinct, and because pe

cannot be incident to more than
(
d
ℓ

)
axis-parallel subspaces. Thus, we have constructed a point-subspace

cover instance that represents the hypergraph G and this means that G is representable.
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(⇒) Assume that G is not vertex-separable but that it has a point-subspace cover representation. This
means that it contains at least two distinct vertices v and v′ from the same part VI that are not separable.
Then, for each coordinate j ∈ [d]\I , there exists a v-v′ path such that none of the vertices on this path has
j as a free coordinate. All subspaces that represent the vertices from the path lie in the same hyperplane
Hj perpendicular to the xj-axis, i.e., xj-coordinate is fixed and all other coordinates are free. This is
because successive subspace pairs are joined by a common point (representing the hyperedge containing
both successive vertices from the path). Since none of these subspaces is parallel to the xj-axis, the xj-
coordinate stays fixed. Since this holds for all j ∈ [d] \ I , the subspaces ℓv and ℓv

′
lie in the intersection⋂

j /∈I

Hj . But the intersection of such hyperplanes is a single subspace that has all coordinates i ∈ I free.

This contradicts that v and v′ correspond to the distinct subspaces. 2

Analogously to the special case of (d, 1)-hypergraphs the above proof leads directly to an algorithm
computing a representation (or notifying about non-existence). A straightforward implementation of this
algorithm gives a running time of O(dℓd

ℓ+2(m2+n log n)) where the exponential factor in d comes from
guessing the labeling of the parts. It is a very interesting question if the exponential dependence on d can
be removed to get a polynomial-time algorithm also for non-constant d.

4 Conclusion and Outlook
There is a large amount of literature in algorithms and graph theory on hypergraph problems. This moti-
vates various future research directions.

1. Can the structure of (d, ℓ)-hypergraphs be leveraged in (optimization) problems for hypergraphs
such as matching or vertex cover?

2. What is the relation of the class of (d, ℓ)-hypergraphs to other classes of hypergraphs (for example
geometrically representable hypergraphs)?

For example, maximum matching in k-hypergraphs is a very well-studied problem still exhibiting large
gaps in our current understanding (Cygan, 2013; Hazan et al., 2006). Another example is hypergraph
vertex cover, for which tight approximability results are known for general k-hypergraphs, as shown
by Guruswami and Saket (2010). While the problem has been considered for (k, 1)-hypergraphs before
by Gaur and Bhattacharya (2007) (from the geometric perspective of point-line covering), no improvement
upon the general case is known. We hope that our structural characterization can help to obtain such
improvements. In the following, we state some first motivating results opening up these lines of research.
Namely, we show that matching on (3, 1)-hypergraphs is NP-hard and consider the relation of (d, 1)-
hypergraphs to point-line cover representations on the plane where we drop the requirement of axis-
alignment. We hope that our structural characterization helps make progress on these questions.

4.1 Complexity of Matching on (3, 1)-Hypergraphs
Finding maximum matchings in hypergraphs and in k-hypergraphs in particular is a classic optimization
problem. The latter problem is also known as k-dimensional matching. This is a classic NP-hard problem,
and thus its approximation algorithms have been studied. The currently best approximation algorithm for
k-dimensional matching belongs to Cygan (2013) and has the ratio (k + 1 + ϵ)/3 for an arbitrarily small
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constant ϵ > 0. Despite the problem is very well-studied, there is still a big gap to the best known lower
bound of Ω(k/ log k) on the approximability by Hazan et al. (2006).

It is an interesting question if improved upper bounds can be obtained for (d, ℓ)-hypergraphs. As a first
motivating result, we show in the following that indeed matching on (k, 1)-hypergraphs is NP-hard for
any k ≥ 3. (For k = 2 the problem is matching on bipartite graphs, and thus its optimum can be found in
polynomial time.)

Below we consider the matching problem for (3, 1)-hypergraphs. Specifically, we are given a 3-uniform
3-partite vertex-separable hypergraph, i.e., a 3-hypergraph that can be represented as a point-line cover
instance in R3. The aim is to find a largest 3-dimensional matching, that is, a set of hyperedges of the
hypergraph such that no two hyperedges share a common vertex. We call the problem MATCHING ON
(3, 1)-HYPERGRAPHS.

The problem can be translated to point-line cover terms as follows. Given a finite set of points in R3,
the aim is to find a largest subset of points, such that no two lie on the same axis-parallel line.

In the following, we show NP-hardness of this problem by reduction from the decision version of
MAXIMUM INDEPENDENT SET, which we describe next. Given a graph G = (V,E) with |V | = n,
the task is to decide whether there exists an independent set of size at least r, that is, a subset of vertices
I ⊆ V with |I| ≥ r, such that no two vertices from I are adjacent. We denote by α(G) the size of a
largest independent set of the graph G.

Theorem 3 The decision version of MATCHING ON (3, 1)-HYPERGRAPHS is NP-hard.

Proof: Given a graph G = (V,E) with n vertices and m edges, we construct a (3, 1)-hypergraph H(G)
in polynomial time such that, for any integer r ≥ 0, H(G) has a matching of size at least n2−2n+r+2m
if and only if G has an independent set of size at least r.

Below, we create such an instance where we represent vertices by axis-parallel lines and hyperedges by
points. First we introduce a vertex gadget. For every vertex v ∈ V , we create a set of 2(n−1) axis-parallel
lines ℓ1(v), . . . , ℓ2n−2(v) that lie on the same plane perpendicular to the z-axis. We require that, for each
i ∈ [2n− 2], the line ℓi(v) is parallel to the x-axis, if i is odd, and to the y-axis, if i is even, see Fig. 5(a).
Moreover, for each odd (even) i ∈ [2n − 3], the line ℓi(v) has smaller fixed y-coordinate (x-coordinate)
than the line ℓi+2(v). For each i ∈ [2n− 3], we introduce a point at the intersection of the lines ℓi(v) and
ℓi+1(v). We call the set of these 2n− 3 points the vertex path of v and denote it by P (v). We say that the
point of the vertex path that lies at the intersection of lines ℓi(v) and ℓi+1(v), for i ∈ [2n − 3], is of type
A if i is odd, and of type B, otherwise. Let A(v) ⊆ P (v) be the set of points of type A (see the blue disks
at Fig. 5(a)) and let B(v) ⊆ P (v) be the set of points of type B (see the green squares at Fig. 5(a)). Note
that the points of A(v) and the points of B(v) alternate in P (v), |A(v)| = n − 1, and |B(v)| = n − 2.
Hence, both A(v) and B(v) are matchings in the set P (v) = A(v) ∪ B(v), and since |A(v)| > |B(v)| it
holds that A(v) is the unique maximum matching in P (v).

Now we introduce an edge gadget. For each edge e = (u, v) ∈ E we create a set of five axis-parallel
lines ℓ1(e), . . . , ℓ5(e) connecting a point in A(u) with a point in A(v), such that ℓ1(e) and ℓ5(e) are
parallel to the z-axis, ℓ2(e) and ℓ4(e) are parallel to the x-axis, and ℓ3(e) is parallel to the y-axis, see
Fig. 5(b). Moreover, two consecutive lines cross and the first and the last lines contain a point of A(u) and
a point of A(v), respectively. For each i ∈ [4], we introduce a point at the intersection of the lines ℓi(e) and
ℓi+1(e). These four points (which we call inner points) together with the two points from A(u) and A(v)
(which we call endpoints) create an edge path P (e) of e. For each edge path we pick different endpoints,
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· · ·

2n− 3 points︷ ︸︸ ︷

(a) A vertex gadget contains n− 1 points of type A
(blue disks) and n− 2 points of type B (green squares).

v2

v1

· · ·

· · ·

(b) An edge gadget (black) connecting two ver-
tex gadgets (red).

Fig. 5: A vertex (a) and an edge (b) gadgets.

v1

v2

v3

v4

(a)

v1

v2

v3

v4

(b)

Fig. 6: Illustration of the reduction: a graph (on the left) and a corresponding point-line cover instance (on the right).
The input points lie at the intersections of the lines drawn at the figure.

so that the edge paths are pairwise disjoint. This is possible because every vertex v has |A(v)| = n − 1
points of type A on its vertex path and is incident to at most n − 1 edges. Note that any matching of an
edge gadget contains at most two inner points. Moreover, a matching can contain two inner points only if
at most one of the endpoints is in this matching.

For an example of the construction of a matching instance from a given graph, see Fig. 6. We construct
the instance in such a way that no two lines introduced above coincide and so that every vertex path lies
on its own plane perpendicular to the z-axis.

It remains to prove that the instance H(G) has a matching M of size at least t = n2 − 2n+ r + 2m if
and only if G has an independent set I of size at least r, for any integer r ≥ 0.

Assume that there is an independent set I of G of size r′ ≥ r. We construct a matching M of size at
least t as follows. For each vertex v of G, if v ∈ I , we add the set A(v) to M ; otherwise, we add the set
B(v) to M . This ensures that, for any edge path corresponding to an edge (u, v) of G, at most one of its
end points will be included in M , because at most one of the vertices u, v is in I . This allows us to add
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vertical
horizontal

slope 1

Fig. 7: A not vertex-separable hypergraph and its representation on the plane with three directions.

two inner points of each edge path to M . Thus,

|M | = r′ · (n− 1) + (n− r′) · (n− 2) + 2m = n2 − 2n+ r′ + 2m ≥ t.

Now, assume conversely that H(G) has a matching M of size at least t. We first modify M such that
it remains a valid matching of size at least t but has a structure corresponding to an independent set in G
as described above. Consider vertex paths of H(G). Observe that if, for a vertex v of G, the matching M
contains points both of A(v) and B(v), then M ∩P (v) has size at most n− 2. In this case, we change the
matching on P (v) to B(v) without decreasing its size. Thus, assume that M ∩ P (v) = B(v). Using this
assumption, we can ensure that every vertex path has either only points of type A or only points of type
B in M . Assume that there is an edge path P ((u, v)) corresponding to some edge (u, v) ∈ E where both
endpoints are in M . This implies M ∩ P (u) = A(u) and M ∩ P (v) = A(v). Then P ((u, v)) contains
only one inner point that is in M . In this case, we change the matching M so that M ∩ P (u) = B(u)
and so that P ((u, v)) contains two inner points in M without decreasing the size of M overall. Hence,
we can assume that, for any edge (u, v) ∈ E, we do not have M ∩ P (u) = A(u) and M ∩ P (v) = A(v)
simultaneously. We can also assume that any edge path contains two inner points in M .

Let I(M) be the set of vertices v ∈ V where P (v) ∩ M = A(v). Note that I(M) is an independent
set by our assumption above. Since any edge path contains two inner points in M , the total size of M
is |I(M)|(n − 1) + (n − 2)(n − |I(M)|) + 2m. This quantity is at least t only if |I(M)| ≥ r, which
completes the proof. 2

4.2 Plane Many-Directions Representations
To address the second research direction mentioned above, we give a first result relating the class of
(d, 1)-hypergraphs to other geometrically represented hypergraphs. Here we consider in particular point-
line cover representations on the plane where we drop the requirement of axis-alignment.

Obtaining a many-directions representation for a (d, 1)-hypergraph. Assume we are given an inte-
ger d ≥ 0 and a (d, 1)-hypergraph with an axis-aligned point-line cover representation P in Rd. We create
an equivalent point-line cover representation on the plane with d distinct directions. To this end, we create
a random 2× d matrix M , where each entry is picked uniformly at random from the interval [0, 1]. Note
that, for any two distinct vectors x, y ∈ Rd, the probability that Mx = My is 0. Hence, with probability
1, the set P ′ = {Mp | p ∈ P } ⊆ R2 has cardinality |P |. By the same reasoning, with probability 1, any
two non-parallel lines in Rd stay non-parallel under the mapping induced by M . Thus, the axis-parallel
lines in Rd covering the points in P are transformed into a set of distinct lines in the plane using precisely
d distinct directions.

The converse does not hold. For an example of a hypergraph that is not vertex-separable (thus, does not
have a representation in R3), but is representable on the plane with three directions, see Fig. 7.
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Observe that the plane many-directions case is sensitive to the directions we allow. In the configuration
in Fig. 8 there are four points and six directions of lines, namely, vertical, horizontal, and with the slopes
2, −2, 1/2, and −1/2. However, it is not hard to verify that it is not possible to represent an isomorphic
hypergraph with the directions vertical, horizontal, and with the slopes 2, −2, 1/2, and 1/3.

Fig. 8: An example of a many-directions representation with four points and six directions: vertical, horizontal, and
slopes 2, -2, 1/2, -1/2.
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Tomaž Pisanski and Milan Randić. Bridges between geometry and graph theory. In Catherine A. Gorini,
editor, Geometry at Work: Papers in Applied Geometry, pages 174–194. Math. Assoc. of Amer., 2001.

Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Leonard J. Schul-
man, editor, Proc. 42nd Symp. on Theory of Computing (STOC’10), pages 641–648. ACM, 2010. URL
https://doi.org/10.1145/1806689.1806777.

https://doi.org/10.1007/978-3-030-35802-0_2
https://doi.org/10.1007/978-3-642-14165-2_31
https://doi.org/10.1007/978-3-642-14165-2_31
https://doi.org/10.1016/0166-218X(91)90011-K
https://doi.org/10.1016/0166-218X(91)90011-K
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.1007/11496656_27
https://doi.org/10.1137/1.9781611973402.116
https://doi.org/10.1007/3-540-45022-X_53
https://doi.org/10.1007/3-540-45022-X_53
https://doi.org/10.1145/1806689.1806777

	Introduction
	Characterization of Hypergraphs Representable by Point-Line Cover
	Generalization to Point-Subspace Cover
	Conclusion and Outlook
	Complexity of Matching on (3,1)-Hypergraphs
	Plane Many-Directions Representations


