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The algorithm of Tutte for constructing convex planar straight-line drawings and the algorithm of Floater and Gotsman
for constructing planar straight-line morphs are among the most popular graph drawing algorithms. In this paper,
focusing on maximal plane graphs, we prove upper and lower bounds on the resolution of the planar straight-line
drawings produced by Floater’s algorithm, which is a broad generalization of Tutte’s algorithm. Further, we use such
results in order to prove a lower bound on the resolution of the drawings of maximal plane graphs produced by Floater
and Gotsman’s morphing algorithm. Finally, we show that such a morphing algorithm might produce drawings with
exponentially-small resolution, even when transforming drawings with polynomial resolution.
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1 Introduction
In 1963 Tutte [38] presented an algorithm to construct convex planar straight-line drawings of 3-connected
plane graphs. The algorithm is very simple: Given any convex polygon representing the outer cycle of
the graph, place each internal vertex at the barycenter of its neighbors. This results in a system of linear
equations, whose variables are the coordinates of the internal vertices, which has a unique solution; quite
magically, this solution corresponds to a planar straight-line drawing of the graph in which the faces are
delimited by convex polygons. We call any drawing obtained by an application of Tutte’s algorithm a
T-drawing. Tutte’s algorithm is one of the most famous graph drawing algorithms; notably, it has spurred
the research on the practical graph drawing algorithms that are called force-directed methods [14, 17, 30].

A far-reaching generalization of Tutte’s algorithm was presented by Floater [21, 22] (and, in a similar
form, by Linial, Lovász, and Wigderson [31]). Namely, one can place each internal vertex at any convex
combination (with positive coefficients) of its neighbors; the resulting system of equations still has a

∗This research was supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 – NextGRAAL and Project no.
2022TS4Y3N – EXPAND). A preliminary version of this paper appeared at the 29th International Symposium on Graph Draw-
ing and Network Visualization (GD 2021) [15].
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unique solution that corresponds to a convex planar straight-line drawing of the graph. Formally, let G
be a 3-connected plane graph and let P be a convex polygon representing the outer cycle of G. Further,
for each internal vertex v of G and for each neighbor u of v, let λvu > 0 be a real value such that∑

u∈N (v) λvu = 1, where N (v) denotes the set of neighbors of v. For each internal vertex v of G,
consider the two equations:

x(v) =
∑

u∈N (v)

(λvu · x(u)) (1) y(v) =
∑

u∈N (v)

(λvu · y(u)) (2)

where x(v) and y(v) denote the x and y-coordinates of a vertex v, respectively. This results in a system
of 2N equations in 2N variables, where N is the number of internal vertices of G, which has a unique
solution [21, 22]. This solution corresponds to a convex planar straight-line drawing, which can hence be
represented by a pair (Λ,P), where P is the prescribed convex polygon and Λ is a coefficient matrix. This
matrix has a row for each internal vertex of G and a column for each (internal or external) vertex of G;
further, an element of the matrix whose row corresponds to a vertex v and whose column corresponds to
a vertex u is the coefficient λvu if (v, u) is an edge of G and 0 otherwise. We call any drawing resulting
from an application of Floater’s algorithm an F-drawing. Notice that F-drawings are extensively used
for surface parameterization and reconstruction in computer graphics, in multiresolution problems, and in
texture mapping; see, e.g., [26, 27, 39, 40]. Similar types of drawings have been studied for constructing
three-dimensional representations of polytopes [13, 32, 35]. Further, every convex planar straight-line
drawing of a 3-connected plane graph (and, in particular, every planar straight-line drawing of a maximal
plane graph) is an F-drawing (Λ,P), for a suitable choice of Λ and P [21, 22, 23, 24].

Floater and Gotsman [24] devised a simple and yet powerful application of the above drawing technique
to the construction of planar straight-line morphs. Given a graph G and given two convex planar straight-
line drawings Γ0 and Γ1 of G with the same polygon P representing the outer cycle, construct two
coefficient matrices Λ0 and Λ1 such that (Λ0,P) = Γ0 and (Λ1,P) = Γ1. Now, a morph M between Γ0

and Γ1, that is, a continuous transformation of Γ0 into Γ1, can be obtained as follows. For each t ∈ [0, 1],
construct a coefficient matrix Λt as (1−t) ·Λ0+t ·Λ1; in particular, for each internal vertex v of G and for
each neighbor u of v, the element λt

vu of Λt whose row corresponds to v and whose column corresponds
to u is equal to λt

vu = (1 − t) · λ0
vu + t · λ1

vu. Then the morph between Γ0 and Γ1 is simply defined as
M = {Γt = (Λt,P) : t ∈ [0, 1]}; since Γt is an F-drawing, for any t ∈ [0, 1], this algorithm guarantees
that every drawing in M is a convex planar straight-line drawing. We call any morph constructed by an
application of Floater and Gotsman’s algorithm an FG-morph. The algorithm of Floater and Gotsman is
perhaps the most popular graph morphing algorithm; extensions, refinements, and limits of the method
have been discussed, e.g., in [2, 28, 36, 37].

In this paper, we study the resolution of T-drawings, F-drawings, and FG-morphs of maximal plane
graphs. The resolution is perhaps the most studied aesthetic criterion for the readability of a graph draw-
ing. Measuring the resolution of a drawing can be done in many ways, for example by considering the
area of the drawing, if the vertices have integer coordinates, or by bounding the smallest angle in the
drawing. We adopt a natural definition of resolution, namely the ratio between the smallest and the largest
distance between two (distinct, non-incident, and non-adjacent) geometric objects representing vertices
or edges. Eades and Garvan [18] proved that T-drawings of n-vertex maximal plane graphs might have
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1/2Ω(n) resolution; this was independently observed by Chambers et al. [9]. Furthermore, an 1/2O(n)

lower bound for the resolution of T-drawings in which one is allowed to choose the polygon representing
the outer cycle has been proved by [32]; see also [33] and Section 3.1, where we discuss the techniques
used in [32, 33]. It is unclear, a priori, whether the worst-case resolution of T-drawings, F-drawings,
and FG-morphs can be expressed as any function of natural parameters(i) representing the input size and
resolution.

We prove the following results(ii). First, we show a lower bound on the resolution of F-drawings (and
thus on the resolution of T-drawings).

Theorem 1. Let Γ = (Λ,∆) be an F-drawing of an n-vertex maximal plane graph G, where n ≥ 4. The
resolution of Γ is larger than or equal to r

2 ·
(
λ
3

)n ∈ r · λO(n), where λ is the smallest positive coefficient
in the coefficient matrix Λ and r is the resolution of the prescribed triangle ∆.

Second, we prove that the bound for the exponent in Theorem 1 is asymptotically tight for the family
of graphs introduced by Eades and Garvan [18].

Theorem 2. There is a class of maximal plane graphs {Gn : n = 5, 6, . . . }, where Gn has n vertices,
with the following property. For any 0 < λ ≤ 1

4 and 0 < r ≤
√
3
2 , there exist a triangle ∆ with resolution

r and a coefficient matrix Λ for Gn whose smallest positive coefficient is λ such that the F-drawing (Λ,∆)
of Gn has resolution in r · λΩ(n).

We remark that algorithms are known for constructing planar straight-line drawings of maximal plane
graphs [12, 34] and even convex planar straight-line drawings of 3-connected plane graphs [5, 10] with
polynomial resolution. Indeed, drawings on the grid with polynomial area have polynomially bounded
resolution.

Third, we use Theorem 1 in order to prove a lower bound on the resolution of FG-morphs.

Theorem 3. Let Γ0 and Γ1 be any two planar straight-line drawings of the same n-vertex maximal plane
graph G such that the outer faces of Γ0 and Γ1 are delimited by the same triangle ∆. There exists an
FG-morph M = {Γt : t ∈ [0, 1]} between Γ0 and Γ1 such that, for each t ∈ [0, 1], the resolution of Γt is
larger than or equal to (r/n)

O(n), where r is the minimum between the resolution of Γ0 and Γ1.

We show that Theorem 3 can be used in order to “approximate” FG-morphs with piecewise linear
morphs of finite complexity. A piecewise linear morph consists of a sequence of linear morphs, in which
vertices move at uniform speed along straight-line segments. It is intuitive that one can mimic an FG-
morph by a sequence of “suitably short” linear morphs, each connecting two drawings of the FG-morph,
so that planarity is maintained at all times. Our result, whose precise statement is deferred to Section 7,
shows that a finite number of linear morphs suffices to design such a discretization of the FG-morph.

Finally, we prove that FG-morphs might produce drawings with exponentially small resolution, even if
they transform drawings with polynomial resolution.

(i) The number n of vertices of the graph is not the only parameter that needs to be taken into account in order to bound the resolution
of T-drawings, F-drawings, and FG-morphs. Indeed, for T-drawings and F-drawings, one might have to consider the resolution of
the prescribed polygon P (which is a triangle, since we deal with maximal plane graphs) and the values of the coefficient matrix
Λ. Further, for FG-morphs, one might have to consider the resolution of the input drawings Γ0 and Γ1.

(ii) At a first glance, our use of the O(·) and Ω(·) notation in the paper seems to be inverted. For example, Theorem 1 shows a bound
of r · λO(n) on the resolution of F-drawings. This is a lower bound, and not an upper bound, given that λ < 1. Indeed, the O(·)
notation indicates that the exponent has a value which is at most something, hence the entire power has a value which is at least
something (smaller than one).
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Theorem 4. For every n ≥ 6 multiple of 3, there exist an n-vertex maximal plane graph G and two
planar straight-line drawings Γ0 and Γ1 of G such that:

(R1) the outer faces of Γ0 and Γ1 are delimited by the same triangle ∆;

(R2) the resolution of both Γ0 and Γ1 is larger than or equal to c/n2, for some constant c; and

(R3) any FG-morph between Γ0 and Γ1 contains a drawing whose resolution is in 1/2Ω(n).

We remark that the construction of planar straight-line morphs with high resolution has been attracting
an increasing attention [6, 7, 11]. A main open question in the area is whether polynomial resolution
can be guaranteed in a planar straight-line morph between any two given drawings (with polynomial
resolution) of a plane graph. Theorem 4 shows that Floater and Gotsman’s algorithm cannot be used to
settle this question in the positive.

2 Preliminaries
We assume familiarity with graph drawing [14] and introduce preliminary properties and lemmata.

We denote by V (G) and E(G) the vertex and edge sets of a graph G, respectively. For a vertex
v ∈ V (G), we denote by NG(v) (or by N (v) when the graph is clear from the context) the set of
neighbors of v in G; the degree of v is |N (v)|. Throughout the paper, by the term cycle we always refer
to a simple cycle. We denote by n the number of vertices of the considered graphs; in the following, we
always assume that n ≥ 4.

A graph is biconnected if the removal of any vertex leaves the graph connected.
A drawing of a graph represents each vertex as a distinct point in the plane and each edge as a Jordan

arc connecting the points representing the end-vertices of the edge, so that no point representing a vertex
lies in the interior of a Jordan arc representing an edge. A drawing of a graph is planar if no two Jordan
arcs representing edges intersect, except at common end-points. A planar drawing of a graph partitions
the plane into connected regions, called faces. The only unbounded face is the outer face, while the
bounded faces are internal. In a planar drawing of a biconnected planar graph every face is delimited by
a cycle, which is a facial cycle; the facial cycle bounding the outer face is called outer cycle. Two planar
drawings Γ1 and Γ2 of a biconnected planar graph G are combinatorially equivalent if: (1) for each vertex
v ∈ V (G), the clockwise order of the edges incident to v is the same in Γ1 as in Γ2; (2) the clockwise
order of the vertices along the outer cycles of Γ1 and Γ2 coincide. A plane embedding is an equivalence
class of planar drawings. A plane graph is a planar graph with an associated plane embedding. A maximal
plane graph is a plane graph to which no edge can be added without losing planarity or simplicity. The
assumption n ≥ 4 implies that every vertex of an n-vertex maximal plane graph has degree at least 3.

Let G be a plane graph. When referring to a planar drawing Γ of G, we always mean that Γ is in
the equivalence class associated to G. All the planar drawings of G have the same set of facial cycles,
hence we often talk about the “faces of G”, meaning the faces of any planar drawing in the equivalence
class associated to G. A subgraph G′ of G is associated with a plane embedding “inherited” from the
one of G, as follows. Consider a planar drawing Γ of G and the planar drawing Γ′ of G′ obtained from
Γ by removing the vertices in V (G) \ V (G′) and the edges in E(G) \ E(G′); then the plane embedding
of G′ is the equivalence class of planar drawings of G′ the drawing Γ′ belongs to. We say that G is
internally-triangulated if every internal face of G is delimited by a 3-cycle. A vertex of G is external if it
is incident to the outer face of G, it is internal otherwise. The sets of internal and external vertices of G
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are denoted by IG and OG, respectively. Consider a cycle C of G. An external chord of C is an edge of G
that connects two vertices of C, that does not belong to C, and that lies outside C in G. The subgraph of
G inside C is composed of the vertices and edges that lie inside or on the boundary of C. The following is
easy to observe.

Property 1. Let G be a maximal plane graph and let C be a cycle of G. The subgraph of G inside C is
biconnected and internally-triangulated.

2.1 Distances, resolution, and F-drawings

A drawing of a graph is straight-line if every edge is represented by a straight-line segment. In a straight-
line drawing of a graph, by geometric object we mean a point representing a vertex or a straight-line
segment representing an edge. We often call “vertex” or “edge” both the combinatorial object and the
corresponding geometric object. Two geometric objects in a planar straight-line drawing of a graph are
separated if they share no point. By the planarity of the drawing, two geometric objects are hence sepa-
rated if and only if they are distinct vertices, or non-adjacent edges, or a vertex and a non-incident edge.
The distance dΓ(o1, o2) between two separated geometric objects o1 and o2 in a planar straight-line draw-
ing Γ of a graph G is the minimum Euclidean distance between any point of o1 and any point of o2. For
two vertices u and v of G, we denote by d

↕
Γ(u, v) the vertical distance between u and v in Γ, that is, the

absolute value of the difference between their y-coordinates. The resolution of Γ is the ratio between the
distance of the closest separated geometric objects and the distance of the farthest separated geometric
objects in Γ. Throughout the paper, we denote by δ the distance of the closest separated geometric objects
in any considered drawing.

Let R be a finite connected subset of Rn and let z1, . . . , zn be the coordinates of Rn. For any l =
1, . . . , n, the zl-extent of R is the maximum zl-coordinate of any point of R minus the minimum zl-
coordinate of any point of R.

Throughout the paper, we denote by (Λ,∆) an F-drawing of a maximal plane graph G, where Λ is
a coefficient matrix for G and ∆ is a triangle representing the outer cycle of G. Also, we denote by λ
the smallest positive coefficient in Λ. Note that a T-drawing is an F-drawing in which, for every internal
vertex v and every neighbor u of v, we have λvu = 1/|N (v)|.

Next, we present a tool that we often use in order to translate and rotate F-drawings. The lemma shows
that, given an F-drawing (Λ,∆), if we construct a new F-drawing using the coefficient matrix Λ and an
affinely transformed copy of ∆, we obtain a drawing that is an affinely transformed copy of (Λ,∆), under
the same affine transformation.

Lemma 1. Let (Λ,∆) be an F-drawing of a maximal plane graph G and let ∆′ be the triangle obtained
by applying an affine transformation σ to ∆. Then the F-drawing (Λ,∆′) coincides with the drawing
obtained by applying σ to the drawing (Λ,∆).

Proof: The affine transformation σ maps any point (x, y) in the plane to the point (x, y) = (a ·x+ b · y+
c, d · x+ e · y + f), for some scalars a, b, c, d, e, and f . We need to show that, for every internal vertex v
of G, we have

x(v) =
∑

u∈N (v)

(λvu · x(u))
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and
y(v) =

∑
u∈N (v)

(λvu · y(u)).

We only prove the former equality, as the proof for the latter is analogous. By definition of σ, we have
x(w) = a · x(w) + b · y(w) + c, for each vertex w, and thus∑

u∈N (v)

(λvu · x(u)) =
∑

u∈N (v)

(λvu · (a · x(u) + b · y(u) + c))

= a ·
∑

u∈N (v)

(λvu · x(u)) + b ·
∑

u∈N (v)

(λvu · y(u)) + c ·
∑

u∈N (v)

λvu

= a · x(v) + b · y(v) + c = x(v),

where the second to last equality follows from Equations 1 and 2 applied to the drawing (Λ,∆) and
from

∑
u∈N (v) λvu = 1.

We sometimes use the following elementary property.

Property 2. Let (Λ,∆) be an F-drawing of a maximal plane graph G with at least four (five) vertices.
The smallest positive coefficient λ in Λ is at most equal to 1/3 (resp. 1/4).

Proof: Since G has at least four (five) vertices, it contains an internal vertex v with degree at least 3 (resp.
at least 4). Since the coefficients expressing the position of v with respect to the ones of its neighbors are
all positive and sum up to 1, at least one of such coefficients is smaller than or equal to 1/3 (resp. 1/4).

2.2 The resolution of triangles
We now show some properties on the resolution of triangles. We start with the following observation.

Property 3. The resolution of a triangle is smaller than or equal to
√
3
2 and there exist triangles with this

resolution.

Proof: First, note that an equilateral triangle has resolution
√
3
2 .

Consider any triangle ∆ and let α ≥ 60◦ be its largest angle. Let v be the vertex of ∆ incident to such
an angle, let ℓ be the length of the side s of ∆ opposite to v, and let h be the height of ∆ with respect to s.
Note that h and ℓ are the smallest and the largest distance between two separated geometric objects of ∆,
respectively, hence the resolution of ∆ is h/ℓ.

The altitude of ∆ through v partitions α into two smaller angles α1 and α2. Simple trigonometric
considerations show that ℓ = h · (tan(α1) + tan(α2)). By substituting α2 = α − α1 and by deriving
with respect to α1, we get that the minimum of the function f(α1) := tan(α1)+ tan(α−α1) is achieved
when α1 = α/2. Hence, h

ℓ = 1
tan(α1)+tan(α2)

≤ 1
2 tan(α/2) ≤

1
2 tan(30◦) =

√
3
2 .

We now prove the following.

Lemma 2. Let ∆ be a triangle with resolution equal to r. Let s be any side of ∆, let ℓ be its length, and
let h be the height of ∆ with respect to s. Then h/ℓ ≥ r.
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Proof: Let A be the area of ∆. Let s be any side of ∆, let ℓ be its length, and let h be the height of ∆
with respect to s. Also, let s1 be the longest side of ∆, let ℓ1 be its length, and let h1 be the height of ∆
with respect to s1. Note that ℓ1 ≥ ℓ and h1 ≤ h. Then we have h/ℓ = 2A/ℓ2 ≥ 2A/ℓ21 = (ℓ1 · h1)/ℓ

2
1 =

h1/ℓ1 = r.

Lemma 3. Let ∆ be a triangle with resolution equal to r and y-extent equal to Y . Then the x-extent X
of ∆ is at most Y/r.

Proof: Let R be the smallest axis-parallel rectangle containing ∆; note that R has width X and height
Y . We distinguish two cases, based on whether two or three vertices of ∆ belong to the boundary of R.

X

Yh

h′

`

p

X

Y

`

h h′

p

t

(a) (b)

Fig. 1: Illustration for the proof of Lemma 3. The side s of ∆ is represented by a fat line segment. In (a) two vertices
of ∆ belong to the boundary of R, and in (b) three vertices of ∆ belong to the boundary of R.

Case 1: Two vertices of ∆ belong to the boundary of R; see Figure 1(a). In this case, one of the sides
of ∆, call it s, coincides with one of the diagonals of R; let ℓ be the length of s. Also, let h be the height
of ∆ with respect to s. Let p be a vertex of R not incident to s, and let h′ be the distance between p and s.

Note that h < h′. Further, by Lemma 2, we have h/ℓ ≥ r, hence

h′ ≥ r · ℓ. (3)

By considering the area of R and the area of the triangle defined by s and by p, we get

X · Y = h′ · ℓ. (4)

Moreover, since ℓ > X , we get

ℓ2 > X2. (5)

Substituting Equation 3 into Equation 4, we get

X · Y ≥ r · ℓ2. (6)

Substituting Equation 5 into Equation 6, we get X · Y ≥ r ·X2, from which it follows that X ≤ Y/r,
as required.

Case 2: Three vertices of ∆ belong to the boundary of R; see Figure 1(b). In this case, one of the
vertices of ∆, call it t, coincides with one of the vertices of R; let s be the side of ∆ that is incident to t
and whose other end-vertex is on a vertical side of R. Then the length ℓ of s is larger than X , from which
Equation 5 follows again. Let h be the height of ∆ with respect to s; notice that the altitude of ∆ with
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respect to s does not necessarily lie entirely inside R. Furthermore, let p be the vertex of R that shares a
vertical side of R with t. Finally, let h′ be the distance between p and s.

By considering the area of R and the area of the triangle defined by s and by p, Equation 4 follows
again.

Equation 3 is also true in Case 2. Indeed, that h ≤ h′ follows from the fact that p is the farthest point
of R from s. Moreover, that h/ℓ ≥ r follows from Lemma 2.

Now, from Equations 3, 4, and 5, the bound X ≤ Y/r can be derived as in Case 1.

3 Lower Bound on the Resolution of F-Drawings
In this section, we prove Theorem 1, which we restate here for the reader’s convenience.

Theorem 1. Let Γ = (Λ,∆) be an F-drawing of an n-vertex maximal plane graph G, where n ≥ 4. The
resolution of Γ is larger than or equal to r

2 ·
(
λ
3

)n ∈ r · λO(n), where λ is the smallest positive coefficient
in the coefficient matrix Λ and r is the resolution of the prescribed triangle ∆.

Let δ be the minimum distance between any two separated geometric objects in Γ. We start by proving
that the smallest distance δ in Γ is achieved “inside” an internal face of G.

Lemma 4. Let Γ = (Λ,∆) be an F-drawing of an n-vertex maximal plane graph G, where n ≥ 4, and
let δ be the minimum distance between any two separated geometric objects in Γ. There exist an internal
vertex v and an edge e = (ue, ve) of G such that:

• dΓ(v, e) = δ;

• v, ue, and ve are the vertices of a triangle T delimiting an internal face of G in Γ; and

• the altitude of T through v lies inside T .

Proof: First, observe that there exist a vertex v and an edge e = (ue, ve) of G such that dΓ(v, e) = δ.
Indeed, the minimum distance between two separated geometric objects of Γ is δ, by assumption; each
of such objects can be either a vertex or an edge. If the two objects are two vertices u1 and u2, then the
distance between u1 and any edge incident to u2 is at most δ; further, if the two objects are two edges e1
and e2, then there exists an end-vertex of one of them that is at distance δ from the other edge.

Second, we prove that v, ue, and ve are the vertices of a triangle T delimiting an internal face of G in Γ.
Consider a segment s of length δ between v and a point p of e; this exists because dΓ(v, e) = δ.

• Suppose first, for a contradiction, that s is the straight-line segment representing an edge e′ of G.
Let f be any internal face of G incident to e′ and let Tf be the triangle delimiting f in Γ. Then (at
least) one of the heights of Tf is smaller than s, and hence smaller than δ, a contradiction.

• Suppose next that s does not represent an edge of G. If s intersected a vertex or an edge in its
interior, the distance between such a geometric object and v would be smaller than δ, which would
contradict the assumptions. It follows that s lies inside an internal face of G that is incident to v, ue,
and ve. Since G is a maximal plane graph, such a face is delimited by a triangle T , whose vertices
are v, ue, and ve.
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Third, suppose, for a contradiction, that the altitude of T through v does not lie inside T , hence the angle
of T at ue or ve is larger than 90◦ (see Figure 2(a)). Assume the former, as the other case is analogous. It
follows that the altitude of T through ue is the shortest altitude of T , hence the distance in Γ between ue

and the edge (v, ve) is smaller than δ, a contradiction.

ue ve
δ

v

< δ ue ve

v

δ

w

< δ
`

p

(a) (b)

Fig. 2: Illustration for the proof of Lemma 4. (a) If the altitude of T through v does not lie inside T , then there is a
height of T smaller than δ. (b) If v is an external vertex of G, then the distance between one of the end-vertices of e
and one of the edges incident to the outer face of G is smaller than δ. The gray angles are equal.

Finally, we prove that v is an internal vertex of G; refer to Figure 2(b). Suppose, for a contradiction,
that v is an external vertex of G and let w and z be the two vertices of the outer cycle of G different
from v. Since n ≥ 4 and since the 3-cycle (v, ue, ve) bounds an internal face of G, we have that the
edge e is not incident to the outer face of G. It follows that at least one of the edges (v, w) and (v, z)
cuts the line ℓ through e, as otherwise e would not lie inside the triangle delimiting the outer face of Γ.
Say that (v, w) cuts ℓ in a point p and assume, without loss of generality, that p, ue, and ve occur in
this order along ℓ. Then the distance from ue to the edge (v, w) is |vue| · sin(ûevw), which is smaller
than |vue| · sin(v̂ueve) = δ, given that ûevw < v̂ueve, a contradiction which concludes the proof of the
lemma.

By Lemma 1, we can assume that y(v) = 0, that e is horizontal in Γ, and that v lies above (the line
through) e. We now show that the neighbors of v are not “too high” or “too low” in Γ.

Lemma 5. For every neighbor u of v, we have that d↕Γ(u, v) ≤
δ
λ .

Proof: By Lemma 4, the altitude through v of the triangle with vertices v, ue, and ve intersects the edge
(ue, ve). It follows that: (i) y(ue) = y(ve) = −δ, which implies that the statement of the lemma is
satisfied for u ∈ {ue, ve}, given that λ < 1; and (ii) x(ue) < x(v) < x(ve), up to a relabeling of ue

with ve.
Next, we prove the following claim: Every neighbor w of v that is different from ue and ve lies on or

above the horizontal line through v; that is, y(w) ≥ 0, for every vertex w ∈ N (v) \ {ue, ve}. By the
planarity of Γ, it suffices to prove the claim for the neighbors u and z of v such that (v, u) and (v, z) are
the edges that follow (v, ue) in clockwise and counter-clockwise direction around v, respectively.

We prove that y(u) ≥ 0, the proof that y(z) ≥ 0 is analogous. Suppose, for a contradiction, y(u) < 0.
Let ∆e be the triangle with vertices u, v, and ue. We distinguish two cases.

• Suppose first that the angle of ∆e at u is larger than or equal to the angle of ∆e at ue, that is,
v̂uue ≥ v̂ueu (see Figure 3(a)). This implies that dΓ(v, u) ≤ dΓ(v, ue) and that the altitude of ∆e

through u intersects the edge (v, ue). It follows that the distance between u and the edge (v, ue) is
equal to dΓ(v, u) · sin(ûvue) < dΓ(v, ue) · sin(v̂ueve) = δ, a contradiction to the fact that δ is the
minimum distance between two separated geometric objects in Γ.
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ue ve

v

δ
u

ue ve

v

δu

(a) (b)

Fig. 3: Illustration for the proof that y(u) ≥ 0, where (v, u) is the edge that follows (v, ue) in clockwise order around
v. (a) The case in which v̂uue > v̂ueu. (b) The case in which v̂ueu > v̂uue.

• Suppose next that the angle of ∆e at ue is larger than the angle of ∆e at u, that is, v̂ueu > v̂uue (see
Figure 3(b)). This implies that the altitude of ∆e through ue intersects the edge (v, u). It follows
that the distance between ue and the edge (v, u) is equal to dΓ(v, ue) · sin(ûvue) < dΓ(v, ue) ·
sin(v̂ueve) = δ, a contradiction to the fact that δ is the minimum distance between two separated
geometric objects in Γ.

This completes the proof of the claim. Now, by Equation 2, we have that
∑

u∈N (v)(λvu · y(u)) =

y(v) = 0, hence
∑

u∈N (v)\{ue,ve}(λvu · y(u)) = (λvue
+ λvve) · δ. By the above claim, for every vertex

u ∈ N (v) \ {ue, ve}, we have that λvu · y(u) ≤ (λvue
+ λvve) · δ, and hence y(u) < δ

λvu
≤ δ

λ .

We outline the proof of Theorem 1. By Lemma 5, the vertex v and its neighbors are contained in Γ
inside a “narrow” horizontal strip (see Figure 4(a)). Using that as a starting point, the strategy is now
to define a sequence of subgraphs of G, each one larger than the previous one, so that each subgraph
is contained inside a narrow horizontal strip. The larger the considered graph, the larger the height of
the horizontal strip, however this height only depends on λ, on δ, and on the number of vertices of the
considered graph. Eventually, this argument leads to a bound on the y-extent of Γ, and from that bound
the resolution r of the outer triangle ∆ provides a bound on the largest distance between two separated
geometric objects of Γ. The comparison of such a distance with the minimum distance δ between two
separated geometric objects of Γ allows us to derive the bound of Theorem 1.

We now formalize the above proof strategy. For i ∈ N+, we denote by Hi the horizontal strip of height
h(i) := δ ·

(
3
λ

)i
bisected by the horizontal line through v.

We prove the existence of a sequence G1, . . . , Gk = G of graphs such that, for i = 1, . . . , k, the
graph Gi is a biconnected internally-triangulated plane graph that is a subgraph of G satisfying Proper-
ties (P1)–(P4) below. Let Γi be the restriction of Γ to Gi and let Ci be the outer cycle of Gi.

(P1) Gi has at least i+ 3 vertices;

(P2) Ci does not have any external chord;

(P3) Gi is the subgraph of G inside Ci; and

(P4) Γi is contained in the interior of the horizontal strip Hi.

We define G1 as follows. Let Gv be the subgraph of G induced by the neighbors of v (see Figure 4(b)).
Since G is a maximal plane graph, we have that Gv is biconnected; let C1 be the outer cycle of Gv .
Then G1 is defined as the subgraph of G inside C1 (see Figure 4(c)). Property (P3) is satisfied by con-
struction. Further, Property (P1) is satisfied, given that G1 contains at least 4 vertices, namely v and its at
least three neighbors. Property (P2) is satisfied because C1 is the outer cycle of Gv and Gv is an induced
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H1

v
H1 H1

v

(a) (b) (c)

Fig. 4: (a) The subgraph of G composed of the edges incident to v. (b) The subgraph Gv of G induced by the
neighbors of v. (c) The subgraph G1 of G inside C1.

subgraph of G. Property (P4) is satisfied by Lemma 5, as the distance from v to the top or bottom side
of H1 is 3

2 · δ
λ ; observe that all the vertices of G1 are contained in the convex hull of the neighbors of v.

Finally, G1 is biconnected and internally-triangulated, by Property 1.
Assume that Gi ̸= G; we will deal with the case in which Gi = G later. We describe how to con-

struct Gi+1 from Gi, so that Properties (P1)–(P4) are satisfied. In order to do that, we introduce the notion
of ↕-connected vertex and prove some lemmata about it.

We say that a vertex v of Gi is ↕-connected if it satisfies at least one of the following properties:

• v has a neighbor in G above or on the top side of Hi+1 and has a neighbor in G below the bottom
side of Hi;

• v has a neighbor in G below or on the bottom side of Hi+1 and has a neighbor in G above the top
side of Hi.

The first lemma about ↕-connected vertices states that if a vertex u of Gi that is an internal vertex of G
has a neighbor in G above or on the top side of Hi+1, then it also has a neighbor in G below Hi; roughly
speaking, this is true because a “very high” neighbor of u in Γ pushes u too high to be “balanced” (in
terms of Equation 2) by neighbors of u which lie in Hi or above.

Lemma 6. Let u be a vertex of Gi in IG. If u has a neighbor in G above or on the top side of Hi+1, then
it is ↕-connected. Analogously, if u has a neighbor in G below or on the bottom side of Hi+1, then it is
↕-connected.

Proof: We prove the first part of the statement. The proof of the second part is analogous. Suppose, for a
contradiction, that there exists a vertex u of Gi in IG that has a neighbor w in G above or on the top side
of Hi+1 and that has no neighbor below Hi.

By Equation 2, we have that
∑

z∈NG(u)(λuz · y(z)) = y(u). Since
∑

z∈NG(u) λuz = 1, it follows that∑
z∈NG(u)(λuz · (y(z)− y(u))) = 0, hence

λuw · (y(w)− y(u)) =
∑

z∈NG(u)\{w}

(λuz · (y(u)− y(z))). (7)

Since the distance between the top side of Hi+1 and the top side of Hi is equal to h(i+1)−h(i)
2 , we have

that

λuw · (y(w)− y(u)) ≥ λ · h(i+ 1)− h(i)

2
.
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Further, since every neighbor of u in G lies above or on the bottom side of Hi and since u lies in the
interior of Hi, we have that y(u)− y(z) < h(i), for every neighbor z of u in G. Hence, we have∑

z∈NG(u)\{w}

(λuz · (y(u)− y(z))) < h(i) ·
∑

z∈NG(u)\{w}

λuz < h(i).

Furthermore, we have

λ · h(i+ 1)− h(i)

2
− h(i) > λ · h(i+ 1)

2
− 3 · h(i)

2
=

δ

2

(
λ ·
(
3

λ

)i+1

− 3 ·
(
3

λ

)i
)

= 0.

This implies that

λuw · (y(w)− y(u)) >
∑

z∈NG(u)\{w}

(λuz · (y(u)− y(z))),

which contradicts Equation 7.

The next lemma states that few vertices of Gi are ↕-connected (and thus, by Lemma 6, few vertices
of Gi have neighbors in G outside Hi+1).

Lemma 7. The following statements hold true:

(S1) Gi contains at most two vertices that are in IG and that are ↕-connected; and

(S2) if Gi contains a vertex in OG, then it contains at most one vertex that is in IG and that is ↕-connected.

Proof: For each ↕-connected vertex u of Gi, let ℓ(u) be the polygonal line defined as follows. Let w be
a neighbor of u that lies above the top side of Hi and let z be a neighbor of u that lies below the bottom
side of Hi. Let pw and pz be the intersection points of the edges (u,w) and (u, z) with the top side of Hi

and the bottom side of Hi, respectively. Then ℓ(u) is composed of the line segments upw and upz . For
the remainder of the proof, refer to Figure 5.

In order to prove (S1), suppose, for a contradiction, that Gi contains (at least) three distinct ↕-connected
vertices u1, u2, and u3 in IG; by the planarity of Γ, we have that ℓ(u1), ℓ(u2), and ℓ(u3) do not cross
each other; assume, w.l.o.g. up to a switch of the labels of u1, u2, and u3, that ℓ(u2) is in-between ℓ(u1)
and ℓ(u3) in Hi. Consider any path P of Gi connecting u1 and u3. By the planarity of Γ and since Gi is
contained in the interior of Hi, we have that P does not cross ℓ(u2), except at u2. However, this implies
that the removal of u2 from Gi separates u1 from u3, a contradiction to the fact that Gi is biconnected.
This proves (S1).

u1
u2

u3

Hi

Fig. 5: Illustration for the proof of Lemma 7. The fat lines are ℓ(u1), ℓ(u2), and ℓ(u3).



On the Resolution of Planar Drawings and Morphs 13

In order to prove (S2), suppose, for a contradiction, that Gi contains a vertex u1 in OG and contains (at
least) two distinct ↕-connected vertices u2 and u3 in IG. Since u2 has neighbors both above the top side
of Hi and below the bottom side of Hi, the vertex w of G with the largest y-coordinate in Γ lies above the
top side of Hi and the vertex z of G with the smallest y-coordinate in Γ lies below the bottom side of Hi.
Note that (w, u1, z) is a path incident to the outer face of G. As before, ℓ(u1) is then defined as the portion
of the polygonal line (w, u1, z) inside Hi. By the planarity of Γ, we have that ℓ(u1), ℓ(u2), and ℓ(u3) do
not cross each other; further, since u1 is incident to the outer face of Γ, we can assume, w.l.o.g. up to a
switch of the labels of u2 and u3, that ℓ(u2) is in-between ℓ(u1) and ℓ(u3) in Hi. Consider any path P of
Gi connecting u1 and u3. By the planarity of Γ and since Gi is contained in the interior of Hi, we have
that P does not cross ℓ(u2), except at u2. However, this implies that the removal of u2 from Gi separates
u1 from u3, a contradiction to the fact that Gi is biconnected. This proves (S2) and hence the lemma.

Finally, we prove the following main lemma, stating that there exists a vertex that is an external vertex
of Gi, that is an internal vertex of G, and that is not ↕-connected.

Lemma 8. There exists a vertex u in OGi ∩ IG that is not ↕-connected.

Proof: Since Gi contains at least four vertices (by Property (P1) of Gi) and is biconnected, it follows that
|OGi

| ≥ 3. We distinguish three cases:

• If |OGi
∩ OG| = 0, that is, all the external vertices of Gi are internal to G, then |OGi

∩ IG| ≥ 3.
By statement (S1) of Lemma 7, at least one of the vertices in OGi

∩ IG is not ↕-connected.

• If |OGi
∩ OG| = 1, that is, all but one of the external vertices of Gi are internal to G, then

|OGi ∩ IG| ≥ 2. By statement (S2) of Lemma 7, at least one of the vertices in OGi ∩ IG is not
↕-connected.

• If |OGi
∩ OG| = 2, then Gi contains two vertices u and w incident to the outer face of G and

|OGi
∩IG| ≥ 1; let t be any vertex in OGi

∩IG. Since the outer face of G is delimited by a 3-cycle
(u,w, z), we have that all the vertices of G are contained in Γ in the triangle with vertices u, w, and
z. By Property (P4) of Gi, the vertices u and w are contained in the interior of Hi, hence if z lies
above the bottom side of Hi, then t does not have any neighbor below the bottom line of Hi, while
if z lies below the top side of Hi, then t does not have any neighbor above the top side of Hi. In
both cases, we have that t is a vertex in OGi

∩ IG that is not ↕-connected.

The proof is concluded by observing that |OGi ∩ OG| ≤ 2. Indeed, suppose, for a contradiction, that
|OGi

∩ OG| = 3. Then Gi contains the three vertices incident to the outer face of G. Hence, by Prop-
erty (P2) of Gi, we have that Gi contains the outer cycle of G, and by Property (P3) of Gi, we have
Gi = G, a contradiction.

We are now ready to describe how to construct Gi+1 from Gi; refer to Figure 6. By Lemma 8, there
exists a vertex u in OGi

∩ IG that is not ↕-connected. Let (u, z) be any of the two edges incident to u in
Ci. The edge (u, z) is incident to two faces of G, one inside and one outside Ci; let (u, z, w) be the cycle
delimiting the face of G incident to (u, z) outside Ci. We have the following.

Lemma 9. The vertex w does not belong to Gi.

Proof: Suppose, for a contradiction, that w belongs to Gi; this implies that w belongs to Ci, given that the
face of G delimited by (u, z, w) lies outside Ci. We distinguish two cases.
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Gi Hi

u
z

w
Hi+1

Fig. 6: Construction of Gi+1 from Gi.

• If any of the edges (u,w) and (w, z) does not belong to Ci, then such an edge is an external chord
of Ci. However, this contradicts Property (P2) of Gi.

• If both the edges (u,w) and (w, z) belong to Ci, then Ci is the cycle (u, z, w), given that (u, z) is
an edge of Ci as well. However, since (u, z, w) bounds a face f of G outside Ci, we have that f is
the outer face of G and thus Gi = G, a contradiction.

This concludes the proof.

By Lemma 9, we have that w does not belong to Gi. Let Gw be the subgraph of G induced by
{w} ∪ V (Ci). Note that Gw is biconnected, as it contains Ci and the edges (u,w) and (w, z). Let Ci+1

be the outer cycle of Gw and let Gi+1 be the subgraph of G inside Ci+1. We prove that Gi+1 satisfies the
required properties.

• Property (P3) is satisfied by construction.

• Property (P1) is satisfied, given that Gi contains at least i+3 vertices (by Property (P1) of Gi), and
given that Gi+1 contains at least one more vertex than Gi, namely w.

• Property (P2) is satisfied because Ci+1 is the outer cycle of Gw and Gw is an induced subgraph of
G.

• Property (P4) is also satisfied by Γi+1. Namely, all the vertices of Gi are contained inside Hi ⊂
Hi+1, by Property (P4) of Gi. Further, w is contained in the interior of Hi+1, given that u is not
↕-connected and by Lemma 6. Moreover, all the vertices of Gi+1 are contained in the convex hull
of {w} ∪ V (Ci).

Finally, Gi+1 is biconnected and internally-triangulated, by Property 1.
By Property (P1), for some integer value k ≤ n− 3, we have that Gk contains n vertices, that is, Gk =

G. By Property (P4) of Gk, the y-extent of Γ is smaller than δ ·
(
3
λ

)n
. Hence, the y-extent Y of the triangle

∆ delimiting the outer face of Γ is smaller than δ ·
(
3
λ

)n
. By Lemma 3, the x-extent X of ∆ is smaller than
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δ
r ·
(
3
λ

)n
, where r is the resolution of ∆. The maximum distance between two separated geometric objects

in Γ, which coincides with the longest side of ∆, is smaller than X+Y < δ ·
(
3
λ

)n ·(1 + 1
r

)
< 2δ

r ·
(
3
λ

)n
.

The resolution of Γ is larger than or equal to the ratio between the minimum distance between two
separated geometric objects in Γ, which is equal to δ, and the upper bound on the maximum distance
between two separated geometric objects in Γ obtained above. This ratio is r

2 ·
(
λ
3

)n
, which is indeed the

bound in Theorem 1. By Property 2, we have that r
2 ·
(
λ
3

)n ∈ r · λO(n).

3.1 An Algebraic Approach to Lower Bound the Resolution of F-Drawings
We now discuss an approach to obtain a lower bound on the resolution of F-drawings that is different from
the one presented in order to prove Theorem 1. This alternative approach is algebraic and is similar to the
one proposed in [32, 33] in order to obtain a lower bound on the resolution of T-drawings. Although we
did not manage to bring the approach to completion, we deem it interesting and hence discuss it here.

Let G be a 3-connected(iii) plane graph with n vertices. Let v1, . . . , vN be the internal vertices of G
and let vN+1, . . . , vn be the external vertices of G. Also, let P be a convex polygon representing the
outer cycle C of G, let Λ be a coefficient matrix for G with elements λvivj , where i = 1, . . . , N and
j = 1, . . . , n, and let λ be the smallest positive coefficient in Λ. Finally, let x and y be the vectors (with
N elements each) representing the coordinates of the internal vertices of G in the F-drawing Γ = (Λ,P)
of G. By Equation 1, the vector x is the (unique) solution to the following system of equations:

1 −λv1v2 −λv1v3 · · · −λv1vN

−λv2v1 1 −λv2v3 · · · −λv2vN

−λv3v1 −λv3v2 1 · · · −λv3vN

· · · · · · · · · · · · · · ·
−λvNv1 −λvNv2 −λvNv3 · · · 1


︸ ︷︷ ︸

A

·


x(v1)
x(v2)
x(v3)
· · ·

x(vN )


︸ ︷︷ ︸

x

=


bx(v1)
bx(v2)
bx(v3)
· · ·

bx(vN )


︸ ︷︷ ︸

bx

(8)

where

bx =


bx(v1)
bx(v2)
bx(v3)
· · ·

bx(vN )

 =


λv1vN+1

· x(vN+1) + λv1vN+2
· x(vN+2) + · · ·+ λv1vn

· x(vn)
λv2vN+1

· x(vN+1) + λv2vN+2
· x(vN+2) + · · ·+ λv2vn · x(vn)

λv3vN+1
· x(vN+1) + λv3vN+2

· x(vN+2) + · · ·+ λv3vn · x(vn)
· · ·

λvNvN+1
· x(vN+1) + λvNvN+2

· x(vN+2) + · · ·+ λvNvn · x(vn)

 . (9)

Analogously, by Equation 2, the vector y is the (unique) solution to the system of equations A·y = by,
where by is a vector whose definition is analogous to Equation 9, however using y-coordinates rather than
x-coordinates.

For a square matrix M, denote by det(M) its determinant. The above system of equations can be
solved by Cramer’s rule, obtaining, for k = 1, . . . , N , that x(vk) is equal to det(Ax

k)/ det(A), where
Ax

k denotes the matrix obtained by substituting the k-th column of A with bx. Note that both det(Ax
k)

and det(A) are polynomial functions of degree at most N whose variables are the elements λvivj of Λ.

(iii) Note that the approach we describe here does not require the graph G to be maximal.
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Similarly, for k = 1, . . . , N , we have that y(vk) is equal to det(Ay
k)/ det(A), where Ay

k denotes the
matrix obtained by substituting the k-th column of A with by.

Let us now try to lower bound the distance δij between two adjacent internal vertices vi and vj of G
in Γ. Note that the actual resolution of Γ might be smaller than the distance between any two internal
vertices of G, as it is given by the distance between a vertex and an edge of G. However, trying to prove
a lower bound for δij is already sufficient to showcase the difficulty of finalizing this algebraic approach.
The distance δij is equal to

√
(x(vi)− x(vj))2 + (y(vi)− y(vj))2. Using the above formulas we get:

δij =

√(
det(Ax

i )− det(Ax
j )
)2

+
(
det(Ay

i )− det(Ay
j )
)2

det(A)
=

√
wij(Λ)

det(A)
, (10)

where wij(Λ) :=
(
det(Ax

i )− det(Ax
j )
)2

+
(
det(Ay

i )− det(Ay
j )
)2

is a polynomial of degree at
most 2N whose variables are the elements λvivj of Λ. In order to prove a lower bound for δij , it suffices
to prove a lower bound for wij(Λ) and an upper bound for det(A). The latter task is easy to accomplish,
as each row of A is a vector with Euclidean length at most

√
2 (since one term is 1 and the absolute values

of all other terms sum up to 1), hence by Hadamard’s inequality det(A) is in 2O(N). On the other hand,
we do not know how to prove a lower bound for wij(Λ). Note that wij(Λ) is the sum of d(N) products,
for some function d, between O(N) variables. However, even considering that each of such variables is
larger than or equal to some fixed value λ > 0, we do not know how to bound the sum away from 0.
Indeed, a polynomial might assume values arbitrarily close to zero even if the absolute value of each of
its monomials is bounded away from zero by some (even arbitrarily large) value.

A similar approach was successfully employed in [32, 33] in order to bound the resolution of a T-
drawing of G in which one can pick the shape of the polygon representing C. We believe there are two
main reasons for the different outcome of an algebraic approach in the two cases. The first reason is that
in our setting, differently from [32, 33], we are not allowed to choose the polygon representing C. Such a
polygon is arbitrary and its resolution r is a parameter for our problem. There is concrete hope to overcome
this problem, at least for maximal plane graphs. Indeed, for a maximal plane graph G, the input triangle
∆ representing the 3-cycle C bounding the outer face can be obtained as an affine transformation of any
(suitably chosen) triangle ∆′. And even more, the F-drawing (Λ,∆) can be obtained by the same affine
transformation of the F-drawing (Λ,∆′), see Lemma 1. Thus, one could try to derive the resolution of the
drawing in which C is represented by ∆ from the resolution of the drawing in which C is represented by ∆′,
taking into account how the affine transformation modifies the latter resolution. The second, much more
important, reason is that a T-drawing is an F-drawing in which each coefficient λvivj is a fraction with
numerator 1 and denominator equal to the degree of vi in G, which we denote by deg(vi). This allows one
to suitably choose the coordinates of the polygon representing C so that the vertex coordinates are actually
integers (and then distances are naturally bounded away from zero as a function of the maximum absolute
value of a vertex coordinate). Indeed, consider the x-coordinates of a T-drawing of G, as the argument for
the y-coordinates is the same. We can multiply the left and right sides of Equation 8 by the matrix

deg(v1) 0 0 · · · 0
0 deg(v2) 0 · · · 0
0 0 deg(v3) · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · deg(vN )

 .
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to transform Equation 8 into the following


deg(v1) −a12 −a13 · · · −a1N
−a21 deg(v2) −a23 · · · −a2N
−a31 −a32 deg(v3) · · · −a3N
· · · · · · · · · · · · · · ·

−aN1 −aN2 −aN3 · · · deg(vN )


︸ ︷︷ ︸

A′

·


x(v1)
x(v2)
x(v3)
· · ·

x(vN )


︸ ︷︷ ︸

x

=


∑n

i=N+1 a1i · x(vi)∑n
i=N+1 a2i · x(vi)∑n
i=N+1 a3i · x(vi)

· · ·∑n
i=N+1 ani · x(vi)


︸ ︷︷ ︸

b′
x

, (11)

where aij = 1 if vi and vj are neighbors in G, and aij = 0 otherwise. Notice that all the elements of A′

are integers. By using Cramer’s rule, we get that x(vi) is equal to det(A′
i)/det(A

′), where A′
i is the

matrix obtained by substituting the i-th column of A′ with b′
x. Thus, it suffices to choose the coordinates

x(vN+1), x(vN+2), . . . , x(vn) as integers multiple of det(A′) in order to ensure that x(vi) is integer(iv).
The value of the determinant of A′ can finally be bounded by a suitable exponential function of n. The
reciprocal of such a function then provides an asymptotic lower bound on the resolution of the drawing.

4 Upper Bound on the Resolution of F-Drawings
In this section, we prove Theorem 2, which we restate here for the reader’s convenience.

Theorem 2. There is a class of maximal plane graphs {Gn : n = 5, 6, . . . }, where Gn has n vertices, with
the following property. For any 0 < λ ≤ 1

4 and 0 < r ≤
√
3
2 , there exist a triangle ∆ with resolution r

and a coefficient matrix Λ for Gn whose smallest positive coefficient is λ such that the F-drawing (Λ,∆)
of Gn has resolution in r · λΩ(n).

We remark that, by Property 2, no coefficient matrix for Gn can have a smallest coefficient larger
than 1/4, given that n ≥ 5. Furthermore, by Property 3, no triangle has resolution larger than

√
3/2.

The theorem is proved by analyzing a class of graphs introduced by Eades and Garvan [18] and depicted
in Figure 7. Consider any values 0 < λ ≤ 1

4 and 0 < r ≤
√
3
2 .

u

v

z

v1v2v3

vn−3

Fig. 7: The graph Gn in the proof of Theorem 2. The x-coordinates of the vertices z, v1, . . . , vn−3 are larger than
they should be, for the sake of readability.

Let ∆ be the triangle whose vertices have coordinates pu := (0, 0.5), pv := (0,−0.5), and pz := (r, 0);
note that the resolution of ∆ is r. The vertices u, v, and z of Gn are embedded at pu, pv , and pz ,
respectively. Further, let v0 := z and let Λ be the coefficient matrix such that:
(iv) The analyses of [32, 33] have to use some extra care in the choice of the coordinates of the vertices of the polygon representing
C, as a suitable equilibrium of forces needs to be ensured on the vertices of C, in order to ensure that the 2D drawing can then be
lifted to a 3D convex polytope.
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• λvivi+1
= λ, for i = 1, . . . , n− 4;

• λvi+1vi = λ, for i = 0, . . . , n− 4;

• λviu = λviv = 0.5− λ, for i = 1, . . . , n− 4; and

• λvn−3u = λvn−3v = 0.5− λ/2.

Observe that, for every internal vertex vi of Gn, with i ∈ {1, . . . , n−3}, we have
∑

w∈N (vi)
λviw = 1.

Easy calculations show that y(vi) = 0, for i = 1, . . . , n− 3; that is, all the vertices of Gn, except for u
and v, lie on the x-axis. Hence, the distance between any vertex vi and the edge (u, v) is equal to x(vi).

By Equation 1, for i = 1, . . . , n− 4, we have

x(vi) = λviu · x(u) + λviv · x(v) + λvivi−1 · x(vi−1) + λvivi+1 · x(vi+1) = λ · x(vi−1) + λ · x(vi+1).

By the planarity of the F-drawing (Λ,∆), we have x(vi+1) < x(vi), for i = 0, . . . , n − 4. Further,
for i = 1, . . . , n − 4, by x(vi) = λ · x(vi−1) + λ · x(vi+1) and x(vi+1) < x(vi), we get x(vi) ≤
λ · x(vi−1) + λ · x(vi), hence x(vi) ≤ λ

1−λ · x(vi−1). By repeatedly using the latter inequality, we get

x(vn−4) ≤ x(v0) ·
(

λ
1−λ

)n−4

. Since x(v0) = r, we get x(vn−4) ≤ r ·
(

λ
1−λ

)n−4

. Since λ ≤ 1
4 = 0.25,

we have that λ
1−λ < λ

1
2 . Indeed, the last inequality is the same as λ(λ2 − 3λ+ 1) > 0, which is true for

0 < λ < 3−
√
5

2 ≈ 0.38. Thus, we get that x(vn−4) ≤ r · λn−4
2 ∈ r · λΩ(n). Hence, the distance between

vn−4 and (u, v) is in r ·λΩ(n). Theorem 2 then follows from the fact that the largest distance between any
two separated geometric objects in the drawing is equal to 1.

5 Lower Bound on the Resolution of FG-Morphs
In this section, we prove Theorem 3, which we restate here for the reader’s convenience.

Theorem 3. Let Γ0 and Γ1 be any two planar straight-line drawings of the same n-vertex maximal plane
graph G such that the outer faces of Γ0 and Γ1 are delimited by the same triangle ∆. There exists an
FG-morph M = {Γt : t ∈ [0, 1]} between Γ0 and Γ1 such that, for each t ∈ [0, 1], the resolution of Γt is
larger than or equal to (r/n)

O(n), where r is the minimum between the resolution of Γ0 and Γ1.

We first compute coefficient matrices Λ0 and Λ1 such that Γ0 = (Λ0,∆), such that Γ1 = (Λ1,∆), and
such that the smallest positive coefficient in each of Λ0 and Λ1 is “not too small”. This is a consequence
of the following lemma.

Lemma 10. Let Γ be a planar straight-line drawing of an n-vertex maximal plane graph G, let ∆ be the
triangle delimiting the outer face of Γ, and let r be the resolution of Γ. There exists a coefficient matrix Λ
such that Γ = (Λ,∆) and such that the smallest positive coefficient in Λ is larger than r/n.

Proof: We employ and analyze a method proposed by Floater and Gotsman [24, Section 5]. This method
is as follows. Refer to Figure 8.

Consider any internal vertex v of G and let u0, . . . , ud−1 be the clockwise order of the neighbors
of v in G. In the following description, we consider indices modulo d. Since G is a maximal plane
graph, ek := (uk, uk+1) is an edge of G and (v, uk, uk+1) is a cycle bounding an internal face of G,
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uk

v

ui+1

ui
hk

ρk

Fig. 8: Illustration for the proof of Lemma 10.

for k = 0, . . . , d − 1. Consider each vertex uk independently. Shoot a ray ρk starting at uk and passing
through v; since the polygon representing the cycle (u0, u1, . . . , ud−1) in Γ is star-shaped, the ray ρk hits
either a vertex ui or the interior of an edge ei. Since any point in the interior or on the boundary of a
triangle can be expressed as a convex combination of the triangle’s vertices (and the coefficients of such
a convex combination are unique), we have v = µk,k · uk + µi,k · ui + µi+1,k · ui+1, where µk,k > 0,
µi,k > 0, µi+1,k ≥ 0, and µk,k + µi,k + µi+1,k = 1; note that µi+1,k = 0 if ρk passes through ui.
For every index j /∈ {i, i + 1, k}, set µj,k = 0. This concludes the work done when considering uk.
After the values µj,k have been computed for all j, k ∈ {0, . . . , d− 1}, compute each coefficient λvuk

as
λvuk

= 1
d

∑
j=0,...,d−1 µk,j . Note that λvuk

> 0, for k = 0, . . . , d− 1, and that
∑

k=0,...,d−1 λvuk
= 1.

Let δ (let D) be smallest (resp. the largest) distance between two separated geometric objects in Γ,
where δ/D = r. In order to prove that each coefficient λvuk

is larger than r/n, it suffices to prove that
µk,k is larger than or equal to r; indeed, by construction, λvuk

is larger than or equal to µk,k/d > µk,k/n.
Consider again the triangle with vertices uk, ui, and ui+1 that leads to the definition of µk,k. Let hk be
the intersection point between the ray ρk and the edge (ui, ui+1). We have that µk,k is equal to the ratio
between |ukv| and |ukhk|. Furthermore, since (uk, v) is an edge of G, we have that |ukv| ≥ δ. Moreover,
|ukhk| ≤ D, given that |ukhk| is smaller than or equal to the distance between the vertex uk and the edge
(ui, ui+1). Hence µk,k ≥ δ/D = r and λvuk

> r/n.

The proof of Theorem 3 proceeds as follows. Let r0 be the resolution of Γ0 and r1 be the resolution of
Γ1; then r = min{r0, r1}. First, by means of Lemma 10, we compute a coefficient matrix Λ0 such that
Γ0 = (Λ0,∆) and such that the smallest positive coefficient in Λ0 is larger than r0/n ≥ r/n; further,
again by Lemma 10, we compute a coefficient matrix Λ1 such that Γ1 = (Λ1,∆) and such that the
smallest positive coefficient in Λ1 is larger than r1/n ≥ r/n. Let M = {Γt = (Λt,∆) : t ∈ [0, 1]}
be the FG-morph between Γ0 and Γ1 such that, for any t ∈ [0, 1], Λt = (1 − t) · Λ0 + t · Λ1. For any
t ∈ [0, 1] and for any edge (u, v) of G, where u is an internal vertex of G, the coefficient λt

uv in Λt is
equal to (1− t) ·λ0

uv + t ·λ1
uv ≥ (1− t) · r/n+ t · r/n = r/n. By Theorem 1, the resolution of the planar

straight-line drawing Γt is in (r/n)
O(n). This concludes the proof of Theorem 3.

6 Upper Bound on the Resolution of FG-Morphs
In this section, we prove Theorem 4, which we restate here for the reader’s convenience.

Theorem 4. For every n ≥ 6 multiple of 3, there exist an n-vertex maximal plane graph G and two planar
straight-line drawings Γ0 and Γ1 of G such that:

(R1) the outer faces of Γ0 and Γ1 are delimited by the same triangle ∆;
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(R2) the resolution of both Γ0 and Γ1 is larger than or equal to c/n2, for some constant c; and

(R3) any FG-morph between Γ0 and Γ1 contains a drawing whose resolution is in 1/2Ω(n).

In order to prove the theorem, we employ a triangulated “nested triangles graph” (see, e.g., [16, 25]).
Let k = n/3 and observe that k is an integer. Then G consists of (refer to Fig. 9):

• 3-cycles (ui, vi, zi), for i = 1, . . . , k;

• paths (u1, . . . , uk), (v1, . . . , vk), and (z1, . . . , zk); and

• edges (ui, zi+1), (zi, vi+1), and (vi, ui+1), for i = 1, . . . , k − 1.

The outer cycle of G is (uk, vk, zk).

v3

z3

u2

z4

u3

u4

z2

u1 v1

v2

v4

z1

z3

u3

z2

z4

v3

u4

v2

u1 v1

u2

v4

z1

(a) (b)

Fig. 9: The graph G in the proof of Theorem 4 (with n = 12). (a) shows Γ0 and (b) shows Γ1.

The planar straight-line drawings Γ0 (refer to Fig. 9(a)) and Γ1 (refer to Fig. 9(b)) both place the vertex
set of G at the point set composed of the points (0, i), (i,−i), and (−i,−i), for i = 1, 2, . . . , n/3.
In particular, in Γ0:

• the vertex zi lies at the point (0, i), for i = 1, 2, . . . , n/3;

• the vertex vi lies at the point (i,−i), for i = 1, 2, . . . , n/3; and

• the vertex ui lies at the point (−i,−i), for i = 1, 2, . . . , n/3.

Further, in Γ1:

• the vertex zi lies at the point (0, i), for i = k, k− 3, . . . , lies at the point (i,−i), for i = k− 1, k−
4, . . . , and lies at the point (−i,−i), for i = k − 2, k − 5, . . . ;
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• the vertex vi lies at the point (i,−i), for i = k, k − 3, . . . , lies at the point (−i,−i), for i =
k − 1, k − 4, . . . , and lies at the point (0, i), for i = k − 2, k − 5, . . . ; and

• the vertex ui lies at the point (−i,−i), for i = k, k − 3, . . . , lies at the point (0, i), for i =
k − 1, k − 4, . . . , and lies at the point (i,−i), for i = k − 2, k − 5, . . . .

The construction directly satisfies Property (R1); indeed, the vertices uk, vk, and zk of the outer cy-
cle of G are mapped to the points (−n/3,−n/3), (n/3,−n/3), and (0, n/3), respectively, both in Γ0

and in Γ1.
We prove Property (R2). For i = 0, 1, the drawing Γi lies on an O(n) × O(n) grid, hence the largest

distance between any two separated geometric objects in Γi is in O(n). Further, the smallest distance
between any two separated geometric objects in Γi is in Ω(1/n). Indeed, by Lemma 4, such a smallest
distance is the distance between a vertex v and an edge e of G. By Pick’s theorem, the area of the
triangle T defined by v and e is at least 0.5, given that v and the end-vertices of e lie at grid points;
further, since the length of e is in O(n), it follows that the height of T with respect to e, which coincides
with the distance between v and e, is in Ω(1/n).

It remains to prove Property (R3). To do that, we first prove a lower bound on some coefficients of any
coefficient matrices Λ0 and Λ1 such that Γ0 = (Λ0,∆) and Γ1 = (Λ1,∆). Recall that λt

vu denotes the
element of a coefficient matrix Λt whose row corresponds to a vertex v and whose column corresponds to
a vertex v.

Claim 1. For any coefficient matrix Λ0 such that Γ0 = (Λ0,∆) and for any i = 2, . . . , k − 1, we have
λ0
uiui+1

> 0.5, λ0
vivi+1

> 0.5, and λ0
zizi+1

> 0.5. Analogously, for any coefficient matrix Λ1 such that
Γ1 = (Λ1,∆) and for any i = 2, . . . , k − 1, we have λ1

uizi+1
> 0.5, λ1

viui+1
> 0.5, and λ1

zivi+1
> 0.5.

Proof: Consider any coefficient matrix Λ0 such that Γ0 = (Λ0,∆). We prove that λ0
zizi+1

> 0.5. By
Equation 2, we have that y(zi) =

∑
w∈N (zi)

λ0
ziw ·y(w), where N (zi) = {ui, vi, zi−1, zi+1, ui−1, vi+1}.

Since the coefficients λ0
ziw with w ∈ N (zi) are all positive and since the values y(ui), y(vi), y(ui−1),

and y(vi+1) are all smaller than y(zi−1) = i− 1, we get

y(zi) = i < (λ0
ziui

+ λ0
zivi + λ0

ziui−1
+ λ0

zivi+1
+ λ0

zizi−1
) · (i− 1) + λ0

zizi+1
· (i+ 1).

From this, it follows that

λ0
zizi+1

> λ0
ziui

+ λ0
zivi + λ0

ziui−1
+ λ0

zivi+1
+ λ0

zizi−1
,

which gives us λ0
zizi+1

> 0.5, given that
∑

w∈N (zi)
λ0
ziw = 1.

The proof that λ0
vivi+1

> 0.5 and λ0
zizi+1

> 0.5 uses very similar arguments, however by considering
the x-coordinates, rather than the y-coordinates, and by employing Equation 1 in place of Equation 2.
The proof that λ1

uizi+1
> 0.5, λ1

viui+1
> 0.5, and λ1

zivi+1
> 0.5 for any coefficient matrix Λ1 such that

Γ1 = (Λ1,∆) again uses very similar arguments and is hence omitted.

Consider now any coefficient matrices Λ0 and Λ1 such that Γ0 = (Λ0,∆) and Γ1 = (Λ1,∆), and
consider the corresponding FG-morph M = {Γt = (Λt,∆) : t ∈ [0, 1]}. We are going to prove that
the resolution of the “intermediate” drawing Γ0.5 of M is exponentially small. By Claim 1, we have
λ0
uiui+1

> 0.5 and λ1
uizi+1

> 0.5. This, together with the fact that λ0.5
uiui+1

= 0.5 · λ0
uiui+1

+0.5 · λ1
uiui+1
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and λ0.5
uizi+1

= 0.5 ·λ0
uizi+1

+0.5 ·λ1
uizi+1

, implies that λ0.5
uiui+1

> 0.25 and λ0.5
uizi+1

> 0.25. Analogously,
we have λ0.5

vivi+1
> 0.25, λ0.5

viui+1
> 0.25, λ0.5

zizi+1
> 0.25, and λ0.5

zivi+1
> 0.25. Roughly speaking, this

means that, in Γ0.5, the vertices of the 3-cycle (ui, vi, zi) receive a non-negligible “attraction” from all
their neighbors in the 3-cycle (ui+1, vi+1, zi+1). Hence, each of ui, vi, and zi is “not too close” to any
of its neighbors in (ui+1, vi+1, zi+1), which implies that a constant fraction of the area of the triangle
(ui+1, vi+1, zi+1) is external to the triangle (ui, vi, zi). Since this is true for every i = 2, . . . , k − 1, the
exponential bound in (R3) follows. We now make this argument precise. Denote by A(T ) the area of a
triangle T . Refer to Figure 10.

ui+1

zi+1

`

ziu′
i+1 v′i+1

h

vi+1

h′

ui vi

Fig. 10: Illustration for the proof that the area of ∆i is a fraction of the area of ∆i+1. The gray triangle is ∆′
i+1.

Let ∆i and ∆i+1 be the representations of the 3-cycles (ui, vi, zi) and (ui+1, vi+1, zi+1), respectively,
in Γ0.5. Assume that the longest side s of ∆i+1 is the one connecting ui+1 with vi+1, as the other cases
are analogous. Let ℓ be the length of s and let h be the height of ∆i+1 with respect to s. By Lemma 1, we
can assume that the x-axis passes through s and that zi+1 lies above s.

Now consider the vertex t of ∆i with the highest y-coordinate. We have that t ̸= vi; indeed, if t were
equal to vi, then it would be possible to add the edge (vi, zi+1) to Γ0.5 without crossing any edge of Γ0.5,
contradicting the fact that G is a maximal plane graph. It follows that t is either zi or ui. We only discuss
the case in which t = zi, as the other case is analogous.

We are going to bound the y-coordinate of zi in terms of the y-coordinate of zi+1. By Equation 2,
in Γ0.5 we have y(zi) =

∑
w∈N (zi)

λ0.5
ziw · y(w), where N (zi) = {ui, vi, zi−1, zi+1, ui−1, vi+1}. By the

assumption that zi is the highest vertex of ∆i and by the planarity of Γ0.5, we have that every neighbor
of zi different from zi+1 lies below zi (possibly ui lies on the same horizontal line as zi). This implies that

y(zi) < (λ0.5
ziui

+ λ0.5
zivi + λ0.5

zizi−1
+ λ0.5

ziui−1
) · y(zi) + λ0.5

zizi+1
· y(zi+1) + λ0.5

zivi+1
· y(vi+1).

Since y(vi+1) = 0, this is

y(zi) <
λ0.5
zizi+1

1− (λ0.5
ziui

+ λ0.5
zivi + λ0.5

zizi−1
+ λ0.5

ziui−1
)
· y(zi+1).

Since λ0.5
zivi+1

> 0.25 and λ0.5
zizi+1

> 0.25, we have

λ0.5
zizi+1

+ λ0.5
ziui

+ λ0.5
zivi + λ0.5

zizi−1
+ λ0.5

ziui−1
< 0.75

and
λ0.5
ziui

+ λ0.5
zivi + λ0.5

zizi−1
+ λ0.5

ziui−1
< 0.5.
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Hence, by setting
ρ := λ0.5

ziui
+ λ0.5

zivi
+ λ0.5

zizi−1
+ λ0.5

ziui−1
,

we get that y(zi) < 0.75−ρ
1−ρ · y(zi+1), where ρ ∈ (0, 0.5). As the function f(ρ) := 0.75−ρ

1−ρ decreases as ρ
increases over the interval (0, 0.5), we get that 0.75−ρ

1−ρ < 0.75 and hence y(zi) < 0.75 · y(zi+1) in Γ0.5.
Consider now a horizontal line through zi and let u′

i+1 and v′i+1 be its intersection points with the edges
zi+1ui+1 and zi+1vi+1, respectively. Let ∆′

i+1 be the triangle with vertices zi+1, u′
i+1, and v′i+1. The

height h′ of ∆′
i+1 with respect to the side ui+1vi+1 is larger than 0.25 · h, given that h′ coincides with

y(zi+1) − y(zi) > 0.25 · y(zi+1), and given that h = y(zi+1). By the similarity of ∆i+1 and ∆′
i+1,

it follows that the length ℓ′ of the side u′
i+1v

′
i+1 of ∆′

i+1 is larger than 0.25 · ℓ. Hence, A(∆′
i+1) =

h′ · ℓ′/2 ≥ (0.25)2 · A(∆i+1) = 0.0625 · A(∆i+1).
Since ∆′

i+1 lies entirely above or on the horizontal line through zi, while ∆i lies entirely below or
on the line through zi, it follows that the interiors of ∆i and ∆′

i+1 are disjoint, and hence A(∆i) ≤
A(∆i+1)−A(∆′

i+1) ≤ (1− 0.0625) · A(∆i+1) = 0.9375 · A(∆i+1). This is what we aimed to proved:
the area of ∆i is a constant fraction of the area of ∆i+1. Since this holds for i = 2, . . . , k − 1, we have
that the ratio between A(∆2) and A(∆k) is in 1/2Ω(n). Since the shortest height, and hence the shortest
distance δ between two separated geometric objects, in ∆2 is at most c

√
A(∆2), for some constant c,

while the longest side D of ∆k is at least c′
√
A(∆k), for some constant c′, the ratio δ/D is in 1/2Ω(n).

This concludes the proof of Property (R3) and of Theorem 4.

7 Piecewise Linear FG-Morphs
In this section, we prove that our results on the resolution of FG-morphs can be applied to “approximate”
such morphs with a finite number of linear morphs.

A linear morph ⟨Γ0,Γ1⟩ between two planar straight-line drawings Γ0 and Γ1 of the same plane graph
moves each vertex with uniform speed along a straight-line segment from its position in Γ0 to its position
in Γ1; a linear morph does not necessarily guarantee planarity for its intermediate drawings, see, e.g., [1,
20]. A piecewise linear morph between two planar straight-line drawings Γ0 and Γ1 of the same plane
graph is a morph between Γ0 and Γ1 composed of a sequence of linear morphs. Hence, a piecewise linear
morph can be described by a sequence ⟨Γ0 = Ψ0,Ψ1, . . . ,Ψk = Γ1⟩ of planar straight-line drawings,
where ⟨Ψi,Ψi+1⟩ is a linear morph, for i = 0, . . . , k − 1. Piecewise linear morphs have been thoroughly
investigated in recent years, see, e.g., [1, 3, 4, 6, 7, 8, 11, 19, 29]; notably, it is known that, for any
two planar straight-line drawings of the same n-vertex plane graph, there exists a piecewise linear morph
consisting of O(n) linear morphs that preserves the planarity of the drawing at any time [1, 19].

We show how Theorem 3 implies that, for any two drawings Γ0 and Γ1 of a plane graph, there exist an
FG-morph M between Γ0 and Γ1 and a finite sequence of drawings in M, such that the first drawing in
the sequence is Γ0, the last drawing in the sequence is Γ1, and the piecewise linear morph defined by such
a sequence of drawings is planar. Note that the piecewise linear morph is not part of M, whereas it is a
sequence of linear morphs, where each linear morph occurs between two drawings of M.

Theorem 5. Let Γ0 and Γ1 be any two planar straight-line drawings of an n-vertex maximal plane graph
G such that the outer faces of Γ0 and Γ1 are delimited by the same triangle ∆. Let r be the minimum
between the resolution of Γ0 and Γ1. There exist an FG-morph M = {Γt : t ∈ [0, 1]} between Γ0 and Γ1

and a sequence ⟨Ψ0,Ψ1, . . . ,Ψk⟩ of planar straight-line drawings of G such that:
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(a) Ψ0 = Γ0 and Ψk = Γ1;

(b) for i = 0, 1, . . . , k, there is a value ti ∈ [0, 1] such that Ψi = Γti , i.e., Ψi is a drawing in the
morph M;

(c) for i = 0, 1, . . . , k − 1, we have ti < ti+1;

(d) for i = 0, 1, . . . , k − 1, the linear morph ⟨Ψi,Ψi+1⟩ is planar; and

(e) k ∈ (n/r)
O(n).

It is intuitive that a piecewise linear morph ⟨Ψ0,Ψ1, . . . ,Ψk⟩ satisfying Properties (a)–(d) exists (roughly
speaking, this can be obtained by mimicking the FG-morph M by a sequence of “suitably short” linear
morphs); it is however not obvious, in our opinion, that one of such piecewise linear morphs exists com-
posed only of a finite number of linear morphs, as ensured by Property (e).

The remainder of this section contains a proof of Theorem 5. First, we let M = {Γt : t ∈ [0, 1]} be
the morph in Theorem 3, which ensures that, for every t ∈ [0, 1], the resolution of the drawing Γt is larger
than or equal to (r/n)

c·n, for some constant c. Let N be the number of internal vertices of G (hence
N = n− 3). Let v1, . . . , vN be an arbitrary order of the internal vertices of G; further, let vn−2, vn−1, vn
be an arbitrary order of the external vertices of G. For i = 1, . . . , n, denote by xt(vi) and yt(vi) the
coordinates of vi in Γt. Finally, let D be the length of the longest side of ∆.

We introduce the FG-curve CM for M. Let z1, z2, . . . , z2N+1 denote the coordinates of the Euclidean
space R2N+1. The curve CM, which lies in R2N+1, is defined as follows: For every t ∈ [0, 1], the
curve CM contains a point pt whose first coordinate is t and whose (2i)-th and (2i+1)-th coordinates are
the x- and y-coordinates of vi in Γt, respectively, for i = 1, . . . , N . That is, for every t ∈ [0, 1]:

• z1(p
t) = t;

• z2i(p
t) = xt(vi), for i = 1, . . . , N ; and

• z2i+1(p
t) = yt(vi), for i = 1, . . . , N .

The first ingredient in the proof of Theorem 5 is an upper bound on the length ℓM of CM.

Claim 2. The length ℓM of CM is in O(D ·N3).

Proof: A high-level view of the proof of the claim is as follows. First, we bound the number of local
minima and maxima of the curve CM with respect to each coordinate zl; this is done algebraically. Then
we use such local minima and maxima to split CM into monotone curves, for which it is easier to upper
bound the length. The upper bound on the length of CM is finally obtained as the sum of the upper bounds
on the lengths of the individual monotone curves.

We now provide the details of such a proof. Consider any internal vertex vi of G and any t ∈ [0, 1].
By Equation 1, we have xt(vi) =

∑
vj∈N (vi)

(λt
vivj · x

t(vj)), where λt
vivj

= (1 − t) · λ0
vivj + t · λ1

vivj ;
observe that the values λ0

vivj and λ1
vivj are fixed in the definition of M, as in the proof of Theorem 3.

With a slight overload of notation, we let λt
vivj := 0 for every vertex vj of G which is not a neighbor

of vi. Then Equation 1 over all the internal vertices of G can be expressed in matrix form At · xt = bt
x

as follows:



On the Resolution of Planar Drawings and Morphs 25


1 −λt

v1v2 −λt
v1v3 · · · −λt

v1vN
−λt

v2v1 1 −λt
v2v3 · · · −λt

v2vN
−λt

v3v1 −λt
v3v2 1 · · · −λt

v3vN
· · · · · · · · · · · · · · ·

−λt
vNv1 −λt

vNv2 −λt
vNv3 · · · 1


︸ ︷︷ ︸

At

·


xt(v1)
xt(v2)
xt(v3)
· · ·

xt(vN )


︸ ︷︷ ︸

xt

=


btx(v1)
btx(v2)
btx(v3)
· · ·

btx(vN )


︸ ︷︷ ︸

bt
x

(12)

where

bt
x =


btx(v1)
btx(v2)
btx(v3)
· · ·

btx(vN )

 =


λt
v1vn−2

· xt(vn−2) + λt
v1vn−1

· xt(vn−1) + λt
v1vn · xt(vn)

λt
v2vn−2

· xt(vn−2) + λt
v2vn−1

· xt(vn−1) + λt
v2vn · xt(vn)

λt
v3vn−2

· xt(vn−2) + λt
v3vn−1

· xt(vn−1) + λt
v3vn · xt(vn)

· · ·
λt
vNvn−2

· xt(vn−2) + λt
vNvn−1

· xt(vn−1) + λt
vNvn · xt(vn)

 . (13)

Observe that the x-coordinates xt(vn−2), xt(vn−1), and xt(vn) in Equation 13 are the ones of the
external vertices of G, hence they have fixed values (independent of t). Thus, each term btx(vi) is just a
linear function of t. Equation 2 over all the internal vertices of G can be analogously expressed in matrix
form At · yt = bt

y; observe that the matrix At is the same as in Equation 12.
Using Cramer’s rule, we can obtain the value of z2i(pt) = xt(vi) as the ratio N t

x,i/Dt of two deter-
minants N t

x,i and Dt. The determinant Dt is just det(At), while N t
x,i is the determinant of the matrix

obtained from At by substituting the i-th column with bt
x. Since every element of the matrix At and of

the vector bt
x is a linear function of t, since At and bt

x have N rows, and by Laplace expansion, we have
that both N t

x,i and Dt are polynomial functions of t with degree at most N .
This implies that the number of local minima and maxima of the curve CM with respect to the coordi-

nate z2i is in O(N2), for each i = 1, . . . , N . Namely, this number coincides with the number of solutions

of the equation
∂(N t

x,i/D
t)

∂t = 0; this, in turn, coincides with the number of solutions of the equation
∂(N t

x,i)

∂t · Dt −N t
x,i ·

∂(Dt)
∂t = 0. Since the left term of the last equation is a polynomial of degree at most

N · (N − 1), the number of solutions to the equation is indeed in O(N2). Analogously, the number of
local minima and maxima of the curve CM with respect to the coordinate z2i+1 is in O(N2), for each
i = 1, . . . , N . Let t0 = 0 < t1 < t2 < · · · < tm = 1 be the values of t for which the curve CM achieves
a minimum or a maximum with respect to some coordinate.

For j = 1, . . . ,m, denote by CM,j the part of CM within the interval [tj−1, tj ]. Then CM,j is monotone;
that is, each coordinate zl monotonically increases or monotonically decreases over the interval [tj−1, tj ].
For j = 1, . . . ,m, let ℓM,j be the length of CM,j . Note that CM = CM,1 ∪ CM,2 ∪ · · · ∪ CM,m

and ℓM =
∑m

j=1 ℓM,j . Then the length of CM,j is upper bounded by the sum of the zl-extents of the
curves CM,j (over all coordinates zl). Recall that CM,j is monotone, hence its minimum and maximum
zl-coordinates are achieved at its endpoints. Hence, ℓM,j ≤

∑2N+1
l=1 |zl(ptj ) − zl(p

tj−1)| and ℓM ≤∑m
j=1

∑2N+1
l=1 |zl(ptj ) − zl(p

tj−1)|. Rearranging the right side of the previous inequality, we get ℓM ≤∑2N+1
l=1

∑m
j=1 |zl(ptj )−zl(p

tj−1)|. Further,
∑m

j=1 |z1(ptj )−z1(p
tj−1)| =

∑m
j=1 |tj−tj−1| = tm−t0 =

1 and, for each l = 2, . . . , 2N+1,
∑m

j=1 |zl(ptj )−zl(p
tj−1)| ∈ O(D·N2). This is because the zl-extent of

CM is at most D (as D is the length of the longest side of ∆ and every vertex stays inside ∆ throughout M)
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and because CM has a number of local minima and maxima with respect to the coordinate zl which is in
O(N2). It follows that ℓM ≤

∑2N+1
l=1

∑m
j=1 |zl(ptj )−zl(p

tj−1)| ∈
∑2N+1

l=1 O(D·N2) ∈ O(D·N3).

Next, we argue about the possible perturbations of planar straight-line drawings with bounded resolu-
tion.

Claim 3. Let Γ be a planar straight-line drawing of a graph G such that the smallest distance between
any two separated objects is some value δ > 0. Let Γ′ be any planar straight-line drawing of G obtained
from Γ by changing each vertex coordinate by at most δ/3. Then Γ′ is planar.

Proof: We first prove that any two non-adjacent edges e1 and e2 of G do not cross in Γ′. For i = 1, 2, the
edge ei is represented by a straight-line segment si in Γ and by a straight-line segment s′i in Γ′. Let K
denote a disk with diameter 0.45 · δ. Since s1 and s2 are separated geometric objects in Γ, the distance
between them is at least δ. Hence, the Minkowski sums R1 := s1 + K and R2 := s2 + K define
non-intersecting regions of the plane, as every point of R1 is at distance at least δ − 2 · (0.45 · δ) > 0
from every point of R2. Further, since each vertex coordinate in Γ′ differs by at most δ/3 by the same
vertex coordinate in Γ, it follows that the distance between the positions of a vertex in Γ and Γ′ is at most√
2 · δ/3 < 0.45 · δ. Hence, for i = 1, 2, each end-point of s′i lies inside Ri and thus the entire segment s′i

lies inside Ri. It follows that s′1 and s′2 do not intersect.
Analogous proofs show that any two distinct vertices of G do not overlap in Γ′ and any vertex and any

non-incident edge of G do not overlap in Γ′.
Finally, we prove that any two adjacent edges e1 and e2 of G do not overlap in Γ′. If they do, then an

end-vertex of one of them, say an end-vertex of e1, overlaps with e2 or overlaps with a vertex of e2, two
cases which we already ruled out.

We are now ready to prove Theorem 5. We are going to define a sequence ⟨Ψ0,Ψ1, . . . ,Ψk⟩ of planar
straight-line drawings of G satisfying Properties (a)–(e). The sequence is initialized by setting Ψ0 = Γ0,
as required by Property (a). Suppose now that a sequence ⟨Ψ0,Ψ1, . . . ,Ψj⟩ has been defined, for some
integer j ≥ 0, so that Properties (a)–(d) are satisfied (when restricted to the sequence ⟨Ψ0,Ψ1, . . . ,Ψj⟩
constructed so far). We will deal with Property (e) later.

While Ψj does not coincide with Γ1, we add a drawing Ψj+1 to the sequence ⟨Ψ0,Ψ1, . . . ,Ψj⟩, so
that Ψj+1 belongs to M (as required by Property (b)), so that it is “closer” to Γ1 in M (as required by
Property (c)), and so that the linear morph ⟨Ψj ,Ψj+1⟩ is planar (as required by Property (d)). This is done
as follows.

The drawing Ψj corresponds to a point ptj of the FG-curve CM in R2N+1. Since the length of the
longest side of ∆ is a value D, the largest distance between two separated geometric objects in Ψj is D,
as well. Further, since the resolution of Ψj is larger than or equal to (r/n)

c·n, the smallest distance
between two separated geometric objects in Ψj is larger than or equal to D · (r/n)c·n. By Claim 3,
any straight-line drawing of G obtained from Ψj by changing the coordinate of each vertex by at most
D/3·(r/n)c·n is planar. Hence, consider a ball B with radius D/3·(r/n)c·n centered at ptj in R2N+1. Let
tj+1 ∈ [0, 1] be the largest value such that the point ptj+1 of CM lies inside or on the boundary of B and
let Ψj+1 be the drawing of G in M corresponding to ptj+1 (thus the sequence ⟨Ψ0,Ψ1, . . . ,Ψj ,Ψj+1⟩
satisfies Property (b)). Since CM is a continuous curve, we have that tj+1 > tj (thus the sequence
⟨Ψ0,Ψ1, . . . ,Ψj ,Ψj+1⟩ satisfies Property (c)). Further, every point of B corresponds to a planar straight-
line drawing of G that can be obtained from Ψj by changing the coordinate of each vertex by at most
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D/3 · (r/n)c·n. Since the drawings in the linear morph ⟨Ψj ,Ψj+1⟩ all correspond to points in B, we have
that ⟨Ψj ,Ψj+1⟩ is planar (thus the sequence ⟨Ψ0,Ψ1, . . . ,Ψj ,Ψj+1⟩ satisfies Property (d)).

The definition of the sequence ⟨Ψ0,Ψ1, . . . ,Ψk⟩ ends when the drawing Ψk that is added to the se-
quence is Γ1 (thus the sequence ⟨Ψ0,Ψ1, . . . ,Ψk⟩ satisfies Property (a)). We prove that this happens with
k ∈ (n/r)

O(n). The proof is based on two facts. First, by Claim 2, the length of CM is at most γ ·D ·N3,
for some constant γ. Second, for j = 0, 1, . . . , k − 2, the length of the part of CM between Ψj and Ψj+1

is at least D/3 · (r/n)c·n. Indeed, Ψj and Ψj+1 correspond to points ptj and ptj+1 which are respectively
at the center and on the boundary of a ball B of radius D/3 · (r/n)c·n (that ptj+1 is on the boundary of B
comes from the continuity of the curve CM and from the fact that Ψj+1 does not coincide with Γ1, since
j ≤ k − 2). Hence, the part of CM connecting ptj and ptj+1 has length at least D/3 · (r/n)c·n (with the
lower bound achieved if this part of CM is a straight-line segment). Thus, k− 1 is at most γ ·D ·N3 over
D/3 · (r/n)c·n, and hence k ∈ (n/r)

O(n). Thus, the sequence ⟨Ψ0,Ψ1, . . . ,Ψk⟩ satisfies Property (e),
which concludes the proof of Theorem 5.

8 Conclusions and Open Problems
In this paper, we have studied the resolution of popular algorithms for the construction of planar straight-
line graph drawings and morphs. In fact, with a focus on maximal plane graphs, we discussed the resolu-
tion of the drawing algorithm by Floater [21], which is a broad generalization of Tutte’s algorithm [38],
and of the morphing algorithm by Floater and Gotsman [24]. Many problems are left open by our research.

1. The lower bounds on the resolution of F-drawings and FG-morphs presented in Theorems 1 and 3
apply to maximal plane graphs. A major objective is to extend such bounds to 3-connected plane
graphs. Note that the proof of Theorem 1, from which the proof of Theorem 3 is derived, exploits
heavily the fact that the faces of the considered plane graph are delimited by 3-cycles, hence such
an extension requires novel ideas.

2. Theorems 1 and 2 provide an r·λΘ(n) bound on the resolution of F-drawings. It would be interesting
to determine the polynomial function f(λ) which is the base of the exponential function r · (f(λ))n
representing the worst-case resolution of F-drawings, up to lower-order terms. Also, when applied
to T-drawings, i.e., drawings constructed by Tutte’s algorithm [38], the lower and upper bounds
in Theorems 1 and 2 do not coincide on the exponent anymore. Namely, Theorem 1 gives an
r/nO(n) ⊆ r/2O(n logn) lower bound (as the smallest positive element λ of a coefficient matrix is
in 1/Ω(n) for graphs with maximum degree in Ω(n)), while Theorem 2 gives an r/2Ω(n) upper
bound (as every internal vertex of the graph in the proof of the theorem has degree in Θ(1), and
hence every element of the coefficient matrix is in Θ(1)). We find it very interesting to close this
gap. It is possible (and we believe likely) that this could be achieved by means of an algebraic
approach along the lines of the one of [32, 33], as discussed in Section 3.1.

3. The lower and upper bounds for the resolution of FG-morphs in Theorems 3 and 4 also leave a gap.
First, the dependency on n in the lower bound is 1/nO(n) ⊆ 1/2O(n logn), while the one in the
upper bound is 1/2Ω(n). Second, the resolution r of the input drawings appears in the exponential
lower bound of Theorem 3, while it does not appear in the exponential upper bound of Theorem 4;
while it is clear that a dependency on r is needed (as the resolution of the entire morph is clearly
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upper bounded by the one of the input drawings), it is not clear to us whether r should be part of
the exponential function.
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