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A 2-distance k-coloring of a graph is a proper vertex k-coloring where vertices at distance at most 2 cannot share the
same color. We prove the existence of a 2-distance 4-coloring for planar subcubic graphs with girth at least 21. We
also show a construction of a planar subcubic graph of girth 11 that is not 2-distance 4-colorable.
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1 Introduction
A k-coloring of the vertices of a graph G = (V,E) is a map ϕ : V → {1, 2, . . . , k}. A k-coloring ϕ is
a proper coloring, if and only if, for each edge xy ∈ E, ϕ(x) ̸= ϕ(y). In other words, no two adjacent
vertices share the same color. The chromatic number of G, denoted by χ(G), is the smallest integer k
such that G has a proper k-coloring. A generalization of k-coloring is k-list-coloring. A graph G is L-list
colorable if for a given list assignment L = {L(v) : v ∈ V (G)} there is a proper coloring ϕ of G such
that for all v ∈ V (G), ϕ(v) ∈ L(v). If G is L-list colorable for every list assignment L with |L(v)| ≥ k
for all v ∈ V (G), then G is said to be k-choosable or k-list-colorable. The list chromatic number of a
graph G is the smallest integer k such that G is k-choosable. List coloring can be very different from
usual coloring as there exist graphs with a small chromatic number and an arbitrarily large list chromatic
number.

Kramer and Kramer (1969b,a) introduced the notion of 2-distance coloring. This notion generalizes
the “proper” constraint (that does not allow two adjacent vertices to have the same color) in the following
way: a 2-distance k-coloring is such that no pair of vertices at distance at most 2 have the same color (sim-
ilarly to proper k-list-coloring, one can also define 2-distance k-list-coloring). The 2-distance chromatic
number of G, denoted by χ2(G), is the smallest integer k so that G has a 2-distance k-coloring.

For all v ∈ V , we denote dG(v) the degree of v in G and by ∆(G) = maxv∈V dG(v) the maximum
degree of a graph G. For brevity, when it is clear from the context, we will use ∆ (resp. d(v)) instead
of ∆(G) (resp. dG(v)). One can observe that, for any graph G, ∆ + 1 ≤ χ2(G) ≤ ∆2 + 1. The lower
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bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree ∆, and v itself
must have a different color. As for the upper bound, a greedy algorithm shows that χ2(G) ≤ ∆2 + 1.
Moreover, this bound is tight for some graphs, for example, Moore graphs of type (∆, 2), which are
graphs where all vertices have degree ∆, are at distance at most two from each other, and the total number
of vertices is ∆2 + 1. See Figure 1. Also, incidence graphs of finite projective planes give the inequality
χ2(G) ≥ ∆2 −∆+ 1 when ∆− 1 is a prime power (Brown, 1966).
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(i) The Moore graph of type
(2,2): the odd cycle C5.
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(ii) The Moore graph of type
(3,2): the Petersen graph.

(iii) The Moore graph of type
(7,2): the Hoffman-Singleton
graph.

Fig. 1: Examples of Moore graphs for which χ2 = ∆2 + 1.

By nature, 2-distance colorings and the 2-distance chromatic number of a graph depend a lot on the
number of vertices in the neighborhood of every vertex. More precisely, the “sparser” a graph is, the
lower its 2-distance chromatic number will be. One way to quantify the sparsity of a graph is through its
maximum average degree. The average degree ad of a graph G = (V,E) is defined by ad(G) = 2|E|

|V | .
The maximum average degree mad(G) is the maximum, over all subgraphs H of G, of ad(H). Another
way to measure the sparsity when the graph is planar (a graph is planar if one can draw its vertices with
points on the plane, and edges with curves intersecting only at its endpoints) is through the girth, i.e. the
length of a shortest cycle. We denote g(G) the girth of G. Intuitively, the higher the girth of a planar
graph is, the sparser it gets.

When G is a planar graph, Wegner conjectured in 1977 that χ2(G) becomes linear in ∆(G):

Conjecture 1 (Wegner (1977)) Let G be a planar graph with maximum degree ∆. Then,

χ2(G) ≤


7, if ∆ ≤ 3,
∆+ 5, if 4 ≤ ∆ ≤ 7,⌊
3∆
2

⌋
+ 1, if ∆ ≥ 8.

The upper bound for the case where ∆ ≥ 8 is tight (see Figure 2(i)). Recently, the case ∆ ≤ 3 was
proved by Thomassen (Thomassen, 2018), and by Hartke et al. (Hartke et al., 2018) independently. For
∆ ≥ 8, Havet et al. (Havet et al., 2017) proved that the bound is 3

2∆(1+ o(1)), where o(1) is as ∆ → ∞
(this bound holds for 2-distance list-colorings). Theorem 1 is known to be true for some subfamilies of
planar graphs, for example K4-minor free graphs (Lih et al., 2003).



2-distance 4-coloring of planar subcubic graphs 3

⌊∆
2 ⌋ − 1 vertices ⌈∆

2 ⌉ vertices

⌊∆
2 ⌋ vertices

(i) A graph with girth 3 and χ2 = ⌊ 3∆
2
⌋+ 1

⌊∆
2 ⌋ − 1 vertices ⌈∆

2 ⌉ vertices

⌊∆
2 ⌋ vertices

(ii) A graph with girth 4 and χ2 = ⌊ 3∆
2
⌋ − 1.

Fig. 2: Graphs with χ2 ≈ 3
2
∆

Wegner’s conjecture motivated extensive researches on 2-distance chromatic number of sparse graphs,
either of planar graphs with high girth or of graphs with upper bounded maximum average degree which
are directly linked due to Theorem 2.

Proposition 2 (Folklore) For every planar graph G, (mad(G)− 2)(g(G)− 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be translated to a theorem with a
lower bound on g(G) under the condition that G is planar.

Many results have taken the following form: every planar graph G of girth g(G) ≥ g0 and ∆(G) ≥ ∆0

satisfies χ2(G) ≤ ∆(G) + c(g0,∆0) where c(g0,∆0) is a small constant depending only on g0 and ∆0.
Due to Theorem 2, these type of results sometimes come as a corollary of the same result on graphs with
bounded maximum average degree. Table 1 shows all known such results, up to our knowledge, on the
2-distance chromatic number of planar graphs with fixed girth, either proven directly for planar graphs
with high girth or came as a corollary of a result on graphs with bounded maximum average degree.
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g0

χ2(G)
∆ + 1 ∆+ 2 ∆+ 3 ∆+ 4 ∆+ 5 ∆+ 6 ∆+ 7 ∆+ 8

3 ∆ = 3 (i)

4

5 ∆ ≥ 107 (ii)(xiv) ∆ ≥ 339 (iii) ∆ ≥ 312 (iv) ∆ ≥ 15 (v)(vi) ∆ ≥ 12 (vii)(xiv) ∆ ̸= 7, 8 (viii) all ∆ (ix)

6 ∆ ≥ 17 (x)(xxvii) ∆ ≥ 9 (xi)(xiv) all ∆ (xii)

7 ∆ ≥ 16 (xiii)(xiv) ∆ = 4 (xv)(xvi)

8 ∆ ≥ 9 (xvii)(vi) ∆ = 5 (xviii)(xvi)

9 ∆ ≥ 7 (xix)(xxvii) ∆ = 5 (xx)(xvi) ∆ = 3 (xxi)(xiv)

10 ∆ ≥ 6 (xxii)(xiv)

11 ∆ = 4 (xxiii)(xvi)

12 ∆ = 5 (xxiv)(xiv) ∆ = 3 (xxv)(xiv)

13
14 ∆ ≥ 4 (xxvi)(xxvii)

. . .
21 ∆ = 3 (xxviii)

22 ∆ = 3 (xxix)

Tab. 1: The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

For example, the result from line “7” and column “∆+1” from Table 1 reads as follows : “every planar
graph G of girth at least 7 and of ∆ at least 16 satisfies χ2(G) ≤ ∆ + 1”. The crossed out cases in the
first column correspond to the fact that, for g0 ≤ 6, there are planar graphs G with χ2(G) = ∆ + 2 for

(i) (Thomassen, 2018; Hartke et al., 2018)
(ii) (Bonamy et al., 2019)
(iii) (Dong and Xu, 2017)
(iv) (Dong and Lin, 2017)
(v) (Bu and Zhu, 2018)
(vi) Corollaries of more general colorings of planar graphs.
(vii) (Bu and Shang, 2016)
(viii) (Dong and Lin, 2017)
(ix) (Dong and Lin, 2016)
(x) (Bonamy et al., 2014b)
(xi) (Bu and Shang, 2016)
(xii) (Bu and Zhu, 2012)
(xiii) (Ivanova, 2011)
(xiv) Corollaries of 2-distance list-colorings of planar graphs.
(xv) (Cranston et al., 2014)
(xvi) Corollaries of 2-distance list-colorings of graphs with a bounded maximum average degree.
(xvii) (La et al., 2021)
(xviii) (Bu et al., 2015)
(xix) (La and Montassier, 2021)
(xx) (Bu et al., 2015)
(xxi) (Cranston and Kim, 2008)
(xxii) (Ivanova, 2011)
(xxiii) (Cranston et al., 2014)
(xxiv) (Ivanova, 2011)
(xxv) (Borodin and Ivanova, 2012a)
(xxvi) (Bonamy et al., 2014a)
(xxvii) Corollaries of 2-distance colorings of graphs with a bounded maximum average degree.
(xxviii) Our result.
(xxix) (Borodin and Ivanova, 2012b)
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arbitrarily large ∆ (Borodin et al., 2004; Dvořák et al., 2008a). The lack of results for g = 4 is due to the
fact that the graph in Figure 2(ii) has girth 4, and χ2 = ⌊ 3∆

2 ⌋ − 1 for all ∆.
We are interested in the case χ2(G) = ∆+1 as ∆+1 is a trivial lower bound for χ2(G). In particular,

we are interested in planar subcubic graphs, which are graphs with maximum degree ∆ = 3. More
precisely, we are trying to answer the following question:

Question 3 What is the smallest g0 such that every planar subcubic graph G with girth g(G) ≥ g0
verifies χ2(G) ≤ 4?

This question was first looked at in (Borodin et al., 2004) by Borodin et al. where the authors proved
that g0 ≤ 24. Later on, Borodin and Ivanova improved the upper bound on g0 to 23 in (Borodin and
Ivanova, 2011), then 22 in (Borodin and Ivanova, 2012b). In this article, we aim to prove that g0 is at
most 21. All of these results rely on the fact that there are only 4 colors in total, an approach that cannot
be generalized to list coloring.

Theorem 4 If G is a planar subcubic graph with g(G) ≥ 21, then χ2(G) ≤ 4.

In Section 2, we present the proof of Theorem 4 using the well-known discharging method. The
reducible configurations are obtained by further exploiting the techniques presented in (Borodin and
Ivanova, 2012b).

There was also another approach to Theorem 3, that is to find lower bounds on g0. While construction
of planar graphs with χ2(G) ≥ ∆ + 2 for any ∆ is known for small girth (Borodin et al., 2004; Dvořák
et al., 2008a). The first construction with high girth (g0 ≥ 9) was presented by Dvor̆ak et al. in (Dvořák
et al., 2008b) where the authors relied on an interesting property of 2-distance 4-colorings of vertices at
distance 5 from each other. In Section 3, we improve further upon this idea to build a planar subcubic
graph of girth 11 with χ2(G) ≥ 5. In other words, we improved the lower bound on g0 from 9 to 11.

2 Proof of Theorem 4
Notations and drawing conventions. For v ∈ V (G), the 2-distance neighborhood of v, denoted
N∗

G(v), is the set of 2-distance neighbors of v, which are vertices at distance at most two from v, not
including v. We also denote d∗G(v) = |N∗

G(v)|. We call F (G) the set of faces of G and for all f ∈ F (G),
dG(f) is the size of face f (bridges are counted twice). We will drop the subscript and the argument when
it is clear from the context. Also for conciseness, from now on, when we say “to color” a vertex, it means
to color such vertex differently from all of its colored neighbors at distance at most two. Similarly, any
considered coloring will be a 2-distance coloring. We will also say that a vertex u “sees” another vertex v
if u and v are at distance at most 2 from each other.

Some more notations:

• A d-vertex is a vertex of degree d.

• A k-path (k+-path, k−-path) is a path of length k + 1 (at least k + 1, at most k + 1) where the k
internal vertices are 2-vertices and the endvertices are 3-vertices.

• We denote (k, l,m) a 3-vertex incident to a k-path, an l-path, and an m-path.
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• A pair of vertices (k+, l+,m) and (m,n+, p+) joined by an m-path will be denoted by (klm −
mnp). Similarly, a triple of vertices u = (k+, l+,m), v = (m,n+, p), and w = (p, q+, r+)
where u and v are joined by an m-path and v and w are joined by a p-path, will be denoted by
(klm−mnp− pqr). This notation is taken from (Borodin and Ivanova, 2012b).

As a drawing convention for the rest of the figures, black vertices will have a fixed degree, which is
represented, and white vertices may have a higher degree than what is drawn.

Let G be a counterexample to Theorem 4 minimizing |V (G)|+ |E(G)|. Recall that every cycle except
C5 is colorable with 4 colors hence, since G has girth at least 21, it has maximum degree ∆ = 3. The
purpose of the proof is to prove that G cannot exist. The main idea of the proof relies on studying config-
urations (graphs with given list sizes) that are “almost” but not colorable. Using the fact that we have only
4 colors in total, we are able to deduce the exact content of the lists, thus allowing us to reduce new con-
figurations and improve upon the previous results. In the following sections, we will study the structural
properties of G (Section 2.2). We will then apply a discharging procedure (Section 2.3). The discharging
argument captures the sparseness of the graph, meaning that one of our reducible configurations must
appear. More formally, we have due to the Euler formula (|V | − |E|+ |F | = 2):

∑
u∈V (G)

(
19

2
d(u)− 21

)
+

∑
f∈F (G)

(d(f)− 21) = −42 < 0 (1)

We assign to each vertex u the charge µ(u) = 19
2 d(u) − 21 and to each face f the charge µ(f) =

d(f) − 21. To prove the non-existence of G, we will redistribute the charges preserving their sum and
obtaining a non-negative total charge, which will contradict Equation (1).

2.1 Useful observations
Before studying the structural properties of G, we will introduce some useful observations and lemmas
that will be the core of the reducibility proofs of our configurations.

For a vertex u, let L(u) denote the set of available colors for u from the set {a, b, c, d}. For convenience,
the lower bound on |L(u)| will be depicted on the figures below the corresponding vertex u.

Lemma 5 The graphs depicted in Figure 3 are colorable unless their lists of colors are exactly what is
indicated.

Proof: If |L(u1) ∪ L(u2) ∪ L(u3)| ≥ 3, then u1, u2, and u3 are easily colorable (by Hall’s theorem by
example). Thus, we can assume without loss of generality (w.l.o.g. for short) that L(ui) ⊆ {a, b} for all
1 ≤ i ≤ 3. 2

Lemma 6 Let H be a graph on n ≥ 4 vertices u1, u2, . . . , un. Let the degree and adjacency of u1,
u2, and u3 be as depicted in Figure 4. Let |L(u1)| ≥ 2, |L(u2)| ≥ 3, and |L(u3)| ≥ d∗H(u3) − 1.
If, for every x in L(u4), we have that u4, u5, . . . , un are colorable with the respective lists L(u4) \
{x}, L(u5), L(u6), . . . , L(un), then H is colorable.

Proof: Suppose by contradiction that H is not colorable. We remove the extra colors from L(u1) and
L(u2) so that |L(u1)| = 2 and |L(u2)| = 3. We choose x ∈ L(u2) \ L(u1). By hypothesis, there
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u1

≥ 1

u2

≥ 2

u3

≥ 2

u1

≥ 2

u2

≥ 1

u3

≥ 2

(i) Initial configuration.

u1

⊆ {a, b}

u2

= {a, b}

u3

= {a, b}

u1

= {a, b}

u2

⊆ {a, b}

u3

= {a, b}

(ii) Forced list of colors.

Fig. 3: An useful non-colorable graph on three vertices.

u1

≥ 2

u2

≥ 3

u3

≥ d∗ − 1

u4

Fig. 4: Graph H from Theorem 6.

exists a coloring of u4, u5, . . . , un where u4 is not colored x. The remaining vertices, namely u1, u2,
and u3 must not be colorable. Since |L(u1)| ≥ 2, |L(u2)| ≥ 3, and |L(u3)| ≥ d∗H(u3) − 1, after
coloring u4, . . . , un, the lists of available colors for u1, u2, and u3 verify |L(u1)| ≥ 2, |L(u2)| ≥ 2, and
|L(u3)| ≥ 1. Since they are not colorable, by Theorem 5, L(u1) = L(u2). However, this is impossible
since x ∈ L(u2) \ L(u1) initially and x remains in L(u2) since u4 was not colored x. 2

Observation 7 Theorem 6 means that, by restricting the list L(u4) to L(u4)\{x} for a well chosen color
x ∈ L(u4), we can always color u1, u2, and u3 last. As a result, if H − {u1, u2, u3} is colorable with
L′(u4) where |L′(u4)| = |L(u4)| − 1 and L′(u4) ⊂ L(u4) (L′(ui) = L(ui) for all 5 ≤ i ≤ n), then H
is colorable. From now on, for convenience, we will say that we restrict u4 by one color to color u1, u2,
and u3 afterwards.

Lemma 8 The graphs depicted in Figure 5 are all colorable.

Proof: In the following proofs, whenever the size of a list |L(u)| ≥ i, we assume that |L(u)| = i by
removing the extra colors from the list while preserving the inclusions.

(i) If L(u1) = L(u2), then we color u3 with a color in L(u3) \ L(u2), followed by u4, u2, and u1 in
this order. If L(u1) ̸= L(u2), then we color u2 with a color in L(u2) \ L(u1), followed by u4, u3,
and u1 in this order.

(ii) Since |L(u1)| ≥ 2, |L(u′
3)| ≥ 3, and both L(u1) and L(u′

3) are contained in {a, b, c, d}, we have a
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u1

≥ 2

u2

≥ 2

u3

≥ 3

u4

≥ 2

(i)

u1

≥ 2

u2

≥ 3

u3

≥ 4

u4

≥ 3

u′
2

≥ 3

u′
3

≥ 3

(ii)

u1

≥ 2

u2

≥ 2

u3

≥ 3

u4

≥ 3

u5

≥ 2

(iii)

u1

≥ 2

u2

≥ 3

u3

≥ 4

u4

≥ 3

u5

≥ 2

u′
3

≥ 2

(iv) L(u1) ⊆ L(u2) and L(u5) ⊆ L(u4).

u1

≥ 2

u2

≥ 3

u3

≥ 3

u4

≥ 4

u5

≥ 2

u′
3

≥ 2

(v)

u1

≥ 2

u2

≥ 2

u3

≥ 4

u4

≥ 3

u5

≥ 2

u′
3

≥ 3

(vi)

u1

≥ 2

u2

≥ 4

u3

≥ 3

u4

≥ 4

u5

≥ 3

u′
3

≥ 2

u′
4

≥ 3

(vii) L(u′
3) ⊆ L(u3).

u1

≥ 2

u2

≥ 3

u3

≥ 4

u4

≥ 3

u5

≥ 2

u′
3

≥ 3

u′′
3

≥ 2

(viii) L(u1) ⊆ L(u2), L(u′′
3 ) ⊆ L(u′

3), and L(u5) ⊆
L(u4).

u1

≥ 2

u2

≥ 2

u3

≥ 4

u4

≥ 3

u5

≥ 2

u6

≥ 2

(ix)
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u1

≥ 2

u2

≥ 3

u3

≥ 4

u4

≥ 4

u5

≥ 2

u6

≥ 2

u′
3

≥ 3

u′′
3

≥ 2

(x) L(u1) ⊆ L(u2) and L(u′′
3 ) ⊆ L(u′

3).

u1

≥ 2

u2

≥ 3

u3

≥ 3

u4

≥ 4

u5

≥ 4

u6

≥ 2

u7

≥ 2

u′
3

≥ 2

(xi)

u1

≥ 2

u2

≥ 2

u3

≥ 4

u4

≥ 4

u5

≥ 3

u6

≥ 4

u7

≥ 3

u′
5

≥ 2

u′
6

≥ 3

(xii) L(u′
5) ⊆ L(u5).

Fig. 5: Colorable graphs.
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color x ∈ L(u1) ∩ L(u′
3) by the pigeonhole principle. We color u1 and u′

3 with x, then u′
2, u2, u3,

and u4 are colorable by Figure 5(i).

(iii) We restrict u2 by one color. Then, we color u2 and u1 in this order first. By Theorem 6, we color
u3, u4, and u5 last.

(iv) If L(u1) and L(u′
3) share a common color x, then we color u1 and u′

3 with x. The remaining
vertices u5, u4, u3, and u2 are colorable by Figure 5(i). So, L(u1) ∩ L(u′

3) = ∅ and by symmetry,
we also have L(u5) ∩ L(u′

3) = ∅.

W.l.o.g. we set L(u′
3) = {a, b}. As a result, L(u1) = L(u5) = {c, d}. Recall that L(u1) ⊆ L(u2)

and L(u5) ⊆ L(u4). So, we can color u1 and u4 with c, u2 and u5 with d, u3 with a, and u′
3 with

b.

(v) We have L(u′
3) ⊆ L(u3). Otherwise, we can color u′

3 with a color in L(u′
3) \ L(u3), then u1, u2,

u3, u4, and u5 are colorable by Figure 5(iii).

If L(u1) and L(u′
3) share a common color x, then we color u1 and u′

3 with x, and u2, u3, u4, and
u5 are colorable by Figure 5(i).

If L(u1)∩L(u′
3) = ∅, then w.l.o.g. we set L(u1) = {a, b} and L(u′

3) = {c, d}. Since |L(u2)| ≥ 3,
w.l.o.g. we color u2 with a then u1 with b. As both L(u′

3) and L(u3) contain {c, d}, we still have
|L(u′

3)| ≥ 2 and |L(u3)| ≥ 2, thus u′
3, u3, u4, and u5 are colorable by Figure 5(i).

(vi) By the pigeonhole principle, there exists x ∈ L(u′
3) ∩ L(u5). If x /∈ L(u2), then we color u′

3 and
u5 with x. The remaining vertices u1, u2, u3, and u4 are colorable by Figure 5(i). So x ∈ L(u2).

We also have L(u1) = L(u2). Otherwise, we color u2 with a color in L(u2) \ L(u1), then u5, u4,
u3, u′

3 are colorable by Figure 5(i), and we finish by coloring u1.

Since x ∈ L(u′
3) ∩ L(u5) ∩ L(u2) ∩ L(u1), we color u1, u′

3, and u5 with x, then we color u2, u4,
and u3 in this order.

(vii) If there exists x ∈ L(u3) \ L(u5), then we color u3 with x, then u′
3, u1, u2, u4, u′

4, and u5 in this
order.

If L(u3) = L(u5), then we color u4 with a color y in L(u4) \ L(u5). Recall that L(u′
3) ⊆ L(u3),

so y /∈ L(u′
3) ∪ L(u3) ∪ L(u5). We color u1, u2, u3, and u′

3 by Figure 5(i). Finally, we finish by
color u′

4 and u5 in this order.

(viii) If there exists two same sets of colors between L(u2), L(u4), and L(u′
3), say L(u2) = L(u4),

then we color u3 with x ∈ L(u3) \ L(u2). Recall that L(u1) ⊆ L(u2) and L(u5) ⊆ L(u4) so
x /∈ L(u1) ∪ L(u2) ∪ L(u4) ∪ L(u5). We finish by coloring u′′

3 , u′
3, u1, u2, u4, u5 in this order.

If L(u2), L(u4), and L(u′
3) are all different, then we color the graph as follows. By the pigeonhole

principle, two sets between L(u1), L(u5), and L(u′′
3) must share a common color, say L(u1) ∩

L(u5) ̸= ∅. In other words, |L(u1) ∪ L(u5)| ≤ 3. Then, we color u3 with a color in L(u3) \
(L(u1)∪L(u5)). We color u′′

3 and u′
3 in this order. Now, we can color u2 and u4 since they see the

same two colors but initially L(u2) ̸= L(u4). Finally, we finish by coloring u1 and u5.
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(ix) If L(u1) = L(u2), then we restrict L(u3) to L(u3) \L(u2). We color u3, u4, u5, u6 by Figure 5(i),
then we finish by coloring u2 and u1 in this order.

If there exists x ∈ L(u1) \ L(u2), then we color u1 with x. Finally, u6, u5, u4, u3, and u2 are
colorable by Figure 5(iii).

(x) If L(u5) = L(u6), then we restrict L(u4) to L(u4) \ L(u5). Recall that we have L(u1) ⊆ L(u2)
and L(u′′

3) ⊆ L(u′
3). We can thus color u1, u2, u3, u4, u′

3, and u′′
3 by Figure 5(iv). We finish by

coloring u5 and u6 in this order.

If there exists a ∈ L(u6)\L(u5), then we color u6 with a. Observe that L(u5) ⊆ {b, c, d} = L(u4)
after we color u6 with a. Recall that we also have L(u1) ⊆ L(u2) and L(u′′

3) ⊆ L(u′
3). So, we

color the remaining vertices u1, u2, u3, u′
3, u′′

3 , u4, and u5 by Figure 5(viii)

(xi) If L(u6) = L(u7), then we restrict L(u5) to L(u5) \L(u6). We color u1, u2, u3, u′
3, u4, and u5 by

Figure 5(v). We finish by coloring u6 and u7 in this order.

If there exists x ∈ L(u7) \L(u6), then we color u7 with x. We restrict u3 by one color to color u4,
u5, and u6 last by Theorem 6. Then, u′

3, u3, u2, and u1 are colorable by Figure 5(i).

(xii) If L(u1) = L(u2), then we restrict L(u3) to L(u3) \ L(u2). We color u3, u4, u5, u′
5, u6, u′

6, and
u7 by Figure 5(vii). Then, we finish by coloring u2 and u1 in this order.

If there exists x ∈ L(u2) \ L(u1), then we color u2 with x. We color u′
5, u5, u4, u6, u′

6, and u7 by
Figure 5(ii). Finally, we finish by coloring u3 and u1 in this order.

2

2.2 Structural properties of G
Lemma 9 Graph G is connected.

Proof: Otherwise a component of G would be a smaller counterexample. 2

Lemma 10 The minimum degree of G is at least 2.

Proof: By Theorem 9, the minimum degree is at least 1 or G would be a single isolated vertex which is
4-colorable. If G contains a degree 1 vertex v, then we can simply remove the unique edge incident to v
and 2-distance color the resulting graph, which is possible by minimality of G. Then, we add the edge
back and color v (at most 3 constraints and 4 colors). 2

Lemma 11 (Borodin and Ivanova (2012b) Lemmas 10,11, and 12) Graph G has no:

(i) 6+-paths

(ii) (1+, 4+, 5+)

(iii) (2+, 3+, 4+)

(iv) (3+, 3+, 3+)
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(v) (330− 045)

(vi) (431− 133)

Proof: The proofs of the reducibility of these configurations are presented in (Borodin and Ivanova,
2012b) with the same notations. These configurations were reduced for planar subcubic graphs of girth at
least 22 where all 3-vertices and 2-vertices on the incident paths are distinct, but the same proofs hold for
G since the girth is still high enough for all vertices to remain distinct. 2

The following configurations are new or stronger versions of configurations in (Borodin and Ivanova,
2012b).

Lemma 12 Graph G cannot contain the following pairs:

(i) (430− 024)

(ii) (540− 014)

(iii) (431− 114)

(iv) (422− 223)

(v) (422− 214)

(vi) (412− 233)

(vii) (332− 233)

u′
k+1 u′

k u′
1 u v′m v′1 v

v′m+1 v′m+p
v′m+p+1

u1

ul

ul+1

v1

vn

vn+1

Fig. 6: Theorem 12 notations.

Proof: First, we define the following notations:

• Let u = (k+, l+,m) and v = (m,n+, p+) form the pair (klm−mnp).
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• Let uu′
1u

′
2 . . . u

′
k+1 be the k+-path incident to u.

• Let uu1u2 . . . ul+1 be the l+-path incident to u.

• Let vv′1v
′
2 . . . v

′
mu be the m-path incident to u and v.

• Let vv1v2 . . . vn+1 be the n+-path incident to v.

• Let vv′m+1v
′
m+2 . . . v

′
m+p+1 be the p+-path incident to v.

• For every pair (klm−mnp) from (i) to (vii), we define the subgraph

H = {u, v, u′
1, u

′
2, . . . , u

′
k−1, u1, u2, . . . , ul−1, v

′
1, v

′
2, . . . , v

′
m+p−1, v1, v2, . . . , vn−1}.

First, observe that all vertices in H are distinct since G has girth at least 21. In the following proofs,
we will always color G − H first, which is possible by minimality of G. For each vertex of H , its list
of available colors will always be {a, b, c, d} from which we removed the colors it sees on its neighbors
from G −H . Then, we will show that the coloring of G −H is extendable to H using colorable graphs
from Theorem 8. For convenience, we will cite Figure 5 from now on.

Also observe that when two adjacent vertices x1, x2 in H sees a common color with |L(x1)| ≤ |L(x2)|,
then L(x1) ⊆ L(x2). This simple remark will be used throughout the proofs, mostly to justify the use of
Figure 5(iv), (vii), (viii), (x), and (xii). For conciseness, we will state the inclusions directly when needed.

(i) We restrict u by one color to color u′
1, u′

2, and u′
3 last by Theorem 6. We restrict v by one color to

color v′1, v′2, and v′3 afterwards. Finally, v1, v, u, u1, and u2 are colorable by Figure 5(iii).

(ii) We restrict v by one color to color v′1, v′2, and v′3 last. We restrict u′
1 by one color to color u′

2, u′
3,

and u′
4 afterwards. Finally, we color v, then u′

1, u, u1, u2, and u3 are colorable by Figure 5(iii).

(iii) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict v by one color to color v′2, v′3,

and v′4 afterwards. Finally, we color v, then v′1, u, u1, and u2 are colorable by Figure 5(i).

(iv) We restrict u by one color to color u′
1, u′

2, and u′
3 last. Then, v′4, v′3, v, v1, v′1, v′2, u, and u1 are

colorable by Figure 5(xi).

(v) We restrict v by one color to color v′3, v′4, and v′5 last. We restrict u by one color to color u′
1, u′

2,
and u′

3 afterwards. Finally, we color v, then u1, u, v′2, and v′1 are colorable by Figure 5(i).

(vi) We restrict u by one color to color u′
1, u′

2, and u′
3 last. Then, we color u and observe that since

L(v′2) ⊆ L(v′1), L(v2) ⊆ L(v1), and L(v′4) ⊆ L(v′3), v
′
2, v′1, v, v1, v2, v′3, and v′4 are colorable by

Figure 5(viii).

(vii) We color v with x ∈ L(v) \ L(v1). Observe that L(v2) ⊆ L(v1) so x /∈ L(v1) ∪ L(v2). Then, we
color v′4, and v′3 in this order. Since L(u′

2) ⊆ L(u′
1), L(u2) ⊆ L(u1), and L(v′1) ⊆ L(v′2), u

′
2, u′

1,
u, u1, u2, v′2 and v′1 are colorable by Figure 5(viii). Finally, we finish by coloring v1 and v2.

2

Lemma 13 Graph G cannot contain the following triples:
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(i) (550− 020− 045)

(ii) (440− 040− 024)

(iii) (550− 021− 134)

(iv) (420− 031− 134)

(v) (550− 022− 224)

(vi) (540− 032− 214)

(vii) (540− 032− 233)

(viii) (420− 042− 214)

(ix) (420− 042− 233)

(x) (431− 131− 124)

(xi) (421− 141− 124)

(xii) (431− 112− 224)

(xiii) (421− 132− 233)

(xiv) (421− 132− 214)

(xv) (422− 222− 214)

(xvi) (332− 222− 224)

(xvii) (332− 232− 233)

(xviii) (332− 232− 214)

(xix) (412− 232− 214)

Proof: We will use similar notations to the proofs of Theorem 12:

• Let u = (k+, l+,m), v = (m,n+, p), and w = (p, q+, r+) form the triple (klm−mnp− pqr).

• Let uu′
1u

′
2 . . . u

′
k+1 be the k+-path incident to u.

• Let uu1u2 . . . ul+1 be the l+-path incident to u.

• Let vv′1v
′
2 . . . v

′
mu be the m-path incident to u and v.

• Let vv1v2 . . . vn+1 be the n+-path incident to v.

• Let vv′m+1v
′
m+2 . . . v

′
m+pw be the p-path incident to v and w.

• Let ww1w2 . . . wq+1 be the q+-path incident to w.
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u′
k+1 u′

k u′
1 u v′m v′1 v

v′m+1 v′m+p
w w′

1 w′
r

w′
r+1

u1

ul

ul+1

v1

vn

vn+1

w1

wq

wq+1

Fig. 7: Theorem 13 notations.

• Let ww′
1w

′
2 . . . w

′
r+1 be the r+-path incident to w.

• For every triple (klm−mnp− pqr) from (i) to (xix), we define the subgraph

H = {u, v, w, u′
1, u

′
2, . . . , u

′
k−1, u1, u2, . . . , ul−1, v

′
1, v

′
2, . . . , v

′
m+p, v1, v2, . . . , vn−1,

w1, w2, . . . , wq−1, w
′
1, w

′
2, . . . , w

′
r−1}.

Similarly, all vertices in H are distinct since G has girth at least 21. We will color G−H by minimality
of G first, then extend that coloring to H using Figure 5.

(i) We restrict u′
1 by one color to color u′

2, u′
3, and u′

4 last. We restrict u1 by one color to color u2,
u3, and u4 afterwards. We restrict w by one color to color w1, w2, and w3 afterwards. We restrict
w′

1 by one color to color w′
2, w′

3, and w′
4 afterwards. Now, we color v1, v, w, u, u1, and u′

1 by
Figure 5(ii). Then, we color w′

1.

(ii) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict u again by one color to color u1,

u2, and u3 afterwards. We restrict v by one color to color v1, v2, and v3 afterwards. We restrict w
by one color to color w′

1, w′
2, and w′

3 afterwards. We color the remaining vertices w1, w, v, and u
by Figure 5(i).

(iii) We restrict u′
1 by one color to color u′

2, u′
3, and u′

4 last. We restrict u1 by one color to color u2, u3,
and u4 afterwards. We restrict w by one color to color w′

1, w′
2, and w′

3 afterwards. We restrict v′1
by one color to color w, w1, and w2 afterwards. The remaining vertices v1, v, v′1, u, u1, and u′

1 are
colorable by Figure 5(ii).

(iv) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict w by one color to color w′

1, w′
2,

and w′
3 afterwards. We restrict v′1 by one color to color w, w1, and w2 afterwards. The remaining

vertices u1, u, v, v′1, v1, and v2 are colorable by Figure 5(vi).

(v) We restrict u′
1 by one color to color u′

2, u′
3, and u′

4 last. We restrict u1 by one color to color u2, u3,
and u4 afterwards. We restrict w by one color to color w′

1, w′
2, and w′

3 afterwards. The remaining
vertices w1, w, v′2, v′1, v, v1, u, u′

1, and u1 are colorable by Figure 5(xii) as L(v1) ⊆ L(v).
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(vi) We restrict u′
1 by one color to color u′

2, u′
3, and u′

4 last. We restrict w by one color to color w′
1,

w′
2, and w′

3 afterwards. We color v with x ∈ L(v) \ L(v1). Observe that L(v2) ⊆ L(v1) so
x /∈ L(v1) ∪ L(v2). Now, we color w, v′2, v′1 in this order. The vertices u′

1, u, u1, u2, and u3 are
colorable by Figure 5(iii). Then, we color the remaining vertices v1 and v2 in this order.

(vii) We restrict u′
1 by one color to color u′

2, u′
3, and u′

4 last. We color w with x ∈ L(w) \ L(w1).
Observe that L(w2) ⊆ L(w1) so x /∈ L(w1) ∪ L(w2). We color v with y ∈ L(v) \ L(v1). Observe
that L(v2) ⊆ L(v1) so y /∈ L(v1)∪L(v2). Now, we color w′

2, w′
1, v′2, v′1 in this order. The vertices

u′
1, u, u1, u2, and u3 are colorable by Figure 5(iii). Then, we color the remaining vertices v1, v2,

w1, and w2 in this order.

(viii) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict w by one color to color w′

1, w′
2,

and w′
3 afterwards. We restrict v by one color to color v1, v2, and v3 afterwards. We color w then

the remaining vertices u1, u, v, v′1, and v′2 are colorable by Figure 5(iii).

(ix) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict v by one color to color v1,

v2, and v3 afterwards. We color w with x ∈ L(w) \ L(w1). Observe that L(w2) ⊆ L(w1) so
x /∈ L(w1) ∪ L(w2). We color w′

2 and w′
1 in this order. The vertices u1, u, v, v′1, and v′2 are

colorable by Figure 5(iii). Now, we color the remaining vertices w1 and w2 in this order.

(x) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict v′1 by one color to color u, u1,

and u2 afterwards. We restrict w by one color to color w′
1, w′

2, and w′
3 afterwards. We restrict L(v′2)

to L(v′2) \ L(w1). We color the vertices w, v′2, v, v′1, v1 and v2 by Figure 5(vi). Then, we color the
remaining vertex w1.

(xi) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict v by one color to color v1, v2,

and v3 afterwards. We restrict w by one color to color w′
1, w′

2, and w′
3 afterwards. We restrict L(v′1)

to L(v′1) \ L(u1). We color w1, w, v′2, v, v′1, and u by Figure 5(ix). Then, we color the remaining
vertex u1.

(xii) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict v′1 by one color to color u, u1,

and u2 afterwards. We restrict w by one color to color w′
1, w′

2, and w′
3 afterwards. We color the

remaining vertices w1, w, v′3, v′2, v, and v′1 by Figure 5(ix).

(xiii) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We color w with x ∈ L(w)\L(w1). Observe

that L(w2) ⊆ L(w1) so x /∈ L(w1)∪L(w2). We color w′
2 and w′

1 in this order. The vertices v2, v1,
v, v′3, v′2, v′1, u, and u1 are colorable by Figure 5(x) as L(v2) ⊆ L(v1) and L(v′3) ⊆ L(v′2). Now,
we color the remaining vertices w1 and w2 in this order.

(xiv) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict w by one color to color w′

1,
w′

2, and w′
3 afterwards. We color w then the remaining vertices v′3, v′2, v, v1, v2, v′1, u, and u1 are

colorable by Figure 5(x) as L(v2) ⊆ L(v1) and L(v′3) ⊆ L(v′2).

(xv) We restrict u by one color to color u′
1, u′

2, and u′
3 last. We restrict w by one color to color w′

1,
w′

2, and w′
3 afterwards. We color w then the remaining vertices v′4, v′3, v, v1, v′1, v′2, u, and u1 are

colorable by Figure 5(xi).
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(xvi) We restrict w by one color to color w′
1, w′

2, and w′
3 last. We color u with x ∈ L(u)\L(u1). Observe

that L(u2) ⊆ L(u1) so x /∈ L(u1) ∪ L(u2). We color u′
2 and u′

1 in this order. We color v′2, v′1, v,
v1, v′3, v′4, w, and w1 by Figure 5(xi). Now, we color the remaining vertices u1 and u2 in this order.

(xvii) We color w with x ∈ L(w) \ L(w1). Observe that L(w2) ⊆ L(w1) so x /∈ L(w1) ∪ L(w2). We
color v with y ∈ L(v) \ L(v1). Observe that L(v2) ⊆ L(v1) so y /∈ L(v1) ∪ L(v2). We color w′

2,
w′

1, v′4, and v′3 in this order. We color v′1, v′2, u, u1, u2, u′
1, u′

2 by Figure 5(viii) as L(u′
2) ⊆ L(u′

1),
L(u2) ⊆ L(u1), and L(v′1) ⊆ L(v′2). Now, we color the remaining vertices v1, v2, w1 and w2 in
this order.

(xviii) We restrict w by one color to color w′
1, w′

2, and w′
3 last. We color v with x ∈ L(v)\L(v1). Observe

that L(v2) ⊆ L(v1) so x /∈ L(v1) ∪ L(v2). We color w, v′4, and v′3 in this order. We color v′1, v′2,
u, u1, u2, u′

1, u′
2 by Figure 5(viii) as L(u′

2) ⊆ L(u′
1), L(u2) ⊆ L(u1), and L(v′1) ⊆ L(v′2). Now,

we color the remaining vertices v1 and v2 in this order.

(xix) We restrict w by one color to color w′
1, w′

2, and w′
3 last. We restrict u by one color to color u′

1,
u′
2, and u′

3 afterwards. We color u and w then the remaining vertices v′2, v′1, v, v1, v2, v′3, v′4 are
colorable by Figure 5(viii) as L(v′2) ⊆ L(v′1), L(v2) ⊆ L(v1), and L(v′4) ⊆ L(v′3).

2

2.3 Discharging rules
In this section, we will define a discharging procedure that contradicts the structural properties of G
(see Theorems 11 to 13) showing that G does not exist. We assign to each vertex u the charge µ(u) =
19
2 d(u) − 21 and to each face f the charge µ(f) = d(f) − 21. By Equation (1), the total sum of the

charges is negative. We then apply the following discharging rules:

Let u and v be endvertices of a m-path where u = (k, l,m) with k + l + m ≤ 7 and v = (m,n, p).
Vertex u gives charge to v in the following cases:

R0 If m = 0

(i) and v = (0, 5, 5), then u gives 5
2 to v.

(ii) and v = (0, 4, 5), then u gives 3
2 to v.

(iii) and v ∈ {(0, 3, 5), (0, 4, 4)}, then u gives 1
2 to v.

(iv) and v = (0, 2, 5), then u gives 1
4 to v.

R1 If m = 1

(i) and v ∈ {(1, 3, 5), (1, 4, 4)}, then u gives 3
2 to v.

(ii) and v ∈ {(1, 3, 4), (1, 2, 5)}, then u gives 1
2 to v.

R2 If m = 2

(i) and v = (2, 2, 5), then u gives 3
4 to v.

(ii) and v ∈ {(2, 3, 3), (2, 1, 5)}, then u gives 1
2 to v.

(iii) and v = (2, 2, 4), then u gives 1
4 to v.

R3 Finally, every 3-vertex gives 1 to each 2-vertex on its incident paths.
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2.4 Verifying that charges on each face and each vertex are non-negative
Let µ∗ be the assigned charges after the discharging procedure. In what follows, we will prove that:

∀u ∈ V (G), µ∗(u) ≥ 0 and ∀f ∈ F (G), µ∗(f) ≥ 0.

First of all, since G is connected (Theorem 9), has minimum degree at least 2 (Theorem 10), has
girth at least 21, and the discharging rules do not interfere with charge on faces, every face f verifies
µ∗(f) = µ(f) = d(f)− 21 ≥ 0.

Now, let u be a vertex in V (G). If d(u) = 2, then u receives charge 1 from each endvertex of the path
it lies on by R3; thus we get µ∗(u) = µ(u) + 2 · 1 = 19

2 · 2− 21 + 2 = 0.
From now on, suppose that d(u) = 3 and let u = (k, l,m). Recall that µ(u) = 19

2 · 3− 21 = 15
2 :

Case 1: Suppose that k + l +m ≥ 8.
First, observe that u only gives away charges by R3. More precisely, u gives a total of k + l + m to
2-vertices. Since there are no 6+-paths, (1+, 4+, 5+), (2+, 3+, 4+), or (3+, 3+, 3+) due to Theorem 11,
then the only possible values for k, l, and m are as follows:

• If u is a (5, 5, 0), (5, 4, 0), (5, 3, 0) or (4, 4, 0), then u cannot be adjacent to a vertex v = (m,n, p)
with m + n + p ≥ 8 as (430 − 024) is reducible by Theorem 12(i). As a result, u receives charge
5
2 (resp. 3

2 , 1
2 , or 1

2 ) by R0(i) (resp. R0(ii), R0(iii), or R0(iii)) when it is a (5, 5, 0) (resp. (5, 4, 0),
(5, 3, 0), or (4, 4, 0)). To sum up, we have

µ∗(u) =
15

2
+

5

2
− 5− 5 = 0 when u = (5, 5, 0)

=
15

2
+

3

2
− 5− 4 = 0 when u = (5, 4, 0)

=
15

2
+

1

2
− 5− 3 = 0 when u = (5, 3, 0)

=
15

2
+

1

2
− 4− 4 = 0 when u = (4, 4, 0)

• If u is a (5, 3, 1), (4, 4, 1), or (4, 3, 1), then u cannot share a 1-path with a vertex v = (m,n, p) with
m + n + p ≥ 8 as (431 − 114) is reducible by Theorem 12(iii). As a result, u receives charge 3

2
(resp. 3

2 , or 1
2 ) by R1(i) (resp. R1(i), or R1(ii)) when it is a (5, 3, 1) (resp. (4, 4, 1), or (4, 3, 1)). To

sum up, we have

µ∗(u) =
15

2
+

3

2
− 5− 3− 1 = 0 when u = (5, 3, 1)

=
15

2
+

3

2
− 4− 4− 1 = 0 when u = (4, 4, 1)

=
15

2
+

1

2
− 4− 3− 1 = 0 when u = (4, 3, 1)

• If u is a (5, 2, 2) or (4, 2, 2), then u cannot share a 2-path with a vertex v = (m,n, p) with m +
n + p ≥ 8 as (422 − 223) and (422 − 214) are reducible respectively by Theorem 12(iv) and
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Theorem 12(v). As a result, u receives charge 3
4 (resp. 1

4 ) by R2(i) (resp. R2(iii)) when it is a
(5, 2, 2) (resp. (4, 2, 2)) twice (once from each incident 2-path). To sum up, we have

µ∗(u) =
15

2
+ 2 · 3

4
− 5− 2− 2 = 0 when u = (5, 2, 2)

=
15

2
+ 2 · 1

4
− 4− 2− 2 = 0 when u = (4, 2, 2)

• If u is a (3, 3, 2), then u cannot share a 2-path with a vertex v = (m,n, p) with m+ n+ p ≥ 8 as
(412− 233) and (332− 233) are reducible respectively by Theorem 12(vi) and (vii). As a result, u
receives charge 1

2 by R2(ii). To sum up, we have

µ∗(u) =
15

2
+

1

2
− 3− 3− 2 = 0

• If u is a (5, 2, 1), then u cannot share a 2-path with a vertex v = (l, i, j) with l + i + j ≥ 8 and u
cannot share a 1-path with a vertex w = (m,n, p) with m+ n+ p ≥ 8 at the same time, as (412−
233) and (421 − 132 − 214) are reducible respectively by Theorem 12(vi) and Theorem 13(xiv).
As a result, u receives at least charge 1

2 by R1(ii) or R2(ii). To sum up, we have

µ∗(u) ≥ 15

2
+

1

2
− 5− 2− 1 = 0

Case 2: Suppose that k + l +m ≤ 7 and that u is a (2−, 5−, 2−).
First, observe that when u is a (2−, 2−, 2−), it gives at most 5

2 along every incident path except for the
case of R2(i), when it shares a 2-path with a (2, 2, 5). Indeed, by R0, u gives at most 5

2 to an adjacent
3-vertex. By R1 and R3, u gives 1 to the 2-vertex on the 1-path and at most 3

2 to the other endvertex. By
R2(ii), R2(iii), and R3, u gives 2 to the 2-vertices on the 2-path and at most 1

2 to the other endvertex. As
a result, u, a (2−, 2−, 2−) that does not share a 2-path with a (2, 2, 5), verifies

µ∗(u) ≥ 15

2
− 3 · 5

2
= 0

In other words, for the following values of k, l,m, we only need to look at 2 ≤ l ≤ 5. Moreover, when
l = 2, we can assume w.l.o.g. that the other endvertex of the 2-path is a (2, 2, 5) since k, l, and m are
interchangeable.

Let v = (i, j, k) share the k-path with u and let w = (m,n, p) share the m-path with u (see Figure 8).
For each case, only R3, Rk and Rm apply, with the additional R2(i) when l = 2.

• If u is a (0, 5−, 0), then we distinguish the two following cases:

If 2 ≤ l ≤ 3, then u gives at most 3 along the l-path: either 3 to the 2-vertices in the case of a 3-path
or 2 to the 2-vertices and 3

4 to the other endvertex by R2(i). Since (550 − 020 − 045) is reducible
by Theorem 13(i), u cannot give 5

2 twice to v and w by R0. So at worst, we have

µ∗(u) =
15

2
− 3− 5

2
− 3

2
=

1

2
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v u wi vertices

j vertices

k vertices

l vertices

m vertices

n vertices

p vertices

Fig. 8: Notations.

If 4 ≤ l ≤ 5, then u gives at most 5 to the 2-vertices along the l-path. Since (440 − 040 − 024)
is reducible by Theorem 13(ii), if u gives at least 3

2 to v by R0(i) or R0(ii), then u does not give
charge to w.

So at worst, we have

µ∗(u) =
15

2
− 5− 5

2
= 0

• If u is a (0, 5−, 1), then we distinguish the two following cases:

If 2 ≤ l ≤ 3, then u gives at most 3 along the l-path: either 3 to the 2-vertices in the case of a
3-path or 2 to the 2-vertices and 3

4 to the other endvertex by R2(i). Since (550 − 021 − 134) and
(420− 031− 134) are reducible respectively by Theorem 13(iii), u cannot give 5

2 twice to v and w
by R0 and R1 (1 + 3

2 in the case of R1(i)). So at worst, we have

µ∗(u) =
15

2
− 3− 5

2
− 3

2
=

1

2

If 4 ≤ l ≤ 5, then u gives at most 5 along the l-path.

– If w is a (1, 3+, 4+), then v cannot be a (4+, 2+, 0) since (420 − 031 − 134) is reducible
by Theorem 13(iv). As a result, u gives at most 3

2 along the 1-path by R1 and nothing to its
adjacent 3-vertex by R0. So at worst, we have

µ∗(u) =
15

2
− 5− 1− 3

2
= 0

– If w is not a (1, 3+, 4+), then u gives at most 1
2 along the 1-path by R1 and at most 1

2 to its
adjacent 3-vertex by R0 since (540 − 014) is reducible by Theorem 12(ii). So at worst, we
have

µ∗(u) =
15

2
− 5− 1− 1

2
− 1

2
=

1

2

• If u is a (0, 5−, 2), then we distinguish the four following cases:
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If l = 2, then u gives 2+ 3
4 along the 2-path by R3 and R2(i). Since (550−022−224) is reducible

by Theorem 13(v), v cannot be a (5, 5, 0). As a result, u gives at most 3
2 to its adjacent 3-vertex by

R0 and 2 + 3
4 along each 2-path by R3 and R2. So at worst, we have

µ∗(u) =
15

2
− 3

2
− 2 ·

(
2 +

3

4

)
=

1

2

If l = 3, then u gives 3 along the l-path and 2 along the 2-path by R3.

– If v is a (5, 4+, 0), then w cannot be a (2, 1+, 4+) nor a (2, 3, 3) as (540 − 032 − 214) and
(540 − 032 − 233) are reducible respectively by Theorem 13(vi) and Theorem 13(vii). As a
result, u gives at most 5

2 to v by R0 and nothing to w by R2. So at worst, we have

µ∗(u) =
15

2
− 3− 2− 5

2
= 0

– If v is not a (5, 4+, 0), then u gives at most 1
2 to v by R0 and at most 3

4 to w by R2. So at
worst, we have

µ∗(u) =
15

2
− 3− 2− 1

2
− 3

4
=

5

4

If l = 4, then u gives 4 along the l-path and 2 along the 2-path by R3. Since (430−024) is reducible
by Theorem 12(i), v cannot be a (4+, 3+, 0). As a result, u gives at most 1

4 to v by R0 and at most
3
4 to w by R2. So at worst, we have

µ∗(u) =
15

2
− 4− 2− 1

4
− 3

4
=

1

2

If l = 5, then u gives 5 along the l-path and 2 along the 2-path by R3.

– If v is a (4+, 2+, 0), then w cannot be a (2, 1+, 4+) nor a (2, 3, 3) as (420 − 042 − 214)
and (420 − 042 − 233) are reducible respectively by Theorem 13(viii) and Theorem 13(ix).
Moreover, v cannot be a (4+, 3+, 0) since (430 − 024) is reducible by Theorem 12(i). As a
result, u gives at most 1

4 to v by R0 and nothing to w by R2. So at worst, we have

µ∗(u) =
15

2
− 5− 2− 1

4
=

1

4

– If v is not a (4+, 2+, 0), then v = (i, j, k) with i + j + k ≤ 7. Thus, u receives 1
4 from v by

R0(iv). Moreover, u gives nothing to v by R0 and at most 3
4 to w by R2. So at worst, we have

µ∗(u) =
15

2
− 5− 2 +

1

4
− 3

4
= 0

• If u is a (1, 5−, 1), then we distinguish the three following cases:



22 Hoang La, Mickael Montassier

If l = 2, then u gives 2 + 3
4 along the 2-path by R3 and R2(i) and 1 to each 2-vertex on the 1-paths

by R3. Since (431 − 112 − 224) is reducible by Theorem 13(xii), v cannot be a (4+, 3+, 1). The
same holds for w. As a result, u gives at most 1

2 twice to v and w by R1. So at worst, we have

µ∗(u) =
15

2
− 2− 3

4
− 1− 1− 2 · 1

2
=

7

4

If l = 3, then u gives 3 to the l-path and 1 to each 2-vertex on the 1-paths by R3. Since (431 −
131 − 124) is reducible by Theorem 13(x), v and w cannot both be (4+, 3+, 1)s. As a result, u
cannot give 3

2 twice by R1. So at worst, we have

µ∗(u) =
15

2
− 3− 1− 1− 3

2
− 1

2
=

1

2

If 4 ≤ l ≤ 5, then u gives at most 5 along the l-path, 1 to each 2-vertex on the 1-paths by R3.
Since (431 − 114) is reducible by Theorem 12(iii), u cannot give more than 1

2 to v nor w by R1.
Moreover, since (421− 141− 124) is also reducible by Theorem 13(xi), u cannot give 1

2 twice by
R1. So at worst, we have

µ∗(u) =
15

2
− 5− 1− 1− 1

2
= 0

• If u is a (1, 5−, 2), then l ≤ 4 since k+ l+m ≤ 7. Thus, we distinguish the three following cases:

If l = 2, then u gives 2+ 3
4 along at least one of the 2-paths by R3 and R2(i) and 1 to each 2-vertex

on the 1-path and other 2-path by R3. Since (431− 112− 224) is reducible by Theorem 13(xii), v
cannot be a (4+, 3+, 1). As a result, u gives at most 1

2 to v by R1 and at most 3
4 to w by R2. So at

worst, we have

µ∗(u) =
15

2
− 2− 3

4
− 2− 1− 1

2
− 3

4
=

1

2

If l = 3, then u gives 3 along the l-path and 1 to each 2-vertex on the 1-path and 2-path by R3.

– If v is a (4+, 2+, 1), then w cannot be a (2, 1+, 4+) nor a (2, 3, 3) since (421 − 132 − 233)
and (421− 132− 214) are reducible respectively by Theorem 13(xiii) and (xiv). As a result,
u gives at most 3

2 to v by R1 and nothing to w by R2. So at worst, we have

µ∗(u) =
15

2
− 3− 2− 1− 3

2
= 0

– If v is not a (4+, 2+, 1), then u gives nothing to v by R1 and at most 3
4 to w by R2. So at

worst, we have

µ∗(u) =
15

2
− 3− 2− 1− 3

4
=

3

4

If l = 4, then u gives 4 along the l-path and 1 to each 2-vertex on the 1-path and 2-path by R3.
Since (431 − 114), (422 − 214), and (412 − 233) are reducible respectively by Theorem 12(iii),
(v) and (vi), v cannot be a (4+, 3+, 1) and w cannot be a (2, 2+, 4+) nor a (2, 3, 3). Moreover,
(421−132−214) is reducible by Theorem 13(xiv). As a result, u can give at most 1

2 once to either
v or w. So at worst, we have

µ∗(u) =
15

2
− 4− 2− 1− 1

2
= 0
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• If u is a (2, 5−, 2), then l ≤ 3, since k + l +m ≤ 7. Thus, we distinguish the two following cases:

If l = 2, then u gives 2+ 3
4 along at least one of the 2-paths by R3 and R2(i) and 1 to each 2-vertex

on the 2-paths by R3. Since (422− 222− 214) and (332− 222− 224) are reducible respectively
by Theorem 13(xv) and (xvi), v cannot be a (4+, 1+, 2) nor a (3, 3, 2). The same holds for w. As a
result, u gives nothing to v nor w by R2. So at worst, we have

µ∗(u) =
15

2
− 2− 3

4
− 2− 2 =

3

4

If l = 3, then u gives 3 along the l-path and 1 to each 2-vertex on the 2-paths by R3.

– If either v or w is a (3, 3, 2), then the other cannot be a (2, 3, 3) nor a (2, 1+, 4+) as (332 −
232−233) and (332−232−214) are reducible respectively by Theorem 13(xvii) and (xviii).
So, u gives only 1

2 once to either v or w by R2. So at worst, we have

µ∗(u) =
15

2
− 3− 2− 2− 1

2
= 0

– If neither v nor w is a (3, 3, 2), then the remaining cases are as follows. Since (422 − 223)
is reducible by Theorem 12(iv), v cannot be a (4+, 2+, 2). The same holds for w. Moreover,
since (412 − 232 − 214) is reducible by Theorem 13(xix), they cannot both be (4+, 1+, 2)s.
As a result, u gives at most 1

2 once to either v or w by R2. So at worst, we have

µ∗(u) =
15

2
− 3− 2− 2− 1

2
= 0

Case 3: Suppose that k + l +m ≤ 7 and that u is a (3+, 5−, 3+).
Since k + l +m ≤ 7, the only possibilities for u are as follows:

• If u is a (3, 0, 3), then u can only give charge by R0 and R3. Since (330 − 045) is reducible by
Theorem 11(v), u can give at most 1

2 to another 3-vertex by R0(iii) or R0(iv). As a result,

µ∗(u) ≥ 15

2
− 1

2
− 3− 3 = 1

• If u is a (3, 1, 3), then u can only give charge by R1 and R3. Since (431 − 133) is reducible by
Theorem 11(vi), u can give at most 1

2 to another 3-vertex by R1(ii). As a result,

µ∗(u) ≥ 15

2
− 1

2
− 3− 3− 1 = 0

• If u is a (4, 0, 3), then u can only give charge by R0 and R3. Since (430 − 024) is reducible by
Theorem 12(i), u actually does not give charge by R0. As a result,

µ∗(u) ≥ 15

2
− 4− 3 =

1

2

To conclude, we started with a charge assignment with a negative total sum, but after the discharging
procedure, which preserved that sum, we end up with a non-negative one, which is a contradiction. In
other words, there exists no counter-example G to Theorem 4.
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3 A non 4-colorable subcubic planar graph of girth 11
In (Dvořák et al., 2008b), Dvor̆ák, S̆krekovski, and Tancer presented a non 4-colorable, planar, and sub-
cubic graph with girth at least 9. The main building block of that graph relies upon an interesting property
of 4-colorings on path of length 5. Using the same property we managed to build a non 4-colorable planar
subcubic graph of girth 11.

Lemma 14 Let H be a subcubic graph of girth at least 11 and ϕ a 4-coloring of H . Let u1u2u3u4u5u6

be a path of length 5 in H , if ϕ(u1) = ϕ(u6), then ϕ(u2) = ϕ(u5).

Proof: Since H has girth at least 11, all considered vertices are distinct. Suppose by contradiction that
ϕ(u1) = ϕ(u6) but ϕ(u2) ̸= ϕ(u5). W.l.o.g. we set ϕ(u1) = ϕ(u6) = a, ϕ(u2) = b, and ϕ(u5) = c.
Since u3 sees u1, u2, and u5, colored respectively a, b, and c, it must be colored d. Finally, u4 sees u2,
u3, u5, and u6, colored respectively by b, d, c, and a. Thus, u4 is non-colorable, which is a contradiction
since ϕ is a 4-coloring of H . 2

Lemma 15 Let H be a subcubic graph of girth 11 and ϕ a 4-coloring of H . Let u1u2u3u4u5u6,
u3u

′
1u

′
2u

′
3u

′
4v1, u4u

′′
1u

′′
2u

′′
3u

′′
4v1 be paths of length 5 in H . Let v0 /∈ {u′

4, u
′′
4} be adjacent to v1. If

ϕ(u1) = ϕ(u6) = ϕ(v0), then ϕ(u2) = ϕ(u5) = ϕ(v1).

Proof: Since H has girth 11, all considered vertices are distinct. We assume w.l.o.g. that ϕ(u1) =
ϕ(u6) = ϕ(v0) = a. By Theorem 14, since ϕ(u1) = ϕ(u6), we must have ϕ(u2) = ϕ(u5). W.l.o.g.
we set ϕ(u2) = ϕ(u5) = b. As a result, we have {ϕ(u3), ϕ(u4)} = {c, d}. We assume w.l.o.g. that
ϕ(u3) = c and ϕ(u4) = d. Now, suppose by contradiction that ϕ(v1) = c. By Theorem 14, since
ϕ(u3) = ϕ(v1), we must have ϕ(u′

1) = ϕ(u′
4) = a. However, this is impossible since u′

4 sees v0 which is
colored a. By symmetry, the same argument holds when ϕ(v1) = d. Finally, since v1 also sees v0, thus
ϕ(v1) /∈ {a, c, d}, and so ϕ(v1) = b = ϕ(u2) = ϕ(u5). 2

u1

a

u2

b

u3

d

u4 u5

c

u6

a

Fig. 9: A non-valid coloring of H in Theorem 14.

Lemma 16 The graph G̸=(u, v) in Figure 11(i) has the following properties:

• G̸=(u, v) is planar and subcubic.

• G̸=(u, v) has girth 11.

• The distance in G̸=(u, v) between u and v is 7.

• Every 4-coloring ϕ of G̸=(u, v) satisfies ϕ(u) ̸= ϕ(v).
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u1

a

u2

b

u3

c

u4

d

u5

b

u6

a

u′
1

a

u′
2

u′
3

u′
4

u′′
1

a

u′′
2

u′′
3

u′′
4

v1 c

v0 a

Fig. 10: A non-valid coloring of H in Theorem 15.

Proof: One can verify that G̸=(u, v) is planar, subcubic, has girth 11, and that the distance between u and
v is 7 thanks to Figure 11(i). It remains to prove that ϕ(u) ̸= ϕ(v) for every 4-coloring ϕ of G ̸=(u, v).

Suppose by contradiction that there exists a 4-coloring ϕ such that ϕ(u) = ϕ(v) = a. We can assume
w.l.o.g. that ϕ(u1) = b, ϕ(u2) = c, and ϕ(v5) = d. Since u6 sees v which is colored a, we distinguish
the following cases based on ϕ(u6):

• If ϕ(u6) = b, then ϕ(u5) = ϕ(u2) = c by Theorem 14 as ϕ(u6) = ϕ(u1). As a result,
ϕ(v1) = d. Since v2 and v4 both see b and d, we have {ϕ(v2), ϕ(v4)} = {a, c}. Now, v3 sees
{ϕ(v1), ϕ(v2), ϕ(v4), ϕ(v5)} = {d, a, c}, so ϕ(v3) = b. Finally, v7 sees {ϕ(v2), ϕ(v3), ϕ(v4)} =
{a, b, c}, hence ϕ(v7) = d. However, this is impossible since ϕ(u1) = ϕ(u6) = ϕ(v3) = b, thus
ϕ(u2) = ϕ(u5) = ϕ(v7) = c by Theorem 15.

• If ϕ(u6) = c, then we have the two following cases:

– If ϕ(v1) = b, then ϕ(v2) = ϕ(v5) = d by Theorem 14 as ϕ(v1) = ϕ(u1). As a result,
ϕ(u5) = d and ϕ(v6) = a. Since v3 and v4 both see b and d, we have {ϕ(v3), ϕ(v4)} = {a, c}.
Now, v7 sees {ϕ(v2), ϕ(v3), ϕ(v4)} = {d, a, c}, so ϕ(v7) = b. Since u3 sees b, c, and d,
ϕ(u3) = a and consequently, ϕ(u4) = b and ϕ(w1) = c. However, this is impossible since
ϕ(u4) = ϕ(v7) = ϕ(v1) = b, thus ϕ(w1) = ϕ(w4) = ϕ(v6) = a by Theorem 15.

– If ϕ(v1) = d, then ϕ(u5) = b. All three vertices v2, v3, and v4 see d, so {ϕ(v2), ϕ(v3), ϕ(v4)}
= {a, b, c}. As a result, ϕ(v7) = d. Both u3 and u4 see b and c, so {ϕ(u3), ϕ(u4)} = {a, d}.
Since w1 sees {ϕ(u3), ϕ(u4), ϕ(u5)} = {a, d, b}, ϕ(w1) = c. Due to Theorem 15, we must
have ϕ(u4) = a. Otherwise, by Theorem 15, ϕ(u4) = d = ϕ(v7) = ϕ(v1) and ϕ(w1) =
ϕ(w4) = ϕ(v6) = c which is impossible since v6 sees u6 colored c. Thus, ϕ(u3) = d
and ϕ(t1) = b. However, this is also impossible since ϕ(u3) = ϕ(v7) = ϕ(v5) = d, thus
ϕ(t1) = ϕ(t4) = ϕ(v8) = b by Theorem 15 and v8 sees u1 colored b.

• If ϕ(u6) = d, then ϕ(v1) = ϕ(v4) by Theorem 14 as ϕ(u6) = ϕ(v5). Since v4 sees b and d and
v1 sees a and d, ϕ(v4) = ϕ(v1) = c. As a result, ϕ(u5) = b and ϕ(v8) = a. Both v2 and v3 see c
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and d, so {ϕ(v2), ϕ(v3)} = {a, b}. Now, v7 sees {ϕ(v2), ϕ(v3), ϕ(v4)} = {a, b, c}, so ϕ(v7) = d.
Since u4 sees d, b, and c, ϕ(u4) = a and consequently, ϕ(u3) = d and ϕ(t1) = b. However, this is
impossible since ϕ(u3) = ϕ(v7) = ϕ(v5) = d, thus ϕ(t1) = ϕ(t4) = ϕ(v8) = a by Theorem 15.

2

Lemma 17 The graph G′
̸=(u, v) in Figure 12(i) has the following properties:

• G′
̸=(u, v) is planar and subcubic.

• G′
̸=(u, v) has girth 11.

• The distance in G′
̸=(u, v) between u and v is 10.

• Every 4-coloring ϕ of G′
̸=(u, v) satisfies ϕ(u) ̸= ϕ(v).

Proof: One can verify that G′
̸=(u, v) is planar, subcubic, has girth 11, and that the distance between u

and v is 10 thanks to Figure 12(i) and Theorem 16. It remains to prove that ϕ(u) ̸= ϕ(v) for every 4-
coloring ϕ of G′

̸=(u, v). Suppose by contradiction that there exists a 4-coloring ϕ of G′
̸=(u, v) such that

ϕ(u) = ϕ(v), say ϕ(u) = a. We only need to observe that w3 and w4 cannot be colored a thanks to
G̸=(u, v) and w1 and w2 cannot be colored a since they see v. This is a contradiction as we have four
vertices at distance two pairwise but only three colors left. 2

Lemma 18 The graph G=(u, v) in Figure 13(i) has the following properties:

• G=(u, v) is planar and subcubic.

• G=(u, v) has girth 11.

• The distance in G=(u, v) between u and v is 3.

• Every 4-coloring ϕ of G=(u, v) satisfies ϕ(u) = ϕ(v).

Proof: One can verify that G=(u, v) is planar, subcubic, has girth 11, and that the distance between
u and v is 3 thanks to Figure 13(i) and Theorem 16. It remains to prove that ϕ(u) = ϕ(v) for every
4-coloring ϕ of G=(u, v). Let ϕ be a 4-coloring of G=(u, v), we can assume w.l.o.g. that ϕ(u) = a,
ϕ(t1) = b, ϕ(t2) = c, and ϕ(w1) = d. Observe that v sees t1 and w1 colored respectively b and d.
Moreover, due to Theorem 17, ϕ(v) ̸= ϕ(t2) = c as G=(u, v) contains G′

̸=(t2, v). As a result, we must
have ϕ(v) = a = ϕ(u). 2

As a direct consequence of Theorem 17 and Theorem 18, we get the following lemma.

Lemma 19 The graph G in Figure 14 is a planar subcubic graph of girth 11 with χ2(G) ≥ 5.

In (Dvořák et al., 2008b), the authors also proved the NP-completeness of the problem of deciding
if a planar subcubic graph of girth 9 is 4-colorable using a gadget that can reproduce colors at a far
enough distance to preserve the girth condition. The same proof can be adapted directly to prove the NP-
completeness of deciding if a planar subcubic graph of girth 11 is 4-colorable by using a concatenation of
G=(u, v) to get a large enough distance.
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Fig. 11: G̸=.
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Fig. 14: A non-4-colorable planar subcubic graph of girth 11.
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D. Cranston, R. Erman, and R. Škrekovski. Choosability of the square of a planar graph with maximum
degree four. Australian Journal of Combinatorics, 59(1):86–97, 2014.

W. Dong and W. Lin. An improved bound on 2-distance coloring plane graphs with girth 5. Journal of
Combinatorial Optimization, 32(2):645–655, 2016.

W. Dong and W. Lin. On 2-distance coloring of plane graphs with girth 5. Discrete Applied Mathematics,
217:495–505, 2017.



30 Hoang La, Mickael Montassier

W. Dong and B. Xu. 2-distance coloring of planar graphs with girth 5. Journal of Combinatorial Opti-
mization, 34:1302–1322, 2017.
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