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A graph G is signed if each edge is assigned “+” or “−”. A signed graph is balanced if there is a bipartition of
its vertex set such that an edge has sign “−” if and only if its endpoints are in different parts. The Edwards-Erdős
bound states that every signed graph with n vertices and m edges has a balanced subgraph with at least m

2
+ n−1

4

edges. In the SIGNED MAX CUT ABOVE TIGHT LOWER BOUND (SIGNED MAX CUT ATLB) problem, given a
signed graph G and a parameter k, the question is whether G has a balanced subgraph with at least m

2
+ n−1

4
+ k

4

edges. This problem generalizes MAX CUT ABOVE TIGHT LOWER BOUND, for which a kernel with O(k5) vertices
was given by Crowston et al. [ICALP 2012, Algorithmica 2015]. Crowston et al. [TCS 2013] improved this result
by providing a kernel with O(k3) vertices for the more general SIGNED MAX CUT ATLB problem. In this article
we are interested in improving the size of the kernels for SIGNED MAX CUT ATLB on restricted graph classes for
which the problem remains hard. For two integers r, ` ≥ 0, a graph G is an (r, `)-graph if V (G) can be partitioned
into r independent sets and ` cliques. Building on the techniques of Crowston et al. [TCS 2013], for any r, ` ≥ 0 we
provide a kernel with O((r+ `)k2) vertices on (r, `)-graphs, and a simple linear kernel on subclasses of split graphs
for which we prove that the problem is still NP-hard.

Keywords: max cut, (r, `)-graphs, split graphs, parameterized complexity, parameterization above lower bound,
polynomial kernels

1 Introduction
A graph G = (V,E) is a signed graph if each edge is assigned positive (“+′′) or negative (“−′′). In
this paper all graphs will be signed graphs. The labels “+” or “−” are the signs of the corresponding
edges. If (V1, V2) is a bipartition of the vertex set of a graph G, we say that G is (V1, V2)-balanced if
the edges with both endpoints in V1 or both endpoints in V2 are positive and the edges with endpoints in

∗This work was partially supported by CNPq, CAPES, FAPERJ, and COFECUB.

ISSN 1365–8050 c© 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

51
2.

05
22

3v
4 

 [
cs

.D
S]

  2
2 

M
ay

 2
01

7

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1540


2 Luerbio Faria, Sulamita Klein, Ignasi Sau, Rubens Sucupira

distinct parts are negative. A graph G is balanced if there exists a partition (V1, V2) of V (G) such that G
is (V1, V2)-balanced. (Note that we can use an algorithm for 2-SAT to determine whether a signed graph
is balanced.)

The problem of finding a balanced subgraph of a signed graph with maximum number of edges is called
SIGNED MAX CUT and is NP-hard, as it is a generalization of MAX CUT, which is well known to be
NP-hard [16] (indeed, MAX CUT is exactly SIGNED MAX CUT when all edges of G are negative). We
refer to the work of Crowston et al. [5] and the references therein for some applications of the SIGNED
MAX CUT problem.

In this article we study SIGNED MAX CUT from the perspective of Parameterized Complexity; we
refer to the monographs [7, 9, 14, 22] for an introduction to the field. Namely, we consider a so-called
parameterization above lower bound of the problem, and we are particularly interested in obtaining small
polynomial kernels on restricted graph classes. Let us first discuss MAX CUT. Edwards [10, 11] showed
that any connected graph with n vertices and m edges(i) has a cut of size m

2 + n−1
4 , and that this value

is tight (that is, that there exist infinitely many graphs for which the size of a maximum cut equals this
bound). This bound is commonly known as the Edwards-Erdős bound, and justifies the following param-
eterization of MAX CUT recently considered by Crowston et al. [6]: given a graph G and a parameter
k, decide whether G has a cut of size at least m

2 + n−1
4 + k

4 . They provided FPT-algorithms for this
parameterization of the problem and a kernel of size O(k5) on general graphs.

Coming back to the SIGNED MAX CUT problem, Poljak and Turzı́k [23] proved that m
2 + n−t

4 is
also a tight lower bound on the number of edges in a balanced subgraph of any signed graph G with t
connected components; we denote this lower bound by pt(G). Motivated by the above result for MAX
CUT, Crowston et al. [5] considered the following parameterization of SIGNED MAX CUT, which is the
same we consider in this article:

SIGNED MAX CUT ABOVE TIGHT LOWER BOUND
Input: A connected signed graph G and a positive integer k.
Parameter: k.
Question: Does G contain a balanced subgraph with at least m

2 + n−1
4 + k

4 edges?

We call the above problem SIGNED MAX CUT ATLB for short. Crowston et al. [5] proved that SIGNED
MAX CUT ATLB is also FPT and provided a kernel of sizeO(k3) on general graphs, therefore improving
the kernel of size O(k5) for the particular case of MAX CUT ATLB given by Crowston et al. [6].

Our results. In this article we are interested in improving the size of the cubic kernel for SIGNED MAX
CUT ATLB by Crowston et al. [5] on particular graph classes for which the problem remains NP-hard. In
particular, we focus on (r, `)-graphs. For two integers r, ` ≥ 0, a graph G is an (r, `)-graph if V (G) can
be partitioned into r independent sets and ` cliques. These graph classes contain, for example, split graphs
or bipartite graphs, and have been extensively studied in the literature [1,3,4,13,15,18,21]. In particular,
it is known that the recognition of (r, `)-graphs is NP-complete if and only if max{r, `} ≥ 3 [3, 13].

Note that for this parameterization of SIGNED MAX CUT to make sense on (r, `)-graphs, the bound
m
2 + n−1

4 should be also tight on these graph classes. Fortunately, this is indeed the case: letG be a clique
with odd number of vertices, which is clearly an (r, `)-graph as long as ` > 0 (in particular, a split graph),
and such that all edges are negative. It is clear that the largest balanced subgraph of G is given by the

(i) We assume that all input graphs of the problems under consideration have n vertices and m edges.
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crossing edges of any bipartition (V1, V2) of V (G) with |V1| = n+1
2 and |V2| = n−1

2 . The number of
edges of such a balanced subgraph, namely n2−1

4 , equals pt(G) = n(n−1)
4 + n−1

4 .
From a parameterized complexity perspective, split graphs have received considerable attention. For

instance, Raman and Saurabh [24] proved that DOMINATING SET is W[2]-hard on connected split graphs,
and Ghosh et al. [17] provided FPT-algorithms for the problem of deleting at most k vertices to obtain
a split graph. Concerning kernelization, Heggernes et al. [20] studied the DISJOINT PATHS problem
on split graphs parameterized by the number of pairs of terminals, and provided a kernel of size O(k2)
(resp. O(k3)) for the vertex-disjoint (resp. edge-disjoint) version of the problem. As for general (r, `)-
graphs from a parameterized point of view, recently a dichotomy on the parameterized complexity for the
problem of deleting at most k vertices to obtain an (r, `)-graph has been independently obtained by Baste
et al. [1] and by Kolay and Panolan [21]. To the best of our knowledge, this is the first article that focuses
on obtaining polynomial kernels on (r, `)-graphs for arbitrary values of r and `.

Our main result (Theorem 3 in Section 3) is that SIGNED MAX CUT ATLB admits a quadratic kernel
on (r, `)-graphs for every fixed r, ` ≥ 0. More precisely, the kernel has O((r + `)k2) vertices. Our
techniques in order to prove Theorem 3 are strongly based on the ones used by Crowston et al. [5], and
for improving their cubic bound we further exploit the structure of (r, `)-graphs in the analysis of the
algorithm. In fact, our kernelization algorithm consists in applying exhaustively the reduction rules of
Crowston et al. [5], only the analysis changes. As when max{r, `} ≥ 3 the recognition of (r, `)-graphs is
NP-complete [3, 13], we stress here that, given an instance (G, k), we do not need to obtain any partition
of V (G) into r independent sets and ` cliques; we only use the existence of such partition in the analysis.
Since the analysis of the quadratic kernel for the particular case of split graphs is simpler, we prove it
separately in Subsection 3.2.

In Section 4 we present a linear kernel for SIGNED MAX CUT ATLB on subclasses of split graphs.
Namely, these subclasses are what we call d∗-split graphs for every integer d ≥ 1 (see Section 4 for the
definition). We first prove that even MAX CUT is NP-hard on d∗-split graphs for every integer d ≥ 2, and
in Theorem 5 we provide the linear kernel. As discussed later, this kernelization algorithm is the simplest
possible algorithm that one could imagine, as it does nothing to the input graph; its interest lies on the
analysis of the kernel size, which is non-trivial. In particular, the analysis uses a new reduction rule that
we introduce in Section 2.

2 Preliminaries
We use standard graph-theoretic notation; see for instance Diestel’s book [8]. All the graphs we con-
sider are undirected and contain neither loops nor multiple edges. If S ⊆ V (G), we define G[S] =
(S, {{u, v} ∈ E(G) | u, v ∈ S}) andG−S = G[V (G)\S]. A graphG = (V,E) is a split graph if there
is a partition of V into an independent set I and a clique K. Split graphs can be generalized as follows.
Let r, ` be two positive integers. A graph G = (V,E) is an (r, `)-graph if V can be partitioned into at
most r independent sets I1, I2, I3, . . . , Ir and at most ` cliques K1,K2,K3, . . . ,K`.

Given a signed graph G = (V,E), a cycle C in G is called positive if the number of negative edges
in C is even. Otherwise C is called negative. Harary [19] proved that the absence of negative cycles
characterizes balanced graphs.

Theorem 1 (Harary [19]) A signed graph G is balanced if and only if every cycle in G is positive.

The following lemma by Crowston et al. [5] is very useful for our purposes, as it gives a lower bound
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on the maximum size of a balanced signed subgraph of a graph. Let G = (V,E) be a signed graph and let
U,W ⊆ V . We denote by E(U,W ) the subset of E formed by the edges that have one endpoint in U and
the other in W . We also let β(G) denote the maximum number of edges in a balanced subgraph of G.

Lemma 1 (Crowston et al. [5]) Let G = (V,E) be a connected signed graph and let V = U ∪ W
such that U ∩ W = ∅, U 6= ∅, and W 6= ∅. Then β(G) ≥ β(G[U ]) + β(G[W ]) + 1

2 |E(U,W )|.
In addition, if G[U ] has c1 components, G[W ] has c2 components, β(G[U ]) ≥ pt(G[U ]) + k1

4 , and
β(G[W ]) ≥ pt(G[W ]) + k2

4 , then β(G) ≥ pt(G) + k1+k2−(c1+c2−1)
4 .

We say that a problem is fixed-parameter tractable (FPT) [7, 9, 14, 22] with respect to parameter k if
there exists an algorithm that solves the problem in time f(k) · nO(1), where f is a computable function
of k which is independent of n. Kernelization is an important technique used to shrink the size of a
given problem instance by means of polynomial-time data reduction rules until the size of this instance
is bounded by a function of the parameter k. The reduced instance is called a problem kernel. Once
a problem kernel is obtained, we know that the problem is fixed-parameter tractable, since the running
time of any brute force algorithm depends on the parameter k only. The converse is also true: whenever
a parameterized problem is FPT, then it admits a kernel [7, 9, 14, 22]. The natural question to be asked
about kernels is whether a parameterized problem admits a polynomial kernel or not, that is, a kernel of
size kO(1).

In their article, Crowston et al. [5] proved that SIGNED MAX CUT ATLB is FPT on general graphs
by designing an algorithm running in time 23k · nO(1). The algorithm applies some reduction rules to the
input (G, k) that either answer that (G, k) is a YES-instance, or produce a set S of at most 3k vertices
such that G − S is a forest of cliques, or equivalently clique-forest, which is a graph such that every
2-connected component (that is, each block) is a clique without positive edges. (Note that this definition
differs from the usage of this term in the context of chordal graphs.) We state this property formally as
follows.

Proposition 1 (Crowston et al. [5]) Let (G, k) be an instance of SIGNED MAX CUT ATLB. In polyno-
mial time we can conclude that (G, k) is a YES-instance or we can find a set S of at most 3k vertices such
that G− S is a clique-forest without positive edges.

There are two kinds of reduction rules applied by Crowston et al. [5] to an instance (G, k) in order
to obtain the kernel of size O(k3) for SIGNED MAX CUT ATLB: one-way reduction rules and two-way
reduction rules. In a two-way reduction rule, the instance (G′, k′) produced by the reduction rule is
equivalent to (G, k) (that is, (G, k) is a YES-instance if and only if (G′, k′) is a YES-instance), so these
rules can be safely applied to any instance in order to obtain FPT-algorithms or kernels, as long as the
parameter k does not increase, which is always the case in the rules defined by Crowston et al. [5]. A
two-way reduction rule is valid if it transforms YES-instances into YES-instances and NO-instances into
NO-instances, that is, if it works as it should.

On the other hand, in a one-way reduction rule, the instance (G′, k′) produced by the reduction rule
does not need to be equivalent to (G, k), but only needs to satisfy that if (G′, k′) is a YES-instance, then
(G, k) is a YES-instance as well. The usefulness of such rules relies on the fact that if after the application
of some two-way or one-way reduction rules we obtain an instance (G′, k′) with k′ ≤ 0, we can safely
conclude that the original instance (G, k) is a YES-instance. This fact will be used in the linear kernel
provided in Section 4. A one-way reduction rule is safe if it does not transform a NO-instance into a
YES-instance.
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3 A quadratic kernel on (r, `)-graphs
In this section we show that SIGNED MAX CUT ATLB admits a quadratic kernel on (r, `)-graphs for any
fixed integers r, ` ≥ 0. For this we strongly use the results and the techniques provided by Crowston et
al. [5]. The kernelization algorithm applies to the instance (G, k) the algorithm given by Proposition 1.
This algorithm uses the two-way reduction rules Rule 8, Rule 9, Rule 10, and Rule 11 defined by Crowston
et al. [5]. Namely, when these rules cannot be applied anymore, either one can directly conclude that
(G, k) is a YES-instance or, using that the graph cannot be reduced anymore, one can prove that its size
is bounded by a function of k only. It is at this point when we exploit the structure of (r, `)-graphs in
order to improve the cubic kernel on general graphs and obtain a quadratic kernel on (r, `)-graphs. We
would like to stress that we do not need to obtain algorithmically any particular partition of V (G) into
r independent sets and ` cliques, as such a partition will only be used for the analysis, and not by the
kernelization algorithm.

This section is organized as follows. For completeness, in Subsection 3.1 we state all the reduction
rules and the results from Crowston et al. [5] that we need for our purposes. For the sake of providing
more intuition on the ideas behind our kernel and because it is simpler, we first present in Subsection 3.2
the quadratic kernel on split graphs (that is, for r = ` = 1), and we describe in Subsection 3.3 its
generalization to arbitrary values of r and `. The main difference is that, in the case of split graphs, it can
be seen that we do not have to worry about path vertices in G− S.

3.1 Reduction rules and known results
Before stating the two-way reduction rules used in the kernelization algorithm, we first need to introduce
some definitions from [5]. Let S be a set of vertices as in Proposition 1. For a block C in G − S, let
Cint = {x ∈ V (C) | NG−S(x) ⊆ V (C)} be the interior of C, and let Cext = V (C)\Cint be the exterior
of C. If a block C has only two vertices and these vertices belong to Cext, then C is called a path block. A
vertex that belongs only to path blocks is called a path vertex. A block C in G−S is called a leaf block if
|Cext| ≤ 1. We denote by N+ (resp. N−) the set of neighbors (of a vertex or of a vertex set) adjacent via
a positive (resp. negative) edge.

In the following rules, the main idea is that, if some simple local conditions are satisfied, then certain
vertices or edges can be deleted from the graph without changing the answer to the problem. Most of
these conditions concern blocks or connected components of G− S and their neighborhoods in S.

Rule 8. Let C be a block in G − S. If there exists X ⊆ Cint such that |X| > |V (C)|+|NG(X)∩S|
2 ≥ 1,

N+
G (x) ∩ S = N+

G (X) ∩ S and N−G (x) ∩ S = N−G (X) ∩ S for all x ∈ X , then delete two arbitrary
vertices x1, x2 ∈ X and set k′ = k.

Rule 9. Let C be a block in G − S. If |V (C)| is even and there exists X ⊆ Cint such that |X| = |V (C)|
2

and NG(X) ∩ S = ∅, then delete a vertex x ∈ X , and set k′ = k − 1.

Rule 10. Let C be a block in G − S with vertex set {x, y, u}, such that NG(u) = {x, y}. If the edge
{x, y} is a bridge in G − u, delete C, add a new vertex z, positive edges

{
{z, v} | v ∈ N+

G−u({x, y})
}

,
negative edges {{z, v} | v ∈ N−G−u({x, y})}, and set k′ = k. Otherwise, delete u and the edge {x, y}
and set k′ = k − 1.

An illustration of the application of Rule 10 can be found in Fig. 1.
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Fig. 1: Illustration of the application of Rule 10: a block C satisfying the conditions (up), and the two possible
resulting graphs after applying the rule (down).

The MAX CUT WITH WEIGHTED VERTICES problem is defined as follows. We are given a graph
G with weight functions w1 : V (G) → N0 and w2 : V (G) → N0, and an integer t ∈ N, and the
question is whether there exists an assignment f : V (G) → {1, 2} such that

∑
{x,y}∈E |f(x) − f(y)| +∑

f(x)=1 w1(x) +
∑

f(x)=2 w12(x) ≥ t.

Rule 11. Let T be a connected component of G − S only adjacent to a vertex s ∈ S. Form a MAX
CUT WITH WEIGHTED VERTICES instance on T by defining w1(x) = 1 if x ∈ N+

G (s) ∩ T (w1(x) = 0
otherwise) and w2(y) = 1 if y ∈ N−G (s) ∩ T (w2(y) = 0 otherwise). Let β(G[V (T ) ∪ {s}]) =
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pt(G[V (T ) ∪ {s}]) + p
4 . Then delete T and set k′ = k − p.

By [6, Lemma 9], the value of p in Rule 11 can be found in polynomial time.

Crowston et al. [5] proved that the two-way reduction Rules 8-11 are all valid. As mentioned in [5],
since it can be easily verified that none of these reduction rules increases the number of positive edges,
our proof also implies a kernel of size O(k2) for SIGNED MAX CUT ATLB on (r, `)-graphs.

We now state the results from Crowston et al. [5] that we will use in the proofs of Theorem 2 and
Theorem 3.

Lemma 2 (Lemma 9 in Crowston et al. [5]) Let T be a connected component of G− S. Then for every
leaf block C of T , NG(Cint) ∩ S 6= ∅. Furthermore, if |NG(S) ∩ V (T )| = 1, then T consists of a single
vertex.

Lemma 3 (Corollary 5 in Crowston et al. [5]) If
∑

C∈B |NG(Cint) ∩ S| ≥ |S|(2|S| − 3 + 2k) + 1, the
instance is a YES-instance. Otherwise,

∑
C∈B |NG(Cint) ∩ S| ≤ 3k(8k − 3).

Lemma 4 (Corollary 6 in Crowston et al. [5]) G−S contains at most 6k(8k− 3) non-path blocks and
24k2(8k − 3) path vertices.

Lemma 5 (Corollary 7 in Crowston et al. [5]) G − S contains at most 12k(8k − 3) vertices in the ex-
teriors of non-path blocks.

Lemma 6 (Lemma 14 in Crowston et al. [5]) For a blockC, if |V (C)| ≥ 2|Cext|+|NG(Cint)∩S|(2|S|+
2k + 1), then (G, k) is a YES-instance. Otherwise, |V (C)| ≤ 2|Cext|+ |NG(Cint) ∩ S|(8k + 1).

3.2 A quadratic kernel on split graphs
In this subsection we present a quadratic kernel for SIGNED MAX CUT ATLB on split graphs, which
contains the main ideas of the kernel described in Theorem 3 for arbitrary (r, `)-graphs. The main simpli-
fication is that in the case of split graphs, we do not have to worry about path vertices in G− S.

The proof is based on exploiting the structure given by the set S of Proposition 1. We will strongly use
the fact that, as the input graph is a split graph and this property is hereditary, both G[S] and G − S are
split graphs as well.

Theorem 2 SIGNED MAX CUT ATLB on split graphs admits a kernel with O(k2) vertices.

Proof: Let (G, k) be the given instance, where G = (V,E) is a split graph. Applying the polynomial-
time algorithm of Proposition 1, we can either conclude that (G, k) is a YES-instance, or we obtain a set
S ⊆ V (G) such thatG−S is a clique-forest without positive edges. Let S = K1∪I1 andG−S = K2∪I2
be such that K1 ∪K2 is a clique and I1 ∪ I2 is an independent set. We partition I2 into three subsets: I20
containing only isolated vertices in G− S, I21 with all vertices of degree one in G− S, and I2u containing
all vertices u /∈ I20 ∪ I21 such that NK2(u) = K2; see Fig. 2 for an illustration. Note that I2u can contain
at most one vertex. Indeed, if |K2| ≤ 1, then the set I2u is empty by definition. Otherwise, if |K2| ≥ 2, if
I2u contains two distinct vertices u1 and u2, then G−S is not a clique-forest, contradicting Proposition 1.

These sets indeed define a partition of I2, as if there exists a vertex v in I2 such that 1 < dK2(v) <
|V (K2)|, we could find a block in G − S that is not a clique. On the other hand, due to the structure of
the clique-forest, two maximal cliques can intersect only in one vertex.
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Fig. 2: Illustration of the proof of Theorem 2.

Observe that G − S has at most one path block. Indeed, it is easily seen that the only possible case in
which a path block exists in G − S is when K2 = K2 (the complete graph with two vertices), I2u = ∅,
and each vertex of K2 has at least one adjacent vertex in I21 . Hence, G − S has no path vertices since in
G − S there is only one possible path block (namely, K2) adjacent to at least two leaf blocks; see Fig. 3
for an illustration.

Fig. 3: Illustration of the unique possible path block in G− S.
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For each vertex x in the set I21 there is a leaf block Cx with |V (Cx)| = 2 and Cx
int = {x}. So, Rule 9

could be successively applied to each vertex in I21 with no neighbor in S, deleting all these vertices and
reducing the parameter k accordingly. We could also delete all the vertices of I20 with no neighbor in S,
because they are isolated vertices and make no contribution to the cut. So in this case we set k′ = k.

We note that Rule 10 could be applied only in two cases. In the first case K1 = ∅ and K2 is a triangle,
and in the second case, K1 = ∅, K2 = {x, y}, and I2u = {u}.

Using Lemma 2, it can be easily seen that after applying Rule 9, the remaining vertices of I21 are
adjacent to some vertex in S. Indeed, otherwise Rule 9 could be applied again, deleting the vertices
x ∈ Cx

int of I21 with NG(C
x
int) ∩ S = ∅, contradicting the hypothesis that the graph G is reduced under all

two-way reduction rules; see Fig. 4 for an illustration.

Fig. 4: The set Q ⊆ I21 , if it were non-empty, would be deleted by Rule 9.

Let B be the set of non-path blocks ofG−S. As discussed before, in a split graphG all blocks ofG−S,
but possibly one, are non-path blocks. Since if there is some path block, we have that |K2| = |K2| = 2,
we may assume in what follows that all blocks of G− S are in B.

By Lemma 3, either we can identify thatG is a YES-instance or it follows that
∑

C∈B |NG(Cint)∩S| ≤
3k(8k − 3). Using Lemma 6 it follows that for all blocks C in G− S, we have

|V (C)| ≤ 2|Cext|+ |NG(Cint) ∩ S| · (8k + 1).

Then |V (G)| ≤ |S| +
∑

C∈B |V (C)| since we may assume that are no path blocks in G − S. As G is a
split graph, G − S is also a split graph and our previous analysis shows that B is composed by one big
block C0 defined by K2, leaf blocks that are edges which have at least one neighbor in S, and possibly
isolated vertices. Let B∗ be the set of leaf blocks in B. We can rewrite the previous inequality as

|V (G)| ≤ |S|+ |V (C0)|+
∑
C∈B∗

|V (C)|.
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In particular, for the big block C0 we have |V (C0)| ≤ 2|C0ext|+ |NG(C0int)∩S|(8k+1) ≤ 2|C0ext|+
|S|(8k + 1). And for all leaf blocks C ∈ B∗ we have |V (C)| ≤ 2. Then∑

C∈B∗

|V (C)| ≤ 2|B∗| ≤ 2
∑
C∈B∗

|NG(Cint) ∩ S| ≤ 2 · 3k(8k − 3)

as a consequence of Lemma 3, since every block C ∈ B∗ has a vertex v ∈ Cint such that NS(v) 6= ∅.
Finally, the number of vertices in G can be bounded as follows:

|V (G)| ≤ |S|+ |S|(8k + 1) + 6k(8k − 3) + 2|C0ext|
≤ 3k + 3k(8k + 1) + 6k(8k − 3) + 2|

⋃
C∈B

Cext|

≤ 3k + 3k(8k + 1) + 6k(8k − 3) + 12k(8k − 3)

= 168k2 − 48k = O(k2),

where the last inequality is due to Lemma 5. 2

3.3 Generalization to arbitrary (r, `)-graphs
In this subsection we show how the ideas of the previous subsection can be generalized to arbitrary (r, `)-
graphs. We follow the same strategy as in the proof of Theorem 2, but we need a number of extra
arguments, mostly to deal with the path vertices in G− S.

Namely, we will again exploit the structure given by the set S of Proposition 1, and the fact that, as the
input graph is an (r, `)-graph and this property is hereditary, both G[S] and G − S are (r, `)-graphs as
well. In order to bound the size of the set of path vertices in G− S, which we call P in the proof, we will
need three technical claims.

Theorem 3 For every two integers r, ` ≥ 0, SIGNED MAX CUT ATLB on (r, `)-graphs admits a kernel
with O((r + `)k2) vertices.

Proof: Let G be an (r, `)-graph for two integers r, ` ≥ 0. Denote by K1,K2, . . . ,K` the cliques and
I1, I2, . . . , Ir the independent sets of G. We stress again that we just use the partition of G for the
analysis, but we do not need to know exactly this partition. By Proposition 1, we can find a set S with
at most 3k vertices such that the subgraph G − S is a forest of cliques without positive edges. For an
(r, `)-graph, we have S = K1

1 ∪ · · · ∪K`
1 ∪ I11 ∪ · · · ∪ Ir1 and G− S = K1

2 ∪ · · · ∪K`
2 ∪ I12 ∪ · · · ∪ Ir2

with Ki = Ki
1 ∪ Ki

2 and Ij = Ij1 ∪ I
j
2 for 1 ≤ i ≤ ` and 1 ≤ j ≤ r. In contrast to split graphs (see

Subsection 3.2), we may have path vertices in G− S.
In order to bound the size of V (G), we bound separately the total size of non-path blocks and the

number of path vertices (that is, the only vertices that do not belong to non-path blocks) in G−S. Denote
again by B the set of non-path blocks, by Bb the set of non-path blocks containing at least two vertices
from the set K1 ∪K2 ∪ · · · ∪K`, and Bs = B\Bb. The structure of clique-forests implies that |Bb| ≤ `,
and by Lemma 6, for every block C ∈ Bb either we can conclude that (G, k) is a YES-instance or we have
that

|V (C)| ≤ 2|Cext|+ |NG(Cint) ∩ S| · (8k + 1) ≤ 2|Cext|+ |S|(8k + 1).
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Then we can write ∑
C∈Bb

|V (C)| ≤ 2
∑
C∈Bb

|Cext|+
∑
C∈Bb

|S|(8k + 1)

≤ 2` · |
⋃

C∈B`

Cext|+ `|S|(8k + 1)

≤ 24`k(8k − 3) + 3`k(8k + 1),

where in the second inequality we have used twice that |Bb| ≤ `, and the last inequality follows from
Lemma 5.

For each block C ∈ Bs we have |V (C)| ≤ r + 1, as C contains only vertices of the r independent sets
I1, I2, . . . , Ir plus possibly one vertex of some of the cliques. Indeed, otherwise if |V (C)| > r + 1 then
there are two adjacent vertices in the same independent set, which is impossible. Therefore, by Lemma 4,
we can bound the sum of the number of vertices in C ∈ Bs as

∑
C∈Bs

|V (C)| ≤ (r + 1) · 6k(8k − 3).
Therefore, by combining the bounds from the two above paragraphs we conclude that∑

C∈B
|V (C)| =

∑
C∈Bb

|V (C)|+
∑
C∈Bs

|V (C)| ≤ (2r + 9`)3k(8k + 1) =: g(k, r, `). (1)

It just remains to bound the number of path vertices in the blocks of G − S. Note that we cannot use
directly the bound on the number of path vertices in G − S given by Lemma 4, as this bound is O(k3),
which is too much for our purposes.

Let P be the set of path vertices of G − S. In order to bound the size of P , we argue separately about
the components in G[P] having at most two vertices (Claim 1) and the remaining components (Claim 2),
where G[P] denotes the subgraph of G induced by P .

We call an isolated vertex (resp. isolated edge) a connected component of G[P] of size 1 (resp. 2). We
show in Claim 1 that the number of isolated vertices and isolated edges in G[P] are both bounded by the
number of non-path blocks, which is at most 6k(8k − 3) by Lemma 4.

Claim 1 The number of isolated vertices in G[P] and the number of isolated edges in G[P] are upper-
bounded by the number of non-path blocks.

Proof: Let us first deal with the number of isolated vertices in G[P], which we denote by p0. We show by
induction on p0 that this number is at most the number of non-path blocks minus one. Recall that a vertex
is isolated if and only if it is exclusively adjacent to non-path vertices. We contract each non-path block
into a black vertex and represent each path vertex by a white vertex. So the forest of cliques in G − S is
now represented by a simple forest colored by two colors: black and white. If p0 = 1, then there are at
least two black vertices adjacent to the single white vertex of G[P]. So the property is valid and the basis
of the induction is proved. Suppose that the property is valid for p0 = i > 1, and consider G − S such
that the number of isolated vertices is i + 1. Choose arbitrarily one of these isolated vertices. Without
loss of generality, we can suppose that G − S is connected. Otherwise we can deal with the connected
components of G− S separately to achieve the same result. The removal of this white vertex disconnects
the tree, increasing the number of connected components. For all connected components the property
holds by induction hypothesis, that is, the number of isolated vertices in each connected component is at
most the number of non-path blocks in this component minus one. So, the number of isolated vertices in



12 Luerbio Faria, Sulamita Klein, Ignasi Sau, Rubens Sucupira

the original graph is at most the total number of non-path blocks minus one, and the first part of the claim
follows.

As for the number of isolated edges in G[P], similarly to above, we contract each non-path block into a
black vertex and represent each path vertex as a white vertex. An isolated edge is represented by an edge
that has white endpoints. We identify all these edges and contract each of them into a red vertex. As these
edges are isolated, the red vertices have only black neighbors. Then, proceeding by induction as we did
for the isolated vertices, we can show that the number of isolated edges is upper-bounded by the number
of non-path blocks. 2

Let P1 be the subset of P formed by the non-isolated vertices. Note that the minimum degree of the
vertices in G[P1], which we denote by δ(G[P1]), is such that δ(G[P1]) ≥ 1, so clearly the number of
edges of G[P1] is at least |P1|

2 ; this value is attained when G[P1] consists of disjoint edges. We need to
improve this bound of |P1|

2 for being able to state Equation (2) below, and we can easily do it by forbidding
this latter case.

Claim 2 If each connected component of G[P1] has at least three vertices, then |E(G[P1])| ≥ 2|P1|
3 .

Proof: Without loss of generality, we can suppose that G[P1] is connected by the same reason mentioned
in the proof of Claim 1. Let p = |P1|. As G[P1] is a tree, we have |E(G[P1])| = p − 1. If p ≥ 3 then
p
3 ≥ 1, that is, p− 2p

3 ≥ 1 and p− 1 ≥ 2p
3 as desired. 2

The induced subgraph G[P1] is a forest, so by Theorem 1 G[P1] is balanced. Let ep denote the number
of edges inG[P1]. Then β(G[P1]) = ep and pt(G[P1]) =

ep
2 + p−1

4 if we supposeG[P1] to be connected,
where p = |P1|. Claim 2 implies that

β(G[P1])− pt(G[P1]) = ep −
ep
2
− p− 1

4
=

2ep − p+ 1

4
≥

4p
3 − p+ 1

4
≥

p
3

4
. (2)

Claim 3 Let (G, k) be an instance of SIGNED MAX CUT ATLB. If P is the set of path vertices in G−S,
then the number of connected components ofG[P] is at most 6k(8k−3). IfW = G−P , then the number
of connected components ofW is at most 6k(8k − 2).

Proof: The same ideas used in the proof of Claim 1 easily imply that the number of connected components
of G[P] is at most 6k(8k − 3). SinceW ∩ (G− S) is the complement of G[P] in G− S, each vertex in
W ∩ (G − S) belongs to a non-path block. And as the size of S is at most 3k, by Lemma 4 the number
of connected components ofW is at most 3k + 6k(8k − 3) ≤ 6k(8k − 2). 2

We are now ready to piece everything together and conclude the proof of the theorem.

Due to Claim 1, by incurring an additive term of 18k(8k−3) to the size of the kernel we may assume that
each component ofG[P] has at least three vertices, so the hypothesis of Claim 2 holds. We apply Lemma 1
to the graph G with U = P . We have c1 connected components of G[P], c2 connected components of W ,
and β(G) ≥ pt(G) + k1+k2−(c1+c2−1)

4 , where β(G[P]) ≥ pt(G[P]) + k1

4 and β(W ) ≥ pt(W ) + k2

4 . It
holds of course that k2 ≥ 0. By Equation (2) we have k1 ≥ p

3 for p = |P1| and, by Claim 3, it holds that

c1+c2 ≤ 12k(8k−2) ≤ 96k2. Then β(G) ≥ pt(G)+
p
3−192k

2+1

4 . Therefore, if p
3−192k2+1 ≥ k, then

(G, k) is a YES-instance. Otherwise, p
3 ≤ k−1+192k2, that is, we may assume that p ≤ 576k2+3k−3.
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Therefore, combining Equation (1) with the above discussion we can conclude that

|V (G)| ≤ |S|+
∑
C∈B
|V (C)|+ |P| ≤ 3k + g(k, r, `) + 18k(8k − 3) + p = O(k2).

Finally, note that in the whole proof, when we use some result of Crowston et al. [5] in which one of
the possible outputs is that (G, k) is a YES-instance (like Lemma 14 or to check whether p is at most
576k2 + 3k − 3 or not), the condition to be checked concerns just the blocks of G − S, which we can
obtain in polynomial time by Proposition 1. Thus, as we claimed, we do not need to compute any partition
of V (G) into cliques K1,K2, . . . ,K` and independent sets I1, I2, . . . , Ir. This concludes the proof of
the theorem. 2

4 A linear kernel on subclasses of split graphs
With the objective of improving the quadratic kernel on (r, `)-graphs presented in Section 3, in Subsec-
tion 4.2 we provide a linear kernel on a smaller graph class, namely on the subclass of d∗-split graphs for
every integer d ≥ 1, which is defined as follows. A graph G = (V,E) is a d∗-split graph if V can be
partitioned into a clique K and an independent set I such that every vertex in K has at least one neighbor
in I , and every vertex in I has degree at most d.

We first prove in Subsection 4.1 that the problem remains NP-hard restricted to this class of graphs for
every d ≥ 2. In fact, we prove that even MAX CUT is NP-hard, and this result is tight in terms of d.
Indeed, for d = 0, a 0∗-split graph is an independent set and therefore MAX CUT is trivial. For d = 1, the
claim is given in the following simple observation.

Remark 1 MAX CUT on 1∗-split graphs can be solved in polynomial time.

Proof: Note that by the definition of 1∗-split graphs, such a graph has a very precise structure. Namely, it
consists of an arbitrarily large clique K such that every vertex v in K has a private neighbor v′ in I (that
is, a vertex of degree one). Then, an optimal solution of MAX CUT consists of a balanced partition of the
clique, and for each v ∈ K, we place its private neighbor v′ in the opposite part of v. 2

4.1 Max Cut is NP-hard on d∗-split graphs
In this subsection we prove that MAX CUT, which is a particular case of SIGNED MAX CUT, is NP-
hard on d∗-split graphs for every fixed d ≥ 2. We first prove easily that MAX CUT is NP-hard on graphs
without universal vertices (a universal vertex is a vertex adjacent to every other vertex in the graph). Then,
using a proof from Bodlaender and Jansen [2] on the complexity of MAX CUT, we prove that this problem
is still NP-hard on 2∗-split graphs and, consequently, NP-hard on d∗-split graphs for every fixed d ≥ 2.

Lemma 7 MAX CUT is NP-hard on graphs without universal vertices.

Proof: We use the well known fact that MAX CUT is NP-hard on general graphs [16] to show that this
problem is still NP-hard on graphs without universal vertices. For this, we consider a graph G as instance
of MAX CUT, and construct a new graphG′ = 2Gmade of two disjoint copies ofG. ObviouslyG′ has no
universal vertices because it is disconnected. Let MAXCUT(G) be the size of a maximum cut for G and
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MAXCUT(G′) be the size of a maximum cut for G′. We claim that MAXCUT(G′) = 2 · MAXCUT(G).
Indeed, MAXCUT(G′) ≥ 2 · MAXCUT(G) because if [V1, V2] is a cut in G of maximum size, then
2 · MAXCUT(G) is the size of the cut [2V1, 2V2]; see Fig. 5 for an illustration. On the other hand, if
MAXCUT(G′) > 2 ·MAXCUT(G), then asG′ is made of two disjoint copies ofG, necessarilyG contains
a cut of size greater than MAXCUT(G), a contradiction. 2

V1

G

V2
V1

V2

V1

V2

G’

V’1

V’2

Fig. 5: Reduction to show that MAX CUT is NP-hard on graphs without universal vertices.

The construction given in the proof of the next theorem is exactly the same as the one given by Bod-
laender and Jansen in [2, Theorem 3.1], but we reproduce it here because we prove that if we start with
a graph without universal vertices (we can do so thanks to Lemma 7), then the graph constructed in the
reduction is a 2∗-split graph.

Theorem 4 MAX CUT is NP-hard on 2∗-split graphs.

Proof: Let a graph G = (V,E) be given and let G = (V,E) be the complement of G. Let H =
(V ∪ E,F ), where F = {(v, w) | v, w ∈ V, v 6= w}∪

{
(v, e) | v ∈ V, e ∈ E, v is an endpoint of edge

e}. Then V forms a clique, E forms an independent set in H , and every edge-representing vertex e is
connected to the vertices that represent its endpoints. ThereforeH is a split graph in which all the vertices
in the independent set have degree exactly two. We claim that G allows a partition with at least p cut
edges if and only if H allows a partition with at least 2|E|+ p cut edges.

Suppose first we have a partition (W1,W2) of G with at least p cut edges. We partition the vertices of
H as follows: partition V as in the partition of G; for every e ∈ E, if both endpoints of e belong to W1,
then put e in W2, otherwise put e in W1. It is easy to see that this partition gives the desired number of
cut edges.

Now suppose we have a partition (W1,W2) of H with at least 2|E|+p cut edges. Partition the vertices
of G into two subsets: W1 ∩ V and W2 ∩ V . This partition gives the desired number of cut edges. This
can be noted as follows: for every edge {v, w} ∈ E, we have one cut edge in H if {v, w} is a cut edge in
G, otherwise we have no cut edge. For every edge e = {v, w} ∈ E, we have that out of the three edges
{v, w} , {e, v} , {e, w}, exactly two will be cut edges. Hence, the total number of cut edges in H equals
the number of cut edges in G plus 2|E|. Note that H can clearly be constructed from G in polynomial
time.
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By Lemma 7, we can assume that the graph G = (V,E) has no universal vertices. Then the graph G
constructed above has no isolated vertices, and therefore every vertex v ∈ V has at least one neighbor in
E. Since every vertex in E has degree two, the graph H constructed in the above reduction is indeed a
2∗-split graph, and the theorem follows. 2

Since for every d ≥ 0, the class of d∗-split graphs contains the class of 2∗-split graphs, the following
corollary is a direct consequence of Theorem 4.

Corollary 1 MAX CUT is NP-hard on d∗-split graphs for every fixed d ≥ 2.

4.2 The kernelization algorithm
As we will see in the proof of Theorem 5 below, our kernelization algorithm is the simplest possible
algorithm that one could imagine, as it does nothing to the input graph; its interest lies on the analysis of
the kernel size, which uses the following two new reduction rules.

The first one is a one-way reduction rule that is a generalization of the one-way Rule 6 given by Crow-
ston et al. [5].

Rule 6+. Let G be a connected graph. If v ∈ V (G) and u1, . . . , uc are pairwise non-adjacent neighbors
of v such that c ≥ 2 andG−{v, u1, . . . , uc} is connected, then delete v, u1, . . . , uc and set k′ = k−c+1.

Note that Rule 6 of Crowston et al. [5] corresponds exactly to the case c = 2 of Rule 6+ above.

Lemma 8 Rule 6+ is safe.

Proof: Let v ∈ V (G) and u1, . . . , uc be as in the description of Rule 6+ and let P = G[{v, u1, . . . , uc}].
Note that pt(P ) = c

2 +
c
4 = 3c

4 and since P is a tree (namely, a star), P is a balanced graph by Theorem 1
whatever the signs of its edges. Therefore, β(P ) = c = pt(P ) + c

4 . Let G′ be the graph obtained from
G by the deletion of v, u1, . . . , uc, so G′ is connected by hypothesis. Suppose that β(G′) ≥ pt(G′) + k′

4 ,
where k′ = k − c+ 1. Then, by Lemma 1, β(G) ≥ pt(G) + k′+c−1

4 = pt(G) + k
4 , and therefore G is a

YES-instance. 2

The second new rule is a simple two-way reduction rule, which just eliminates vertices of degree 1.

Rule A. Let G be a connected graph, and let v be a vertex of degree 1 in G. Then delete vertex v and set
k′ = k − 1.

Lemma 9 Rule A is valid.

Proof: Let G be a connected graph, let v be a vertex of degree 1 in G, and let G′ be the graph obtained
from G by applying Rule A on vertex v. Since the edge containing v in belongs to every optimal balanced
subgraph of G (regardless of its sign), it holds that β(G) = β(G′) + 1. On the other hand, we have
that pt(G) = m

2 + n−1
4 and pt(G′) = m−1

2 + n−2
4 , and therefore β(G) ≥ pt(G) + k

4 if and only if
β(G′) = β(G) − 1 ≥ pt(G) + k

4 − 1 = pt(G′) + k′

4 . Thus, (G, k) is a YES-instance of SIGNED MAX
CUT ATLB if and only if (G′, k′) is. 2

We are now ready to prove the main result of this subsection.
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Theorem 5 For any fixed integer d ≥ 1, SIGNED MAX CUT ATLB on d∗-split graphs admits a kernel
with at most 4(d+ 1)k vertices.

Proof: Given a signed d∗-split graph G = (V,E) and an integer k, let (K, I) be an arbitrary partition of
V into a clique K and an independent set I such that every vertex in I has degree at most d and every
vertex in K has at least one neighbor in I . We note that we do not even need to compute this partition
(K, I) of V , as we will just use it for the analysis.

Let Kh be the set of vertices in K that have at least two neighbors in I , let Ks = K \ Kh (so by
hypothesis, every vertex inKs has exactly one neighbor in I), let Ih = NI(Kh), and let Is = I \Ih. Note
that since we assume that G is connected, it holds that |Is| ≤ |Ks| ≤ |K|. We now state two claims that
will allow us to certificate in some cases that (G, k) is a YES-instance.

Claim 4 If |K| ≥ (d+ 1)k, then (G, k) is a YES-instance.

Proof: We apply to the input (G, k) the following procedure, assuming thatG is connected (we stress that
this algorithm is only used for the analysis; as mentioned before we do not modify our input graph at all):

1. If the current graph contains a vertex v in the clique with c ≥ 2 neighbors in the independent set,
let N be this set of neighbors, and do the following:

◦ Apply Rule 6+ to {v} ∪N , thus removing {v} ∪N from the current graph and setting k ←
k− c+1. Note that the resulting graph is clearly connected, so Rule 6+ can indeed be applied
to {v} ∪N .

◦ Go back to Step 1.

2. Apply exhaustively Rule A to the current graph, removing all vertices of degree 1. Clearly this
operation preserves connectivity, and by Lemma 9 it produces an equivalent instance.

3. If the current graph contains a vertex v in the clique with exactly 1 neighbor u in the independent
set, do the following:

◦ Let w be a vertex in the clique that is non-adjacent to u; since the degree of u is at most d,
such a vertex w is guaranteed to exist as long as the size of the current clique is at least d+ 1.

◦ Note that the removal of the vertices {v, u, w} does not disconnect the current graph. Indeed,
assume for contradiction that there exists a vertex z in the independent set that gets discon-
nected after the removal of {v, u, w}. Since Rule A cannot be applied anymore to the current
graph, z cannot have degree 1, hence necessarily z is adjacent to both w and v. But then v has
at least 2 neighbors u and z in the independent set, and this contradicts the fact that we are in
Step 3, since Step 1 could be applied to v together with its neighborhood in the independent
set.

◦ Therefore, we can apply Rule 6+ to {v, u, w}, thus removing them from the current graph and
setting k ← k − 1.

◦ Go back to Step 2.

4. Stop the procedure.
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We now claim that if |K| ≥ (d + 1)k, then the instance (G′, k′) output by the above procedure satisfies
that k′ ≤ 0, and since (G′, k′) is obtained from (G, k) by applying the one-way reduction Rule 6+ and
the two-way reduction Rule A, Lemma 8 and Lemma 9 imply that (G′, k′) is also a YES-instance, as we
wanted to prove. Indeed, suppose that Step 1 has been applied p1 times, that Rule A in Step 2 has been
applied p2 times, and that Step 3 has been applied p3 times. Since in Step 1 it holds that c ≥ 2, it follows
that k′ ≤ k − (p1 + p2 + p3), so it suffices to prove that p1 + p2 + p3 ≥ k.

With slight abuse of notation, let us denote by K∗ the set of vertices in the current clique that have
some neighbor in the independent set. Note that as long as |K∗| > 0, Step 1, 2, or 3 can be applied to
the current graph. For each application of Step 1, the size of K∗ decreases by 1. For each application of
Rule A in Step 2, the size of K∗ decreases by at most 1. Finally, for each application of Step 3, the size
of K∗ decreases by at most d+1 (at most d neighbors of vertex u together with vertex w may not belong
to K∗ anymore). Since by assumption G is a d∗-split graph, initially we have that |K∗| ≥ (d+ 1)k, and
therefore it follows that p1 + p2 + p3 ≥ k, concluding the proof. 2

Claim 5 If |Ih| ≥ 2dk, then (G, k) is a YES-instance.

Proof: We prove that if |Ih| ≥ 2dk, then we could iteratively apply Rule 6+ to (G, k) until obtaining an
instance (G′, k′) with k′ ≤ 0, which implies that G is a YES-instance.

We apply to (G, k) the following procedure (we stress again that this algorithm is only used for the
analysis; as mentioned before we do not modify our input graph at all). We set i := 1, G1 := G,
K1

h := Kh, I1h := Ih, and k1 := k. Note that G1 is connected by hypothesis. For the sake of readability,
we want to stress that the sets Ki

h and Iih defined below will not correspond to the intersection of Gi with
Kh and Ih, respectively. Proceed as follows:

1. Let vi be an arbitrary vertex in Ki
h, let N i := NIi

h
(vi), and let ci := |N i|. Note that ci ≥ 2 and

that Gi − ({vi} ∪N i) is connected.

2. Apply Rule 6+ to {vi} ∪N i, and let Gi+1 := Gi − ({vi} ∪N i).

3. Let Di
K be the set of vertices in Ki

h having at most one neighbor in Iih \ N i, and let Di
I :=

NIi
h\Ni(Di

K); see Fig. 6 for an example of these sets for d = 3. Since every vertex in Ki
h has

at least two neighbors in Iih and each vertex in Iih has degree at most d, it follows that |Di
K | ≤

(d− 1)|N i| = (d− 1)ci. On the other hand, by definition it holds that |Di
I | ≤ |Di

K | ≤ (d− 1)ci.

4. Let Ki+1
h := Ki

h \ ({vi} ∪Di
K ∪NKi

h
(Di

I)), I
i+1
h := Iih \ (N i ∪Di

I), and ki+1 := ki − ci + 1.
Note that |Iih|− |I

i+1
h | = |N i|+ |Di

I | ≤ ci+(d− 1)ci = dci, and that by construction, each vertex
in Ki+1

h has at least two neighbors in Ii+1
h .

5. If |Ii+1
h | > 0, update i← i+ 1 and go back to Step 1. Otherwise, stop the procedure.

Assume that the above procedure has been applied p ≥ 1 times, and let k′ := kp+1. Note that k′ =
k −

∑p
i=1(ci − 1). Since k′ is the parameter obtained from k by iteratively applying Rule 6+ in G to the

sets described in Step 2 above, our objective is to prove that k′ ≤ 0.
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Fig. 6: Example for d = 3 of the sets defined in the proof of Theorem 5.

By the condition in Step 5 above, necessarily |Ip+1
h | = 0. Since for every 1 ≤ i ≤ p we have that, as

discussed in Step 4 above, |Iih| − |I
i+1
h | ≤ dci, using the hypothesis that |I1h| = |Ih| ≥ 2dk it follows that

2dk ≤ |I1h| = (|I1h| − |I2h|) + (|I2h| − |I3h|) + . . .+ (|Iph| − |I
p+1
h |) =

p∑
i=1

(|Iih| − |Ii+1
h |) ≤ d ·

p∑
i=1

ci,

and therefore it follows that
∑p

i=1 ci ≥ 2k. As for every 1 ≤ i ≤ p it holds that ci ≥ 2 (see Step 1 above)
and the function x 7→ x − 1 is greater than or equal to the function x 7→ x/2 for x ≥ 2, we have that∑p

i=1(ci − 1) ≥
∑p

i=1 ci/2 ≥ k. Finally,

k′ = k −
p∑

i=1

(ci − 1) ≤ k − k = 0,

and therefore we can conclude that (G, k) is a YES-instance, as claimed. 2

Assume now that the hypothesis of Claim 4 and Claim 5 are both false, that is, that |K| < (d+1)k and
|Ih| < 2dk. Then we have that

|V | = |K|+ |I| = |K|+ |Ih|+ |Is| < (d+ 1)k + 2dk + (d+ 1)k < 4(d+ 1)k.

Thus, if the above inequality is not true, that is, if |V | ≥ 4(d + 1)k, then necessarily at least one of
the hypothesis of Claim 4 or Claim 5 is true, and in any case we can safely conclude that (G, k) is a
YES-instance. Therefore, our linear kernel is extremely simple: if |V | ≥ 4(d+1)k, we report that (G, k)
is a YES-instance, and otherwise we have that |V | < 4(d+ 1)k, as desired. 2
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5 Conclusions
In this article we presented a quadratic kernel for SIGNED MAX CUT ATLB when the input graph is an
(r, `)-graph, for any fixed positive value of r and `. Etscheid and Mnich [12] recently presented, among
other results, a linear kernel for this problem on general graphs, improving the results of the current paper,
as well as those of Crowston et al. [6]. Like us, the linear kernel of Etscheid and Mnich [12] also relies
on a number of one-way reduction rules and results given by Crowston et al. [6]. The key idea is to use
two new two-way reduction rules (similar to those of Crowston et al. [6]) that, roughly speaking, maintain
the connectivity among the blocks of G − S. The analysis of the kernel size in [12] is considerably
more involved that ours and entails, in particular, an elaborated “discharging” argument on the number of
vertices removed by the rules.

Concerning FPT-algorithms, it may be possible that SIGNED MAX CUT ATLB can be solved in subex-
ponential time on (r, `)-graphs or, at least, on split graphs. We leave this question as an open problem.
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[4] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM, 1987.

[5] R. Crowston, G. Gutin, M. Jones, and G. Muciaccia. Maximum balanced subgraph problem param-
eterized above lower bound. Theoretical Computer Science, 513:53–64, 2013.

[6] R. Crowston, M. Jones, and M. Mnich. Max-Cut Parameterized Above the Edwards-Erdős Bound.
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