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Nonnesting permutations are permutations of the multiset {1, 1, 2, 2, . . . , n, n} that avoid subsequences of the form
abba for any a ̸= b. These permutations have recently been studied in connection to noncrossing (also called quasi-
Stirling) permutations, which are those that avoid subsequences of the form abab, and in turn generalize the well-
known Stirling permutations. Inspired by the work by Archer et al. on pattern avoidance in noncrossing permutations,
we consider the analogous problem in the nonnesting case. We enumerate nonnesting permutations that avoid each
set of two or more patterns of length 3, as well as those that avoid some sets of patterns of length 4. We obtain closed
formulas and generating functions, some of which involve unexpected appearances of the Catalan and Fibonacci
numbers. Our proofs rely on decompositions, recurrences, and bijections.
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1 Introduction
Let [n] = {1, 2, . . . , n}, and let Sn be the set of permutations of [n]. We denote by [n] ⊔ [n] =
{1, 1, 2, 2, . . . , n, n} the multiset consisting of two copies of each integer between 1 and n.

Given two words π = π1π2 . . . πm and σ = σ1σ2 . . . σk over the positive integers N, we say that π
contains the pattern σ if there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ m such that the subsequence
πi1πi2 . . . πik is in the same relative order as σ, that is,

• πir < πis if and only if σr < σs, and

• πir = πis if and only if σr = σs,

for all r, s ∈ [k]. This subsequence is called an occurrence of σ. If π does not contain σ, we say that π
avoids the pattern σ.

A Stirling permutation is a permutation π of [n]⊔ [n] that avoids the pattern 212; equivalently, there do
not exist indices 1 ≤ i1 < i2 < i3 ≤ 2n such that πi2 < πi1 = πi3 . Stirling permutations were introduced
by Gessel and Stanley (1978) in connection to certain generating functions for Stirling numbers of the
second kind.
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A quasi-Stirling permutation is a permutation π of [n] ⊔ [n] that avoids the patterns 1212 and 2121;
equivalently, there do not exist indices 1 ≤ i1 < i2 < i3 < i4 ≤ 2n such that πi1 = πi3 and πi2 =
πi4 . Quasi-Stirling permutations were introduced by Archer et al. (2019) as a generalization of Stirling
permutations that arises in connection with labeled trees, and were further studied by Elizalde (2021).

One can view permutations π of [n] ⊔ [n] as labeled matchings of [2n], by placing an arc with label ℓ
between i and j if πi = πj = ℓ. With this interpretation, a permutation of [n]⊔ [n] is quasi-Stirling if and
only if the corresponding matching is noncrossing, i.e., there are no two arcs (i1, i3) and (i2, i4) where
i1 < i2 < i3 < i4. For this reason, quasi-Stirling permutations are also called noncrossing permutations
in Elizalde (2024).

With this perspective, it is natural to consider permutations of [n] ⊔ [n] whose corresponding matching
is nonnesting, i.e., there are no two arcs (i1, i4) and (i2, i3) where i1 < i2 < i3 < i4. They can be defined
as permutations of [n] ⊔ [n] that avoid the patterns 1221 and 2112. Following Elizalde (2024), we call
these nonnesting permutations, and we denote by Cn the set of nonnesting permutations of [n] ⊔ [n]. For
example, as shown in Figure 1, 1521352434 ∈ C5, but 13241342 /∈ C4, because the subsequence 2442
is in the same relative order as 1221. It is well known (see Stanley (2015)) that both noncrossing and
nonnesting matchings of [2n] are counted by the nth Catalan number Cn = 1

n+1

(
2n
n

)
. Since there are n!

ways to assign the labels to the arcs, it follows (see Elizalde (2024)) that both the number noncrossing and
the number of nonnesting permutations of [n] ⊔ [n] are given by

|Cn| = n!Cn =
(2n)!

(n+ 1)!
.

1 5 2 1 3 5 2 4 3 4 1 3 2 4 1 3 4 2

Fig. 1: The permutation 1521352434 is nonnesting, but the permutation 13241342 is not.

In Archer et al. (2019), the authors consider quasi-Stirling permutations that avoid other patterns.
Specifically, they enumerate quasi-Stirling (i.e. noncrossing) permutations that avoid any set of at least
two elements from S3. The goal of this paper is to extend the results from Archer et al. (2019) to the
nonnesting case, by providing the enumeration of nonnesting permutations that avoid any set of at least
two elements from S3, as well as those that avoid some patterns of length 4.

The known bijections between noncrossing and nonnesting matchings (see e.g. Athanasiadis (1998)),
when extended to permutations of [n]⊔[n], do not generally behave well with respect to pattern avoidance.
In particular, with the exception described in Remark 2.10, there is no straightforward way to translate the
results from Archer et al. (2019) to our setting. This is reflected in the fact that the enumeration formulas
that we obtain in the nonnesting case are mostly different from those in (Archer et al., 2019, Fig. 6).

Noncrossing and nonnesting permutations also have a very different behavior when enumerated with
respect to the number of descents. For noncrossing permutations, this refined enumeration is obtained
in Elizalde (2021) by using a recursive decomposition of certain rooted trees to derive an implicit formula
for the corresponding bivariate generating function. On the other hand, it is shown in Elizalde (2024) that
the distribution of the number of descents on nonnesting permutations has some unexpected properties,
such as being symmetric, as well as close connections to standard Young tableaux (see Elizalde (2025)).



Pattern avoidance in nonnesting permutations 3

As we will discuss in Section 4, analogous properties hold for nonnesting permutations avoiding certain
patterns.

Additional motivation for the study of pattern-avoiding nonnesting permutations comes from Bernardi’s
work on deformations of the braid arrangement (see Bernardi (2018)). He shows that certain configura-
tions, called annotated 1-sketches, naturally index the regions of the Catalan arrangement, and that certain
subsets of them index the regions of other important hyperplane arrangements. It turns out that anno-
tated 1-sketches are precisely nonnesting permutations, and that the relevant subsets can be described as
nonnesting permutations avoiding vincular patterns, which are patterns where some entries are required
to be adjacent in an occurrence. For example, regions of the semiorder arrangement are indexed by per-
mutations π ∈ Cn with no subsequence πiπi+1πjπj+1 such that πi = πj < πi+1 = πj+1 (in vincular
pattern notation, we say that π avoids 12-12), regions of the Shi arrangement are indexed by permutations
π ∈ Cn with no subsequence πiπjπj+1πk such that πi = πj < πj+1 = πk (we say that π avoids 1-12-2),
and regions of the Linial arrangement are indexed by permutations π ∈ Cn that avoid both 12-12 and
1-12-2. The numbers of regions of such hyperplane arrangements are well known, so one immediately
deduces formulas for the number of nonnesting permutations avoiding these specific vincular patterns.
This suggests the problem of enumerating nonnesting permutations that avoid other patterns. In this paper
we will tackle this problem for the case of classical patterns, that is, with no adjacency requirements. In
general, the number of permutations avoiding a vincular pattern is bounded from below by the number
of permutations avoiding the corresponding classical pattern where the adjacency requirements have been
removed.

In Section 2, we study nonnesting permutations that avoid sets of patterns of length 3, completing the
enumeration for all sets Λ ⊆ S3 consisting of at least 2 patterns, in analogy with the work in Archer et al.
(2019) for the noncrossing case. In Section 3, we enumerate nonnesting permutations avoiding several
sets of patterns of length 4, which often require more complicated proofs. Our results include some
unexpected new interpretations of the Catalan numbers. We conclude with a few conjectures in Section 4.

The proof techniques include bijections, generating functions (both ordinary and exponential), and
decompositions of the permutations into smaller pieces obtained by analyzing their structure, which often
give rise to recurrences or summation formulas.

Let us finish this section by introducing some notation. Given a set Λ of finite words over N, let
Cn(Λ) denote the set of permutations in Cn that avoid all the patterns in Λ, and let its cardinality be
cn(Λ) = |Cn(Λ)|. If Λ = {σ, τ, . . . }, we often write Cn(σ, τ, . . . ) instead of Cn({σ, τ, . . . }).

For any word α = α1α2 . . . αk over N, define its reversal by αr = αk . . . α2α1. If n is the largest
entry of α, define its complement αc to be the word whose ith entry is n + 1 − αi for all i ∈ [k]. The
composition of these two operations gives the reverse-complement αrc. Clearly, π avoiding σ is equivalent
to πr avoiding σr, to πc avoiding σc, and to πrc avoiding σrc. In particular, the set Cn is closed under the
operations of reversal and complementation.

Denote by st(α) the standardization of α, which is obtained by replacing the copies of the smallest
entry with 1, the copies of the second smallest entry with 2, and so on.

Denote by Set(α) the set of different entries in α, without multiplicities. For example, we have
Set(113232) = {1, 2, 3}. Given two sets A and B, we write A < B to mean that a < b for every
a ∈ A and b ∈ B. Given two words α and β, we write α < β to mean Set(α) < Set(β). We define other
relations >, ≤ and ≥ similarly. Note that A ≤ B implies that |A ∩B| ≤ 1. Note also that these relations
are not transitive or antisymmetric, since the empty word, which we denote by ε, trivially satisfies that
ε ≤ α and ε ≥ α for any α.
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If π ∈ Cn avoids a pattern σ, then the permutation π′ ∈ Cn−1 obtained by removing the two copies of
n from π also avoids σ. In this case, we will say that π′ generates π.

2 Patterns of length 3
In this section we consider nonnesting permutations avoiding patterns of length 3. Applying reversal and
complementation, the enumeration of Cn(Λ) for all Λ ⊆ S3 with |Λ| ≥ 2 can be reduced to the sets listed
in Table 1, which serves as a summary of the results in this section.

Λ Formula for cn(Λ) OEIS code Result in the paper
{112} Cn A000108 Theorem 2.1
{121} n! A000142 Theorem 2.2

{123, 321} 0, for n ≥ 5 N/A Corollary 2.4

{123, 231} n2 + 5n− 6

2
, for n ≥ 2 A055999 Theorem 2.5

{132, 213} F 2
n A007598 Theorem 2.6

{132, 231} 2n, for n ≥ 2 A000079 Theorem 2.7
{132, 312}

4 · 3n−2, for n ≥ 2 A003946 Theorem 2.8
{123, 213} Theorem 2.9

{123, 132, 213} OGF:
1− x

1− 2x− 2x2 + 2x3
A052528 Theorem 2.11

{123, 213, 312}
n+ 2 , for n ≥ 2 A000027 Theorem 2.12

{132, 213, 312} Theorem 2.13
{123, 231, 312} n, for n ≥ 3 A000027 Theorem 2.14
{123, 213, 231} 4(n− 1), for n ≥ 2 A008586 Theorem 2.15

{123, 132, 213, 231} 4, for n ≥ 2 N/A Theorem 2.16
{123, 132, 231, 312}

2, for n ≥ 3 N/A Theorem 2.17
{132, 213, 231, 312} Theorem 2.18

{123, 132, 213, 231, 312} 1, for n ≥ 3 N/A Theorem 2.19

Tab. 1: A summary of the enumeration of nonnesting permutations avoiding subsets of S3 of size at least 2, as well as
two classes of nonnesting permutations avoiding a single pattern. The formulas are valid for n ≥ 1 unless otherwise
stated. OEIS refers to the Online Encyclopedia of Integer Sequences OEIS Foundation Inc. (2023), OGF stands for
ordinary generating function, and Fn denotes the nth Fibonacci number.

2.1 Avoiding one pattern
By reversal and complementation, the enumeration of nonnesting permutations avoiding a single pattern in
S3 reduces to the enumeration of the sets Cn(123) and Cn(132). After we stated these as open problems
in a previous version of this article posted online, a functional equation for the generating function for
cn(132) has been found very recently by Archer and Laudone (2025). We still do not have a formula
for cn(123). For comparison, the enumeration of quasi-Stirling permutations avoiding a simgle pattern in
S3 was also left as an open problem in Archer et al. (2019), and recently solved in Archer and Laudone
(2025) for the pattern 132.
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It is easier, however, to enumerate nonnesting permutations avoiding a pattern of length 3 with repeated
letters. Disregarding the trivial case of the pattern 111, which is avoided by all nonnesting permutations,
reversal and complementation reduces this problem to the enumeration of the sets Cn(112) and Cn(121),
which are treated below.

Theorem 2.1. For all n ≥ 1, we have cn(112) = Cn.

Proof: For any 1 ≤ i < j ≤ n, the subsequence consisting of entries i and j in π ∈ Cn(112) must
be either jjii or jiji, since otherwise they would either create a nesting or an occurrence of 112. It
follows that, in the interpretation of nonnesting permutations as nonnesting matchings with labeled arcs,
a permutation avoids 112 if and only if the arcs are labeled so that their left endpoints (namely, the first
occurrence of each value) appear in decreasing order. Thus, there is exactly one possible labeling of
each nonnesting matching. It follows that cn(112) is simply the number of nonnesting matchings of [2n],
which is Cn.

Theorem 2.2. For all n ≥ 1, we have cn(121) = n!.

Proof: For any 1 ≤ i < j ≤ n, the subsequence consisting of entries i and j in π ∈ Cn(121) must be
either jjii or iijj, since otherwise they would either create a nesting or an occurrence of 121. This forces
repeated entries in π to occur next to each other. Thus π is obtained from a permutation in Sn by simply
duplicating each entry. This leaves n! possibilities.

Note that Cn(112) = Cn(122), and that Cn(121) = Cn(212). The latter set is the intersection of
nonnesting permutations and Stirling permutations.

2.2 Avoiding two patterns
We start with the simple case where the two avoided patterns are monotonic.

Theorem 2.3. For all k, ℓ ≥ 2 and n ≥ (k − 1)(ℓ− 1) + 1, we have cn(12 . . . k, ℓ . . . 21) = 0.

Proof: In any element of Cn, the subsequence obtained by deleting one copy of each entry is a permutation
in Sn. By Erdős and Szekeres (1935), if n ≥ (k − 1)(ℓ − 1) + 1, every permutation in Sn must contain
either an increasing subsequence of length k or a decreasing subsequence of length ℓ, that is, one of the
patterns 12 . . . k or ℓ . . . 21. It follows that cn(12 . . . k, ℓ . . . 21) = 0.

The following result is an immediate consequence of the above theorem. It will save us some work
when classifying nonnesting permutations avoiding larger sets of patterns.

Corollary 2.4. For any Λ ⊆ S3 such that {123, 321} ⊆ Λ, we have cn(Λ) = 0 for all n ≥ 5.

Theorem 2.5. For all n ≥ 2, we have

cn(123, 231) =
n2 + 5n− 6

2
.

Proof: Let Λ = {123, 231}. We can write π ∈ Cn(Λ) uniquely as π = α1β1γ for some α, β, γ. Since
π avoids 123 and 231, the words α, β and γ must be weakly decreasing, and we must have α ≥ β and
β ≥ γ. In particular, |Set(α) ∩ Set(β)| ≤ 1 and |Set(β) ∩ Set(γ)| ≤ 1. Note also that, since π is
nonnesting, β cannot have repeated entries, and Set(α) ∩ Set(γ) = ∅. It follows that β must have length
at most 2, leaving four cases:



6 Sergi Elizalde, Amya Luo

(1) π = α11γ,

(2) π = α′i1i1γ for some i ∈ {2, 3, . . . , n},

(3) π = α1i1iγ′ for some i ∈ {2, 3, . . . , n},

(4) π = α′(i+ 1)1(i+ 1)i1iγ′ for some i ∈ {2, 3, . . . , n− 1}.

In case (1), both α and γ must consist of decreasing sequences of double entries, and π is uniquely
determined by Set(γ), since Set(α) = {2, 3, . . . , n} \ Set(γ). Additionally, in order for π to avoid 231,
the elements of Set(γ) must be consecutive. Thus, either γ is empty, or Set(γ) = {i + 1, i + 2, . . . , j}
for some 1 ≤ i < j ≤ n. It follows that there are 1 +

(
n
2

)
permutations in case (1).

In case (2), i must be smaller than all the entries in α′ and larger than all the entries in γ. Thus, π is
determined by the choice of i ∈ {2, 3, . . . , n}, so there are n − 1 permutations in this case. A similar
argument shows that there are n− 1 permutations in case (3).

In case (4), π is determined by the choice of i ∈ {2, 3, . . . , n− 1}, so there are n − 2 permutations in
this case.

Adding the number of permutations in all four cases, we obtain

cn(Λ) = 1 +

(
n

2

)
+ (n− 1) + (n− 1) + (n− 2) =

n2 + 5n− 6

2
.

We will use Fn to denote the nth Fibonacci number, with the convention F0 = F1 = 1.

Theorem 2.6. For all n ≥ 0, we have cn(132, 213) = F 2
n .

Proof: Let Λ = {132, 213}. Writing permutations π ∈ Cn(Λ) as π = αnβnγ for some words α, β, γ,
we can separate them into four cases:

(1) α = β = ε,

(2) α = ε and β ̸= ε,

(3) α ̸= ε and β = ε,

(4) α ̸= ε and β ̸= ε.

Denote the number of permutations in each case by a
(1)
n , a(2)n , a(3)n and a

(4)
n , respectively, so that cn(Λ) =

a
(1)
n + a

(2)
n + a

(3)
n + a

(4)
n .

To obtain recurrence relations for these numbers, we consider the possible ways to generate a permu-
tation in Cn+1(Λ) by inserting two entries n + 1 in a permutation in Cn(Λ) from each of the above four
cases.

In case (1), there are four ways to insert two entries n + 1 in nnγ without creating nestings or occur-
rences of 213, namely (n+1)(n+1)nnγ, (n+1)n(n+1)nγ, nn(n+1)(n+1)γ and n(n+1)n(n+1)γ,
yielding a permutation in each of cases (1), (2), (3) and (4), respectively.

In case (2), each permutation nβnγ generates two permutations (n+1)(n+1)nβnγ and (n+1)n(n+
1)βnγ, which belong to cases (1) and (2), respectively.
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In case (3), each permutation αnnγ generates two permutations (n + 1)(n + 1)αnnγ and αnn(n +
1)(n+ 1)γ, which belong to cases (1) and (3), respectively.

In case (4), each permutation αnβnγ generates one permutation (n + 1)(n + 1)αnβnγ, in case (1).
Indeed, inserting an n+ 1 anywhere after the first entry of α and before the second n would create a 132,
whereas inserting it anywhere after the second n would create a 213.

Keeping track of how many permutations in Cn+1(Λ) of each type are generated in each case, we
conclude that

a
(1)
n+1 = a(1)n + a(2)n + a(3)n + a(4)n = cn(Λ),

a
(2)
n+1 = a(1)n + a(2)n ,

a
(3)
n+1 = a(1)n + a(3)n ,

a
(4)
n+1 = a(1)n = cn−1(Λ),

from where

cn+1(Λ) = a
(1)
n+1 + a

(2)
n+1 + a

(3)
n+1 + a

(4)
n+1

= 4a(1)n + 2a(2)n + 2a(3)n + a(4)n

= 2(a(1)n + a(2)n + a(3)n + a(4)n ) + 2a(1)n − a(4)n

= 2cn(Λ) + 2cn−1(Λ)− cn−2(Λ),

with initial conditions c0(Λ) = c1(Λ) = 1. This is the same recurrence satisfied by the squared Fibonacci
numbers:

F 2
n+1 = (Fn + Fn−1)

2

= F 2
n + 2FnFn−1 + F 2

n−1

= F 2
n + (Fn−1 + Fn−2)Fn−1 + Fn(Fn − Fn−2) + F 2

n−1

= 2F 2
n + 2F 2

n−1 + Fn−2Fn−1 − FnFn−2

= 2F 2
n + 2F 2

n−1 − F 2
n−2.

Theorem 2.7. For all n ≥ 2, we have cn(132, 231) = 2n.

Proof: Let Λ = {132, 231}. The formula clearly holds for n = 2, since c2(Λ) = 4, so let us assume that
n ≥ 3. To generate an element in Cn(Λ) from π ∈ Cn−1(Λ), the only locations to insert n without creating
an occurrence of 132 or 231 are at the very beginning or at the very end. If we also want to avoid nestings,
both entries n have to be inserted in the same location. This gives the recurrence cn(Λ) = 2cn−1(Λ),
which implies cn(Λ) = 2n.

Theorem 2.8. For all n ≥ 2, we have cn(132, 312) = 4 · 3n−2.
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Proof: Let Λ = {132, 312}, and assume that n ≥ 3. Any permutation in Cn(Λ) must end with 1 or n,
otherwise the last entry would be part of an occurrence of 132 or 312. Since complementation respects
avoidance of Λ, it gives a bijection between permutations in Cn(Λ) that end with n, and those that end
with 1. It follows that the number of permutations in each of the two cases is cn(Λ)/2.

If π ∈ Cn(Λ) ends with n, we can write π = αnβn. Avoidance of 132 forces α ≥ β, and the nonnesting
condition prevents β from having repeated entries. It follows that β = ε or β = 1. In the first case, α can
be any element of Cn−1(Λ), so there are cn−1(Λ) such permutations. In the second case, we can write
π = α11α2n1n. Removing the two copies of n gives a bijection between such permutations and the set
of permutations in Cn−1(Λ) that end with a 1, so there are cn−1(Λ)/2 such permutations.

We obtain the recurrence
cn(Λ)/2 = cn−1(Λ) + cn−1(Λ)/2,

from where cn(Λ) = 3cn−1(Λ). Using the initial condition c2(Λ) = 4, the result follows.

Theorem 2.9. For all n ≥ 2, we have cn(123, 213) = 4 · 3n−2.

Proof: Let Λ = {123, 213}, and let n ≥ 2. Write π ∈ Cn(Λ) as π = αnβnγ. To avoid both 123 and 213,
we must have |Set(α) ∪ Set(β)| ≤ 1. This condition, together with the fact that β cannot have repeated
letters to avoid a nesting, leaves four cases:

(1) π = nnγ,

(2) π = iinnγ for some i ∈ [n− 1],

(3) π = ininγ for some i ∈ [n− 1],

(4) π = ninγ for some i ∈ [n− 1].

Denote the number of permutations in each case by a
(1)
n , a(2)n , a(3)n and a

(4)
n , respectively, so that

cn(Λ) = a
(1)
n + a

(2)
n + a

(3)
n + a

(4)
n . To obtain recurrence relations, we look at the possible ways that a

permutation in each of these cases could be generated by inserting two entries n into a permutation in
Cn−1(Λ).

In case (1), the word γ is an arbitrary permutation in Cn−1(Λ), so

a(1)n = cn−1(Λ). (1)

In case (2), after removing the entries n, the permutation iiγ is an arbitrary permutation in Cn−1(Λ)
starting with a double letter, that is, any permutation from cases (1) and (2). It follows that

a(2)n = a
(1)
n−1 + a

(2)
n−1. (2)

The same is true in case (3), so a
(3)
n = a

(2)
n .

In case (4), the word iγ obtained after removing the entries n is an arbitrary permutation in Cn−1(Λ),
so a

(4)
n = cn−1(Λ).

From equation (1) and the fact that a(1)n = a
(4)
n and a

(2)
n = a

(3)
n , we get

a(1)n = cn−1(Λ) = a
(1)
n−1 + a

(2)
n−1 + a

(3)
n−1 + a

(4)
n−1 = 2a

(1)
n−1 + 2a

(2)
n−1 (3)
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for n ≥ 3. Combining this with equation (2), we see that a(1)n = 2a
(2)
n for n ≥ 3. Using this fact in

equation (3), we obtain
a(1)n = 2a

(1)
n−1 + a

(1)
n−1 = 3a

(1)
n−1

for n ≥ 4, or equivalently,
cn−1(Λ) = 3cn−2(Λ).

The stated result follows from this recurrence, using the initial condition c2(Λ) = 4.

Remark 2.10. A natural bijection between noncrossing and nonnesting permutations of [n] ⊔ [n] is ob-
tained by applying the bijection between noncrossing and nonnesting matchings described in Athanasiadis
(1998), which preserves the left endpoints of the arcs, and labeling the arcs according to these left end-
points. It can be shown that avoidance of the pair of patterns {321, 312} is preserved by this bijection,
and so Theorem 2.9 above is equivalent to (Archer et al., 2019, Thm. 4.4).

2.3 Avoiding three patterns
For avoidance of sets of three patterns of length 3, the case analysis is often similar to the proofs in the
previous subsection.

Theorem 2.11. The ordinary generating function for nonnesting permutations that avoid {123, 132, 213}
is ∑

n≥0

cn(123, 132, 213)x
n =

1− x

1− 2x− 2x2 + 2x3
.

Proof: Let Λ = {123, 132, 213}, and let n ≥ 2. Write π ∈ Cn(Λ) as π = αnβnγ. As in the proof of
Theorem 2.9, avoidance of 123 and 213 implies that Set(α) ∪ Set(β) is either empty or consists of one
element, which must be n − 1 in order for π to also avoid 132. We have the same four cases as in the
proof of Theorem 2.9, but now we set i = n− 1 in all of them.

In case (1), γ can be any permutation in Cn−1, and in each of cases (2) and (3), γ can be any permu-
tation in Cn−2(Λ). Let A(4)

n be the set of permutations in case (4), and let a(4)n = |A(4)
n |. By the above

decomposition,
cn(Λ) = cn−1(Λ) + 2cn−2(Λ) + a(4)n . (4)

Removing the two copies of n from π ∈ A
(4)
n produces a bijection between A

(4)
n and the set of permu-

tations in Cn−1(Λ) that start with the largest entry, namely those from cases (1) or (4). Since the number
of elements in Cn−1(Λ) in case (1) are counted by cn−2(Λ), it follows that

a(4)n = cn−2(Λ) + a
(4)
n−1. (5)

Shifting the indices in equation (4) down by one and solving for a(4)n−1, we get a(4)n−1 = cn−1(Λ) −
cn−2(Λ)− 2cn−3(Λ). Substituting in equation (5), we obtain

a(4)n = cn−1(Λ)− 2cn−3(Λ).

Finally, using this expression in equation (4) yields the recurrence

cn(Λ) = 2cn−1(Λ) + 2cn−2(Λ)− 2cn−3(Λ)
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for n ≥ 3, with initial conditions c0(Λ) = c1(Λ) = 1 and c2(Λ) = 4. This recurrence is equivalent to the
stated generating function.

The sequence cn(123, 132, 213) appears in OEIS Foundation Inc. (2023) as sequence A052528, al-
though with a very different interpretation. Specifically, as shown by Hoang and Mütze (2021), it counts
vertex-transitive cover graphs of lattice quotients of essential lattice congruences of the weak order on
Sn+1.

Theorem 2.12. For all n ≥ 2, we have cn(123, 213, 312) = n+ 2.

Proof: Let Λ = {123, 213, 312}, and let n ≥ 2. Write π ∈ Cn(Λ) as π = αnβnγ. To avoid both 123 and
213, we must have |Set(α) ∪ Set(β)| ≤ 1. Additionally, to avoid 312, γ must be weakly decreasing, and
β ≥ γ. Combined with the nonnesting condition, this leaves four possibilities:

π = nn(n− 1)(n− 1) . . . 11,

π = n(n− 1)n(n− 1) (n− 2)(n− 2)(n− 3)(n− 3) . . . 11,

π = (n− 1)n(n− 1)n (n− 2)(n− 2)(n− 3)(n− 3) . . . 11, or

π = ii nn (n− 1)(n− 1)(n− 2)(n− 2) . . . îi . . . 11

for some i ∈ [n− 1], where we use îi to indicate that we are skipping these entries. We conclude that

cn(Λ) = 1 + 1 + 1 + (n− 1) = n+ 2.

Theorem 2.13. For all n ≥ 2, we have cn(132, 213, 312) = n+ 2.

Proof: Let n ≥ 2, and write π ∈ Cn(132, 213, 312) as π = αnβnγ. To avoid 213, α and β must
be weakly increasing, and α ≤ β. To avoid 312, β and γ must be weakly decreasing, and β ≥ γ.
Additionally, for π to avoid 132, we must have α ≥ β and α > γ, where the strictness comes from the
nonnesting condition. The requirement that β is both weakly increasing and weakly decreasing, along
with the nonnesting condition, implies that β has length at most one.

If β = ε, the above conditions on α and γ imply that

π = ii(i+ 1)(i+ 1) . . . nn (i− 1)(i− 1)(i− 2)(i− 2) . . . 11

for some i ∈ [n], giving n different permutations.
If β has length one, then the requirements α ≤ β and α ≥ β imply that α = ε or α = β. Additionally,

the condition β ≥ γ implies that β = n− 1 in this case. Since γ is weakly decreasing, this leaves the two
possibilities

π = n(n− 1)n(n− 1) (n− 2)(n− 2)(n− 3)(n− 3) . . . 11,

π = (n− 1)n(n− 1)n (n− 2)(n− 2)(n− 3)(n− 3) . . . 11,

for a total of n+ 2 permutations.
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Theorem 2.14. For all n ≥ 3, we have cn(123, 231, 312) = n.

Proof: Let n ≥ 2, and write π ∈ Cn(123, 231, 312) as π = αnβnγ. To avoid 123, α and β must be
weakly decreasing, and α ≥ β. To avoid 312, β and γ must be weakly decreasing, and β ≥ γ. To avoid
231, we must have α ≤ β, β ≤ γ, and α < γ, using also the nonnesting condition.

If β = ε, the fact that α and γ are weakly decreasing, along with the inequality α < γ, implies that

π = (i− 1)(i− 1)(i− 2)(i− 2) . . . 11nn(n− 1)(n− 1) . . . ii

for some i ∈ [n], giving n different permutations.
If β ̸= ε, let i be an entry in β, and note that the nonnesting condition requires that the other copy of i

appears in α or γ. This forces Set(α) ∪ Set(β) ∪ Set(γ) = {i}, because if some j ̸= i was in this set,
then one of the conditions α ≤ β, α ≥ β, β ≤ γ, or β ≥ γ would be violated. This can only happen if
n = 2, and π must be one of the permutations 1212 or 2121 in this case.

Theorem 2.15. For all n ≥ 2, we have cn(123, 213, 231) = 4(n− 1).

Proof: Let Λ = {123, 213, 231} and let n ≥ 3. Write π ∈ Cn(Λ) as π = αnβnγ. As in the proof of
Theorem 2.9, avoidance of 123 and 213 implies that Set(α) ∪ Set(β) is either empty or consists of one
element, which must be 1 in order for π to also avoid 231. This leaves the four cases from the proof of
Theorem 2.9, where now we set i = 1.

In case (1), γ can be any element of Cn−1(Λ), so there are cn−1(Λ) permutations.
In cases (2) and (3), avoidance of 123 forces γ to be weakly decreasing, resulting in the two permuta-

tions

π = 11nn(n− 1)(n− 1) . . . 22,

π = 1n1n(n− 1)(n− 1) . . . 22.

In case (4), we can write π = n1nγ11γ2, where γ1γ2 is weakly decreasing, since π avoids 123. The
nonnesting condition prevents γ1 from having repeated letters, so γ1 = ε or γ1 = n−1 (the latter assumes
that n ≥ 3), resulting in the two permutations

π = n1n1(n− 1)(n− 1)(n− 2)(n− 1) . . . 22,

π = n1n(n− 1)1(n− 1) (n− 2)(n− 2) . . . 22.

Combining all the cases, we obtain the recurrence

cn(Λ) = cn−1(Λ) + 4

for n ≥ 3. Using the initial condition c2(Λ) = 4, the result follows.

2.4 Avoiding four or five patterns
There are three cases of sets Λ ⊆ S3 of size 4 and one case of size 5 that are not covered by Corollary 2.4.
In all of them, the number of nonnesting permutations of [n] ⊔ [n] avoiding Λ is constant for n ≥ 3.

Theorem 2.16. For all n ≥ 2, we have cn(123, 132, 213, 231) = 4.
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Proof: Let Λ = {123, 132, 213, 231}. For n ≥ 3, any π ∈ Cn(Λ) must be of the form nnα, since the
avoidance condition requires that in any subsequence πiπjπk of distinct letters, πi must be the largest.
Therefore, cn(Λ) = cn−1(Λ) for n ≥ 3. Since c2(Λ) = 4, the result follows.

Theorem 2.17. For all n ≥ 3, we have cn(123, 132, 231, 312) = 2.

Proof: Let Λ = {123, 132, 231, 312} and let n ≥ 3. Avoidance of 132 and 231, together with the
nonnesting condition, implies that any π ∈ Cn(Λ) must be of the form αnn or nnγ. Additionally,
avoidance of 123 and 312 forces α and γ to be weakly decreasing. Thus, for n ≥ 3,

Cn(Λ) = {(n− 1)(n− 1)(n− 2)(n− 2) . . . 11nn, nn(n− 1)(n− 1) . . . 11}.

Theorem 2.18. For all n ≥ 3, we have cn(132, 213, 231, 312) = 2.

Proof: Let Λ = {132, 213, 231, 312}. Any subsequence of π ∈ Cn(Λ) of length 3 with distinct entries
must be increasing or decreasing. Hence, for n ≥ 3, we have Cn(Λ) = {1122 . . . nn, nn . . . 2211}.

Theorem 2.19. For all n ≥ 3, we have cn(123, 132, 213, 231, 312) = 1.

Proof: Any subsequence of π ∈ Cn(123, 132, 213, 231, 312) of length 3 with distinct entries must be
weakly decreasing. Hence, for n ≥ 3, the only possibility is π = nn . . . 2211.

3 Some patterns of length 4
In this section we give a few results about nonnesting permutations avoiding sets of patterns of length 4.
We do not systematically analyze all sets, but rather we introduce some tools and provide a sample of
results for which the enumeration sequences are interesting. We focus on patterns where one letter is
repeated, and often appearing in adjacent positions. Tables 2 and 3 list sets Λ of patterns with repeated
letters (up to reversal and complementation) for which we have found a formula for cn(Λ). Patterns where
the repeated letters are adjacent are colored according to the permutation in S3, up to reverse-complement,
obtained when removing one of the repeated letters: red for 123, orange for 321, blue for 132 and 213,
and violet for 231 and 312.

To prove some of these formulas, it will be convenient to view permutations π ∈ Cn as labeled nonnest-
ing matchings of [2n], where there is an arc between i and j with label ℓ if πi = πj = ℓ. The nonnesting
condition guarantees that the order in which the left endpoints of the arcs appear is the same as the order
in which their right endpoints appear, so there is a natural ordering of the arcs from left to right. The per-
mutation in Sn obtained when reading the labels of the arcs from left to right will be called the underlying
permutation of π, and denoted by π̂. Note that π̂ is the subsequence of π obtained by taking the left copy of
each letter, or alternatively by taking the right copy of each letter. For example, if π = 1521352434 ∈ C5
(whose matching appears on the left of Figure 1), then its underlying permutation is π̂ = 15234 ∈ S5.
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Λ Formula for cn(Λ) OEIS code Result in the paper
{1223}

C2
n A001246 Theorem 3.3{1332}

{σ, τ}, where
σ ∈ {1123, 1223, 1233},
τ ∈ {3321, 3221, 3211}

0, for n ≥ 5 N/A Theorem 3.5

{1223, 1332}

2n−1Cn A003645
Theorem 3.3{1332, 2113}

{1332, 2331}
{1332, 3112}
{1123, 1132} Theorem 3.7{1322, 3122}

{1223, 2331}
((

n

2

)
+ 1

)
Cn N/A Theorem 3.3

{1322, 2231}
(
2n

n

)
− 2n−1 A085781 Theorem 3.30

{1231, 1321} EGF:
2

3− e2x
A122704 Theorem 3.33

Tab. 2: A summary of our results enumerating nonnesting permutations avoiding some sets of one or two patterns
patterns of length 4. EGF stands for exponential generating function.

3.1 Patterns whose repeated letters are in the middle

In some cases, it is possible to describe pattern-avoiding nonnesting permutations by imposing restrictions
on the underlying permutation, whereas the (unlabeled) nonnesting matching is arbitrary. When this
happens, the resulting formulas have a factor of Cn to account for the possible nonnesting matchings.

The next lemma will be useful when avoiding patterns of length 4 with a repeated letter in the middle,
as it translates this restriction to an avoidance condition on the underlying permutation.

Lemma 3.1. Let π ∈ Cn, let π̂ ∈ Sn be its underlying permutation, and let ijk ∈ S3. Then π avoids ijjk
if and only if π̂ avoids ijk.

Proof: If π contains ijjk, then the subsequence of π consisting of the left copy of each letter must contain
ijk. Conversely, if π̂ contains ijk, the nonnesting condition forces the right copy of (the letter playing the
role of(i)) j to appear before the right copy of k. It follows that π contains ijjk.

For a set Σ ⊆ S3, we denote by Sn(Σ) the set of permutations in Sn that avoid all the patterns in Σ,
and let sn(Σ) = |Sn(Σ)|. The next lemma reduces the enumeration of nonnesting permutations avoiding
patterns of length 4 with a repeated letter in the middle to the enumeration of permutations in Sn avoiding
patterns of length 3, which was done by Simion and Schmidt (1985); see also Knuth (1997).

Lemma 3.2. Let Σ ⊆ S3, and let Λ = {σ1σ2σ2σ3 : σ ∈ Σ}. Then, for any n ≥ 1, cn(Λ) = sn(Σ)Cn.

(i) When j is an entry in a pattern, we will often refer to “copies of j” in a permutation to mean copies of the letter playing the role
of j in an occurrence of the pattern.
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Λ Formula for cn(Λ) OEIS code Result in the paper
{1223, 1332, 2113}

FnCn A098614 Theorem 3.3
{1123, 1132, 2133} Theorem 3.7
{1223, 1332, 2331}

(
2n

n− 1

)
A001791

Theorem 3.3{1332, 2113, 2331}
{1223, 1332, 3112}
{1223, 2331, 3112}
{1123, 1132, 2331}

Theorem 3.7{1123, 1132, 3122}
{1332, 2213, 2231}
{1123, 1322, 2331}

Cn+1 − 1 A001453

Theorem 3.9
{1132, 2213, 2231} Theorem 3.14
{1233, 1322, 3122} Theorem 3.21
{1322, 2213, 2231} Theorem 3.15
{1223, 2231, 3112} Theorem 3.23

{1123, 1132, 2311} n3 + 9n2 − 10n

6
, for n ≥ 2 A060488 Theorem 3.10

{1123, 1322, 2311} n3 + 6n2 − 7n+ 6

6
A027378 Theorem 3.11

{1132, 2213, 2311} Theorem 3.16
{1233, 1132, 2311} n2 + n− 1, for n ≥ 3 A028387 Theorem 3.12
{1233, 1322, 2311}

n2 A000290
Theorem 3.13

{1322, 2133, 2311} Theorem 3.20
{1123, 2231, 3312} Theorem 3.29
{1332, 2133, 2311}

2n2 − 3n+ 2 A084849 Theorem 3.18
{1123, 2331, 3312} Theorem 3.26
{1132, 2133, 2311}

n2 + n− 2, for n ≥ 2 A028552 Theorem 3.19
{1123, 2311, 3122} Theorem 3.25

{1123, 1132, 3312} 7n2 − 17n+ 14

2
, for n ≥ 2

A140065
(values differ by 1) Theorem 3.22

{1123, 2311, 3112} n3 + 3n2 + 8n− 12

6
, for n ≥ 2

A341209
(values differ by 1) Theorem 3.24

{1123, 2311, 3312} n2 + 7n− 10

2
, for n ≥ 2 A183905 Theorem 3.27

{1223, 2231, 3312} n3 + 2n

3
A006527 Theorem 3.28

{1132, 3112, 3121} 5 · 3n−2 − 1, for n ≥ 2 A198643 Theorem 3.31

{1231, 1321, 2113} OGF:
1 + 2x−

√
1− 8x+ 4x2

6x
A007564 Theorem 3.34

{1231, 1321, 2132,
2312, 3123, 3213} n!Fn A005442 Theorem 3.32

Tab. 3: A summary of our results enumerating nonnesting permutations avoiding some sets of three or more patterns
patterns of length 4.
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Proof: Let σ ∈ S3. By Lemma 3.1, π ∈ Cn avoids σ1σ2σ2σ3 if and only if the underlying permutation
π̂ ∈ Sn avoids σ. Thus, π ∈ Cn(Λ) is determined by first choosing a nonnesting matching on [2n], of
which there are Cn, and then an underlying permutation π̂ ∈ Sn(Σ), of which there are sn(Σ).

Theorem 3.3. For all n ≥ 1, we have

(a) cn(ijjk) = C2
n for every ijk ∈ S3,

(b) cn(1223, 1332) = cn(1332, 2113) = cn(1332, 2331) = cn(1332, 3112) = 2n−1Cn,

(c) cn(1223, 2331) =
((

n
2

)
+ 1

)
Cn,

(d) cn(1223, 1332, 2113) = FnCn,

(e) cn(1223, 1332, 2331) = cn(1332, 2113, 2331) = cn(1223, 1332, 3112) = cn(1223, 2331, 3112) =
nCn =

(
2n
n−1

)
.

Proof: These results follow from Lemma 3.2, along with the following formulas:

(a) sn(ijk) = Cn, as shown in Knuth (1997);

(b) sn(123, 132) = sn(132, 213) = sn(132, 231) = sn(132, 312) = 2n−1, as shown in (Simion and
Schmidt, 1985, Prop. 7–10);

(c) sn(123, 231) =
(
n
2

)
+ 1, as shown in (Simion and Schmidt, 1985, Prop. 11);

(d) sn(123, 132, 213) = Fn, by (Simion and Schmidt, 1985, Prop. 15);

(e) sn(123, 132, 231) = sn(132, 213, 231) = sn(123, 132, 312) = sn(123, 231, 312) = n, by (Simion
and Schmidt, 1985, Prop. 16 and 16∗).

Lemma 3.1 would not hold if we replaced ijjk with iijk. For example, π = 113232 contains 1123 but
its underlying permutation π̂ = 132 avoids 123. To enumerate permutations avoiding patterns where the
repeated letter is not in the middle, the next lemma will be useful.

Lemma 3.4. Let π ∈ Cn, and let ijk ∈ S3. If π avoids either iijk or ijkk, then π avoids ijjk.

Proof: We prove the contrapositive statement. Suppose that π contains ijjk. Since π is nonnesting, the
other copy of i must occur before the right copy of j. This creates an occurrence of iijk. A symmetric
argument shows that π also contains ijkk.

Theorem 3.5. Let σ ∈ {1123, 1223, 1233} and τ ∈ {3321, 3221, 3211}. Then, for all n ≥ 5, we have
cn(σ, τ) = 0.

Proof: By Lemma 3.4, any π ∈ Cn(σ, τ) must avoid 1223 and 3221. But then, by Lemma 3.1, its
underlying permutation π̂ ∈ Sn must avoid 123 and 321. We know by Erdős and Szekeres (1935) that
sn(123, 321) = 0 for all n ≥ 5. Therefore, cn(σ, τ) = 0 for all n ≥ 5.

The following lemma is a partial converse of Lemma 3.4.
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Lemma 3.6. Let ijk ∈ S3, let Λ = {iikj, ikkj, ikjj, ijkj, ikjk}, and let π ∈ Cn(ijjk). If π avoids
some σ ∈ Λ, then π avoids iijk.

Proof: Again, we prove the contrapositive statement. Let π ∈ Cn(ijjk), and suppose that π contains
iijk. The other copy of j must be to the right of this k, in order to avoid ijjk, so π contains iijkj. Now,
the other copy of k must be to the left of the first copy of j. Therefore, π must contain either ikijkj or
iikjkj. In both cases, π contains all the patterns in Λ.

Lemmas 3.4 and 3.6 provide bijections between many sets of pattern-avoiding nonnesting permutations,
allowing us to derive from Theorem 3.3 some formulas for patterns where the repeated letter is not in the
middle. The next theorem gives a sample of some such results, which is by no means exhaustive.

Theorem 3.7. For all n ≥ 1, we have

(a) cn(1123, 1132) = cn(1322, 3122) = 2n−1Cn,

(b) cn(1123, 1132, 2133) = FnCn,

(c) cn(1123, 1132, 2331) = cn(1123, 1132, 3122) = cn(1332, 2213, 2231) =
(

2n
n−1

)
.

Proof: We claim that Cn(1123, 1132) = Cn(1223, 1332). The inclusion to the right follows from
Lemma 3.4. For the reverse inclusion, suppose that π ∈ Cn(1223, 1332). Lemma 3.6 with ijk = 123
implies that π avoids 1123, and the same lemma with ijk = 132 implies that π avoids 1132. A similar
argument shows that Cn(1322, 3122) = Cn(1332, 3112). Part (a) now follows from Theorem 3.3(b).

For part (b), one can similarly show that Cn(1123, 1132, 2133) = Cn(1223, 1332, 2113) using Lem-
mas 3.4 and 3.6, and then apply Theorem 3.3(d).

For part (c), Lemmas 3.4 and 3.6 imply the equalities Cn(1123, 1132, 2331) = Cn(1223, 1332, 2331),
Cn(1123, 1132, 3122) = Cn(1223, 1332, 3112), and Cn(1332, 2213, 2231) = Cn(1332, 2113, 2331). The
enumeration of these sets is given in Theorem 3.3(e).

3.2 Other patterns whose repeated letters are adjacent
The restrictions that we consider in this subsection no longer translate into restrictions for the underlying
permutations. These enumerative results often have more complicated proofs that require separating the
permutations into different cases. We will often decompose permutations as follows.

Lemma 3.8. Any π ∈ Cn can be written as π = α1β1γ, where β has no repeated entries, and Set(α) ∩
Set(γ) = ∅. Thus, we have a disjoint union {2, 3, . . . , n} = A ⊔B1 ⊔B2 ⊔ C, where

A = Set(α) \ Set(β), B1 = Set(α) ∩ Set(β), B2 = Set(γ) ∩ Set(β), C = Set(γ) \ Set(β). (6)

Additionally, elements of B1 (resp. B2) must appear in the same order in β as in α (resp. γ). If α is weakly
monotone, then it consists of the elements of A (each of which is duplicated) followed by the elements of
B1. Similarly, if γ is weakly monotone, it consists of the elements of B2 followed by the elements of C
(each of which is duplicated).
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Proof: The positions of the 1s and the nonnesting condition guarantee that β has no repeated entries, and
that no entry appears in both α and γ. Entries in β that have their other copy in α (resp. γ) must appear in
the same order in both subwords because of the nonnesting condition. In the special case that α is weakly
monotone, the nonnesting condition prevents duplicated entries (those in A) to appear after entries in B1,
and similarly when γ is weakly monotone.

We will use the notation from Lemma 3.8 throughout this section. Additionally, we let β1 and β2 be
the subsequences of β consisting of the elements of B1 and B2, respectively.

The next five theorems deal with subsets of Cn(1223, 1332, 2331), the first set in Theorem 3.3(e).
Figure 2 shows the containment relationships between these sets as a Hasse diagram.

Cn(1223, 1332, 2331) 3.3(e)

Cn(1123, 1322, 2331) 3.9 Cn(1123, 1132, 2311) 3.10

Cn(1123, 1322, 2311) 3.11 Cn(1233, 1132, 2311) 3.12

Cn(1233, 1322, 2311) 3.13

Fig. 2: The subsets of Cn(1223, 1332, 2331) enumerated in this section, along with the theorem number.

Theorem 3.9. For all n ≥ 1, we have cn(1123, 1322, 2331) = Cn+1 − 1.

Proof: We decompose π ∈ Cn(1123, 1322, 2331) as in Lemma 3.8. Since π avoids 1322, it must also
avoid 1332 by Lemma 3.4. Now, Lemma 3.6, together with avoidance of 1123, implies that π avoids
1132 as well. Avoidance of both 1123 and 1132 implies that |Set(γ)| ≤ 1. And since π avoids 2331, αβ1

must avoid 122 which, as in the proof of Theorem 2.1, is equivalent to its underlying permutation being
decreasing. Since β1 has no repeated letters, α1β11 avoids 122 as well.

If γ = ε, then π = α1β11 is an arbitrary permutation in Cn(122). Indeed, avoidance of 122 implies
avoidance of 1322 and 2331, and it is equivalent to avoidance of 112, which implies avoidance of 1123.
By Theorem 2.1, there are Cn permutations in this case.

Now suppose that Set(γ) = {k} for some 2 ≤ k ≤ n. Avoidance of 1322 requires that, in α, any
entries larger than k must be to the left of any entries smaller than k. Thus, we can write α = α1α2,
where α1 and α2 consist of entries larger and smaller than k, respectively.

Consider first the case when all the elements in B1 are smaller than k. Then all the entries greater
than k are in α1, and st(α1) is an arbitrary permutation in Cn−k(122). Similarly, st(α21β11) is an
arbitrary permutation in Ck−1(122). It follows that α21β1γ is an arbitrary permutation in Ck whose
underlying permutation is (k − 1)(k − 2) . . . 1k. Indeed, this condition on α21β1γ and the fact that
st(α1) ∈ Cn−k(122) guarantee that π = α1α21β1γ does not contain any of the patterns 1123, 1322, 2331.
Since there are Ck permutations in Ck with a fixed underlying permutation (one for each nonnesting
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matching), the number of permutations π in this case is

n∑
k=2

Cn−kCk = Cn+1 − Cn − Cn−1.

Finally, consider the case when some element b ∈ B1 is greater than k. Since the underlying permuta-
tion of αβ1 is decreasing and β1 has no repeated letters, β1 is decreasing, so we can assume that b is the
first entry in β1. Since π avoids 1322, the first copy of k must appear before b, so β = kβ1.

Let us show that α2 = (k − 1)(k − 2) . . . 2. First, α2 cannot have repeated letters; otherwise, together
with k and b, they would form an occurrence of 1123. Second, α2 contains the first occurrence of each
letter in {2, . . . k−1}, and they must appear in decreasing order because otherwise π would contain 2331.

We claim that, in fact,

π = α1 (k − 1)(k − 2) . . . 21 k b(b− 1) . . . (k + 1) (k − 1)(k − 2) . . . 21 k,

where st(α11 b(b − 1) . . . (k + 1) 1) is an arbitrary permutation in Cn−k+1(122) not ending with 11.
Clearly, this permutation avoids 122 (because π avoids 2331) and does not end with 11 (because b >
k). To see that it is arbitrary, note that avoidance of 122 in this permutation guarantees that π avoids
the three patterns 1123, 1322, 2331. Permutations in Cn−k+1(122) that do end with 11, by removing
11 and standardizing, are in bijection with permutations in Cn−k(122). We deduce that the number of
permutations π in this case is

n∑
k=2

(Cn−k+1 − Cn−k) = Cn−1 − 1.

Summing up all the cases, we have

cn(1123, 1322, 2331) = Cn + (Cn+1 − Cn − Cn−1) + (Cn−1 − 1) = Cn+1 − 1.

Theorem 3.10. For all n ≥ 2, we have

cn(1123, 1132, 2311) =
n3 + 9n2 − 10n

6
.

Proof: We decompose π ∈ Cn(1123, 1132, 2311), for n ≥ 2, as in Lemma 3.8. In order for π to avoid
2311, α must be weakly decreasing, and so the elements of B1 must be decreasing in β. To avoid both
1123 and 1132, we must have |Set(γ)| ≤ 1, leaving the following three possibilities for γ.

If γ = ε, it follows that

π = nn(n− 1)(n− 1) . . . (i+ 1)(i+ 1) i(i− 1) . . . 1 i(i− 1) . . . 1

for some i ∈ [n], giving n permutations.
Suppose now that γ = jj for some j ∈ {2, . . . , n}. If all the elements of B1 are smaller than j, we

have
π = nn(n− 1)(n− 1) . . . ĵj . . . (i+ 1)(i+ 1) i(i− 1) . . . 1 i(i− 1) . . . 1 jj (7)
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for some 1 ≤ i < j ≤ n, giving
(
n
2

)
permutations. Otherwise, in order to avoid 2311, only one element

of B1 can be bigger than j, so

π = nn(n− 1)(n− 1) . . . (j + 2)(j + 2) (j + 1)(j − 1) . . . 1 (j + 1)(j − 1) . . . 1 jj (8)

with 2 ≤ j ≤ n−1, giving n−2 permutations in this case. Adding these cases, the number of permutations
where γ = jj for some j equals (

n

2

)
+ n− 2.

Finally, suppose that γ = j for some j ∈ {2, . . . , n}, which forces the other copy of j to appear in
β. Recall that the other entries in β (that is, the elements of B1) are decreasing. If all these elements are
smaller than j, then the are no restrictions on the position of j inside β, and π is obtained from equation (7)
by moving the first copy of j and inserting it in β, in one of the i available positions. Thus, the number of
permutations in this case is ∑

1≤i<j≤n

i =

(
n+ 1

3

)
.

If some elements of B1 are larger than j, consider two subcases. If j is the first entry in β, then

π = nn(n− 1)(n− 1) . . . (i+ 1)(i+ 1) i(i− 1) . . . ĵ . . . 1 j i(i− 1) . . . ĵ . . . 1 j, (9)

for some 2 ≤ j < i ≤ n, giving
(
n−1
2

)
permutations. Otherwise, in order to avoid 2311, there can be only

one element of B1 that is larger than j. In this case, π is obtained from equation (8) by moving the first
copy of j and inserting it in β, in any of the j − 1 positions other than the first one, giving

n−1∑
j=2

(j − 1) =

(
n− 1

2

)
(10)

permutations.
By adding all the cases, we have

cn(1123, 1132, 2311) = n+

(
n

2

)
+ n− 2 +

(
n+ 1

3

)
+

(
n− 1

2

)
+

(
n− 1

2

)
=

n3 + 9n2 − 10n

6
.

Theorem 3.11. For all n ≥ 1, we have

cn(1123, 1322, 2311) =
n3 + 6n2 − 7n+ 6

6
.

Proof: Let us first show that

Cn(1123, 1322, 2311) = Cn(1123, 1322, 2331) ∩ Cn(1123, 1132, 2311), (11)

that is, the intersection of the sets from Theorems 3.9 and 3.10.
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Let π ∈ Cn(1123, 1322, 2311). Since π avoids 2311, it also avoids 2331 by Lemma 3.4. On the other
hand, as in the proof of Theorem 3.9, avoidance of 1123 and 1322 implies avoidance of 1132. This proves
the inclusion to the right in equation (11). Conversely, a permutation in the intersection of the two sets on
the right-hand side must avoid the three patterns 1123, 1322, 2311.

We will adapt the proof of Theorem 3.10 by removing the two cases where the permutation π contains
1322. One is when π is given by equation (8), accounting for n − 2 permutations. The other the case
counted in equation (10), namely, when γ = j, there is an element in B1 larger than j, and j is not the
first entry in β.

Adding the remaining cases, we get

cn(1123, 1132, 2311) = n+

(
n

2

)
+

(
n+ 1

3

)
+

(
n− 1

2

)
=

n3 + 6n2 − 7n+ 6

6
.

Theorem 3.12. For all n ≥ 3, we have cn(1233, 1132, 2311) = n2 + n− 1.

Proof: Let π ∈ Cn(1233, 1132, 2311). Since π avoids 1233, it must also avoid 1223 by Lemma 3.4.
Now, Lemma 3.6, together with avoidance of 1132, implies that π also avoids 1123. It follows that
Cn(1233, 1132, 2311) ⊆ Cn(1123, 1132, 2311), the set considered in Theorem 3.10.

Let us show how to modify the proof of this theorem to eliminate the cases where π contains 1233.
The case γ = ε does not change and contributes n permutations. In the case γ = jj, the permutation in
equation (7) avoids 1233 only if i = 1, giving n−1 permutations. The permutation in equation (8) avoids
1233 only if j = 2, giving 1 permutation, if we use the assumption n ≥ 3.

In the case γ = j, if the elements of B1 are smaller than j, then the other copy of j has to be the first
entry in β in order to avoid 1233, giving

(
n
2

)
permutations of the form

π = nn(n− 1)(n− 1) . . . ĵj . . . (i+ 1)(i+ 1) i(i− 1) . . . 1 j i(i− 1) . . . 1 j (12)

for 1 ≤ i < j ≤ n. If some element of B1 is larger than j, we get the
(
n−1
2

)
permutations from

equation (9) where j is the first entry in β. If j is not the first entry, then

π = nn(n− 1)(n− 1) . . . (j + 2)(j + 2) (j + 1)(j − 1) . . . 1 (j + 1)j(j − 1) . . . 1 j

for some 2 ≤ j ≤ n− 1, giving n− 2 permutations.
Adding up all the cases, we get

cn(1233, 1132, 2311) = n+ (n− 1) + 1 +

(
n

2

)
+

(
n− 1

2

)
+ (n− 2) = n2 + n− 1.

Theorem 3.13. For all n ≥ 1, we have cn(1233, 1322, 2311) = n2.

Proof: Let us first show that

Cn(1233, 1322, 2311) = Cn(1123, 1322, 2311) ∩ Cn(1233, 1132, 2311), (13)
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that is, the intersection of the sets from Theorems 3.11 and 3.12.
Let π ∈ Cn(1233, 1322, 2311). Since π avoids 1233, it must also avoid 1223 by Lemma 3.4. But avoid-

ance of 1223 and 1322 implies avoidance of 1123 by Lemma 3.6. This shows that Cn(1233, 1322, 2311) ⊆
Cn(1123, 1322, 2311). Similarly, since π avoids 1322, it must also avoid 1332 by Lemma 3.4. But avoid-
ance of 1332 and 1233 implies avoidance of 1132 by Lemma 3.6. This shows that Cn(1233, 1322, 2311) ⊆
Cn(1233, 1132, 2311). Conversely, if a permutation is in the intersection on the right-hand side of equa-
tion (13), then it clearly avoids the patterns 1233, 1322, 2311.

To find cn(1233, 1322, 2311), we follow the proofs of Theorems 3.11 and 3.12, and take the permuta-
tions that appear in both. When γ = ε, we get the same n permutations. When γ = jj, we get the n− 1
permutation from equation (7) with i = 1. When γ = j, we get the

(
n
2

)
permutations from equation (12)

and the
(
n−1
2

)
permutations from equation (9).

Adding up all the cases, we get

cn(1233, 1322, 2311) = n+ (n− 1) +

(
n

2

)
+

(
n− 1

2

)
= n2.

In the next six theorems, we consider subsets of Cn(1332, 2113, 2331), which is the second set in
Theorem 3.3(e). Figure 3 shows the containment relationships between these sets.

Cn(1332, 2113, 2331) 3.3(e)

Cn(1132, 2213, 2231) 3.14

Cn(1132, 2213, 2311) 3.16

Cn(1132, 2133, 2311) 3.19

Cn(1332, 2133, 2311) 3.18

Cn(1322, 2213, 2231) 3.15

Cn(1322, 2133, 2311) 3.20

Fig. 3: The subsets of Cn(1332, 2113, 2331) enumerated in this section.

In the next proof, we let Dn be the set of Dyck words of length 2n, that is, words consisting of n us
and n ds with the property that no prefix contains more ds than us. It is well known (see Stanley (2015))
that |Dn| = Cn.

Theorem 3.14. For all n ≥ 1, we have cn(1132, 2213, 2231) = Cn+1 − 1.

Proof: We decompose π ∈ Cn(1132, 2213, 2231) as in Lemma 3.8. Avoidance of 2213 implies avoidance
of 2113 by Lemma 3.4, which requires α > γ. Avoidance of 1132 forces γ to be weakly increasing, so
we can write β2 = 23 . . . i and γ = 23 . . . i (i + 1)(i + 1)(i + 2)(i + 2) . . . jj for some 1 ≤ i ≤ j ≤ n.
Avoidance of 2231 forces αβ1 to avoid 112, which implies that its underlying permutation is decreasing,
so in particular β1 is decreasing, since it consists of second copies of entries. It follows that st(α1β11) ∈
Cn−j+1(112).
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In fact, the above are the only restrictions on α, β1, β2, and γ, in the sense that any choice of 1 ≤
i ≤ j ≤ n, any choice of st(α1β11) ∈ Cn−j+1(112), and any way to interleave the entries of β2 =
23 . . . i with the entries of β1 determines a (unique) permutation π ∈ Cn(1132, 2213, 2231). To count
these choices, we will describe a bijection between such permutations and certain Dyck words. Given
π ∈ Cn(1132, 2213, 2231) decomposed as above, construct a Dyck word as follows.

1. Start with the Dyck word w0 ∈ Dn−j+1 obtained from the permutation st(α1β11) by simply
replacing the first copy of each entry with a u and the second copy with a d. Viewing st(α1β11)
as a nonnesting matching, this is the standard bijection between nonnesting matchings and Dyck
words.

2. Insert a ud right after the last u of w0. This is the u corresponding to the first copy of 1, since β1

consists only of second copies of entries. Let w′
0 be the resulting word in Dn−j+2. Note that each

of the ds after this inserted ud corresponds to an element of β11.

3. For each entry of β2 that is interleaved with 1β11 in π, insert a ud in the corresponding location
within the last run of ds in w′

0. Specifically, elements of β2 that lie between the first 1 and β1

become uds inserted right after the ud from step 2, and elements of β2 that lie between β1 and the
second 1 become uds inserted right before the last d of w′

0. This step inserts a total of i − 1 uds,
producing a word in Dn−j+i+1.

4. Finally, append |Set(γ)| = j − i uds to the end of the word, to obtain a word w ∈ Dn+1.

We claim that the map π 7→ w is a bijection between Cn(1132, 2213, 2231) and Dn+1 \ {(ud)n+1},
from which it will follow that cn(1132, 2213, 2231) = Cn+1 − 1.

First, it is clear by construction that w ∈ Dn+1, and that w ̸= (ud)n+1, since w has the two consecutive
us that were created in step 2. To see that it is a bijection, let us show that, given an arbitrary w ∈
Dn+1 \ {(ud)n+1}, we can uniquely recover the permutation π that it came from. We start by finding
the last two consecutive us in w, which must exist because w ̸= (ud)n+1. Then, the word w0 obtained
from w by removing all the pairs ud to the right of the first of these two us, determines the permutation
st(α1β11) by simply reversing step 1. The location of the removed pairs ud determine the positions of
the entries in β2 relative to those of β1, and the number of removed pairs ud at the end of w determine
|Set(γ)|. This information uniquely determines the permutation π ∈ Cn(1132, 2213, 2231).

As an example of the above bijection, let

π = 12 11 12 10 9 8 7 11 1 2 10 3 4 9 8 5 7 1 2 3 4 5 6 6 ∈ C12(1132, 2213, 2231),

which has i = 5 and j = 6. In step 1, we have

st(α1β11) = st(12 11 12 10 9 8 7 11 1 10 9 8 7 1) = 7 6 7 5 4 3 2 6 1 5 4 3 2 1,

which gives the Dyck word w0 = uuduuuududdddd. In step 2, we obtain

w′
0 = uuduuuuduudddddd,

where the five d steps after the inserted ud correspond to β11 = 10 9 8 7 1. After steps 3 and 4, we get

w = uuduuuuduududdududddudddud.
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Theorem 3.15. For all n ≥ 1, we have cn(1322, 2213, 2231) = Cn+1 − 1.

Proof: We decompose π ∈ Cn(1322, 2213, 2231) as in Lemma 3.8. Since π avoids 1322, β2γ avoids
211, and since π avoids 2231, αβ1 avoids 112. As in the previous proof, avoidance of 2213 implies that
α > γ. Let k = |Set(α)|.

If B1 = ∅, then st(α) is an arbitrary permutation in Ck(112), and st(1β21γ) is an arbitrary permutation
in Cn−k(112). By Theorem 2.1, these sets are enumerated by the Catalan numbers. Summing over k, we
get

n−1∑
k=0

CkCn−k = Cn+1 − Cn

permutations.
Now suppose B1 ̸= ∅. Since α > γ, avoidance of 1322 implies that C = ∅, and that β = β2β1, that is,

the elements of B2 are to the left of those of B1. It follows that

π = α 12 . . . (n− k)β1 12 . . . (n− k),

where st(α1β11) is an arbitrary permutation in Ck+1(112) not ending with 11. By Theorem 2.1, these are
counted by Ck+1 − Ck. Summing over k, we get

n−1∑
k=1

Ck+1 − Ck = Cn − C1

permutations.
Adding up the permutations in both cases, we have

cn(1322, 2213, 2231) = (Cn+1 − Cn) + (Cn − C1) = Cn+1 − 1.

Theorem 3.16. For all n ≥ 1, we have

cn(1132, 2213, 2311) =
n3 + 6n2 − 7n+ 6

6
.

Proof: We have Cn(1132, 2213, 2311) ⊆ Cn(1132, 2213, 2231). This is because avoidance of 2311
implies avoidance of 2331 by Lemma 3.4, which in turn, using that π avoids 2213, implies avoidance of
2231 by Lemma 3.6.

We decompose π ∈ Cn(1132, 2213, 2311) as in Lemma 3.8. As in the proof of Theorem 3.14, avoid-
ance of 1132 requires γ to be weakly increasing, and avoidance of 2213 implies that α > γ. Additionally,
avoidance of 2311 now requires α to be weakly decreasing,

By Lemma 3.8, elements of B1 form decreasing subsequences in both α and β, whereas elements of
B2 form increasing subsequences in both β and γ. Additionally, since α and γ are weakly monotone,
it follows from Lemma 3.8 that there exist 1 ≤ i ≤ j ≤ k ≤ n such that B2 = {2, 3, . . . , i}, C =
{i+ 1, i+ 2, . . . , j}, B1 = {j + 1, j + 2, . . . , k}, and A = {k + 1, k + 2, . . . , n}. Let us consider three
cases depending on the cardinality of B1.
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If |B1| ≥ 2 (that is, k−j ≥ 2), the property α > γ, together with avoidance of 2311, forces C = ∅ (that
is, i = j). Avoidance of 2311 also requires that, in β, the elements of B2 appear to the left of the elements
of B1. Therefore, any choice of j, k satisfying 1 ≤ j < k − 1 ≤ n− 1 determines the permutation

π = nn(n− 1)(n− 1) . . . (k+ 1)(k+ 1) k(k− 1) . . . (j + 1) 12 . . . j k(k− 1) . . . (j + 1) 12 . . . j (14)

This leaves
(
n−1
2

)
permutations in this case.

If B1 = ∅ (that is, j = k), π is uniquely determined by the values i, j such that 1 ≤ i ≤ j ≤ n, leaving(
n+1
2

)
permutations.

If |B1| = 1 (that is, B1 = {j + 1} = {k}), there are no restrictions on the position of this entry in β.
Thus, π is determined by the values i, k such that 1 ≤ i < k ≤ n, and the choice of the position of the
entry k in β, for which we have |β| = i choices. This leaves∑

1≤i<k≤n

i =

(
n+ 1

3

)
(15)

permutations.
Adding up the three cases, we obtain

cn(1132, 2213, 2311) =

(
n− 1

2

)
+

(
n+ 1

2

)
+

(
n+ 1

3

)
=

n3 + 6n2 − 7n+ 6

6
.

We note that Lemmas 3.4 and 3.6 imply that Cn(1132, 2213, 2311) = Cn(1132, 2113, 2311).
The next lemma will be useful in some of the upcoming proofs. Since avoidance of 221 is equivalent

to avoidance of 211, we have Cn(221, 2133) = Cn(211, 2133).
Lemma 3.17. For all n ≥ 1, permutations π ∈ Cn(221, 2133) are those of the form

π = 1122 . . . ii (i+ 1)(i+ 2) . . . n (i+ 1)(i+ 2) . . . n

for some 0 ≤ i < n. In particular, |Cn(221, 2133)| = n.

Proof: Viewing π ∈ Cn as a nonnesting matching, avoidance of 221 is equivalent to the labels of the arcs
being increasing from left to right, similarly to the proof of Theorem 2.1. Additionally, for any three arcs
labeled a1 < a2 < a3 from left to right, if the arcs a1 and a2 cross each other, then the arc a3 must cross
both of them; otherwise τ would contain the subsequence a2a1a3a3, which is an occurrence of 2133. This
forces π to have the stated form, and it is clear that such a permutation avoids 2133.

Theorem 3.18. For all n ≥ 1, we have cn(1332, 2133, 2311) = 2n2 − 3n+ 2.

Proof: We decompose π ∈ Cn(1332, 2133, 2311) as in Lemma 3.8. Avoidance of 2311 implies that α is
weakly decreasing. Avoidance of 2133 implies avoidance of 2113 by Lemma 3.4, which forces α > γ.
Since π avoids 1332, β2γ must avoid 221, and since β2 has no repeated entries, τ := 1β21γ avoids 221
as well. By Lemma 3.17,

τ = 1122 . . . ii (i+ 1)(i+ 2) . . . j (i+ 1)(i+ 2) . . . j (16)
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for some 0 ≤ i < j ≤ n.
If |B1| ≥ 2, avoidance of 2311 requires that i = 0, and that, in β, the elements of B2 appear to the left

of those in B1. Thus, we get the same
(
n−1
2

)
permutations as in equation (14).

If B1 = ∅, we have π = nn(n−1)(n−1) . . . (j+1)(j+1) τ , with τ as in equation (16), giving
(
n+1
2

)
permutations.

If |B1| = 1, we must have B1 = {j+1}, and α = nn(n−1)(n−1) . . . (j+2)(j+2) (j+1). For any
1 ≤ i < j ≤ n − 1 in equation (16), we can insert the other copy of j + 1 in between the two 1s, giving(
n−1
2

)
permutations. If i = 0 in equation (16), we have τ = 12 . . . j 12 . . . j for some 1 ≤ j ≤ n− 1, and

we can insert the entry j + 1 in j possible positions, giving
∑n−1

j=1 j =
(
n
2

)
permutations.

Adding up all the cases, we get

cn(1332, 2133, 2311) =

(
n− 1

2

)
+

(
n+ 1

2

)
+

(
n− 1

2

)
+

(
n

2

)
= 2n2 − 3n+ 2.

Theorem 3.19. For all n ≥ 2, we have cn(1132, 2133, 2311) = n2 + n− 2.

Proof: We claim that Cn(1132, 2133, 2311) = Cn(1132, 2213, 2311) ∩ Cn(1332, 2133, 2311), the sets
from Theorems 3.16 and 3.18. For the inclusion to the right, note that avoidance of 1132 implies avoidance
of 1332 by Lemma 3.4. By the same lemma, avoidance of 2133 implies avoidance of 2113, which then
implies avoidance of 2213 by Lemma 3.6, using the fact that π avoids 2311. Inclusion to the left is trivial.

We will follow the proof of Theorem 3.16 and count only permutations that avoid 2133. In the case
|B1| ≥ 2, the

(
n−1
2

)
permutations from equation (14) avoid 2133.

If B1 = ∅, avoidance of 2133 requires that either i = 1, giving n permutations (one for each 1 ≤ j ≤
n), or that 2 ≤ i = j ≤ n, giving n− 1 permutations.

If |B1| = 1, avoidance of 2133 requires that either i = 1, giving n − 1 permutations (one for each
1 < k ≤ n), or that 2 ≤ i = k − 1, giving

∑n−1
i=2 i =

(
n
2

)
− 1 permutations, assuming that n ≥ 2, by

changing equation (15) accordingly.
In total, we have

cn(1132, 2133, 2311) =

(
n− 1

2

)
+ n+ (n− 1) + (n− 1) +

(
n

2

)
− 1 = n2 + n− 2.

Theorem 3.20. For all n ≥ 1, we have cn(1322, 2133, 2311) = n2.

Proof: Let us show that Cn(1322, 2133, 2311) = Cn(1332, 2133, 2311) ∩ Cn(1322, 2213, 2231), which
are the sets from Theorems 3.18 and 3.15. Indeed, avoidance of 1322 implies avoidance of 1332 by
Lemma 3.4. On the other hand, avoidance of 2133 and 2311 implies avoidance of 2113 and 2331 by
Lemma 3.4, which imply avoidance of 2213 and 2231 by Lemma 3.6. Inclusion to the left is straightfor-
ward.

Let us follow the proof of Theorem 3.18 and count only permutations that also avoid 1322. In the cases
|B1| ≥ 2 and B1 = ∅, the same

(
n−1
2

)
+
(
n+1
2

)
permutations avoid 1322. In the case |B1| = 1, avoidance
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of 1322 requires i = 0, and inserting the entry j + 1 in the rightmost available position (i.e., as the last
entry of β), giving n− 1 permutations (one for each 1 ≤ j ≤ n− 1).

In total, we have

cn(1332, 2133, 2311) =

(
n− 1

2

)
+

(
n+ 1

2

)
+ n− 1 = n2.

The next two theorems consider subsets of Cn(1223, 1332, 3112), the third set in Theorem 3.3(e). Nei-
ther of these subsets is contained in the other.

Theorem 3.21. For all n ≥ 1, we have cn(1233, 1322, 3122) = Cn+1 − 1.

Proof: By taking the reverse-complement, we have cn(1233, 1322, 3122) = cn(1123, 2213, 2231). We
will enumerate permutations π ∈ Cn(1123, 2213, 2231) by decomposing them as in Lemma 3.8. As in
the proof of Theorem 3.14, avoidance of 2213 implies that α > γ, and avoidance of 2231 implies that
αβ1 avoids 112. The only difference is that now the third avoided pattern is 1123 instead of 1132, so now
γ has to be weakly decreasing instead of weakly increasing. We can write β2 = j(j − 1) . . . (j − i + 2)
and γ = j(j − 1) . . . (j − i + 2) (j − i + 1)(j − i + 1)(j − i)(j − i) . . . 22 for some 1 ≤ i ≤ j ≤ n.
These are the only restrictions on α, β1, β2 and γ, in the sense that they guarantee that π avoids the three
patterns 1123, 2213, 2231.

Thus, if we take the complement of β2γ, by replacing each entry b ∈ {2, 3, . . . , j} with j + 2− b, and
keep all the other entries unchanged, the decomposition of the resulting permutation π′ satisfies precisely
the restrictions given in the proof of Theorem 3.14 when characterizing permutations that avoid 1132,
2213 and 2231. Thus, the map π 7→ π′ is a bijection from Cn(1123, 2213, 2231) to Cn(1132, 2213, 2231).
In particular, by Theorem 3.14, we have

cn(1123, 2213, 2231) = cn(1132, 2213, 2231) = Cn+1 − 1.

Theorem 3.22. For all n ≥ 2, we have

cn(1123, 1132, 3312) =
7n2 − 17n+ 14

2
.

Proof: Let Λ = {1123, 1132, 3312} and let n ≥ 3. We decompose π ∈ Cn(Λ) as in Lemma 3.8.
Avoidance of 1123 and 1132 implies that |Set(γ)| ≤ 1.

Consider the first the case |Set(γ)| = 1. Avoidance of 3312 implies that Set(γ) = {n}. Since π avoids
1123 and ends with n, the permutation π′ obtained from π by removing the two copies of n must avoid
112. Since π also avoids 3312, Lemma 3.17 implies that

π′ = (n− 1)(n− 2) . . . (i+ 1) (n− 1)(n− 2) . . . (i+ 1) ii(i− 1)(i− 1) . . . 11

for some 0 ≤ i ≤ n − 2. If i = 0, then there are n possible positions for the first copy of n, namely
immediately before the second copy of j for any 1 ≤ j ≤ n, giving n permutations. For each 1 ≤ i ≤
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n − 2, there are two possible positions for the first copy of n, namely immediately before or after the
second 1, giving 2(n− 2) permutations.

Suppose now that γ = ε. If A = ∅, then π = β1β1, where β, after subtracting 1 from each entry, is
an arbitrary permutation in Sn−1(123, 132, 312). Since there are n − 1 such permutations (Simion and
Schmidt, 1985, Prop. 16 and 16∗), this gives n − 1 possibilities for π. If A ̸= ∅, avoidance of 3312
requires that A < B1. Now avoidance of 1132 implies that |B1| ≤ 1. We consider two cases.

If B1 = ∅, then π = α11, where st(α) is an arbitrary permutation in Cn−1(Λ). Thus, there are cn−1(Λ)
permutations of this form.

If |B1| = 1, the condition A < B1 implies that B1 = {n}, and so β = n. In this case, if α′ is
the permutation obtained by removing the copy of n from α, then st(α′) is an arbitrary permutation in
Cn−2(112, 3312). Indeed, α′ must avoid 112 because π avoids 1123, and one can check that if α′ avoids
112 and 3312, then π avoids the three patterns in Λ. By Lemma 3.17,

α′ = (n− 1)(n− 2) . . . (i+ 1) (n− 1)(n− 2) . . . (i+ 1) ii(i− 1)(i− 1) . . . 22

for some 1 ≤ i ≤ n− 2. If i = 1, then the first copy of n can be inserted in n− 1 positions in α′, namely
immediately before of the second copy of j for any 2 ≤ j ≤ n− 1, or at the end. If 2 ≤ i ≤ n− 2, then
the first copy of n can be inserted two positions, namely immediately before or after the second 2, giving
2(n− 3) permutations.

Combining all the cases, we get the recurrence

cn(Λ) = n+ 2(n− 2) + (n− 1) + cn−1(Λ) + (n− 1) + 2(n− 3) = cn−1(Λ) + 7n− 12.

Using the initial condition c2(Λ) = 4, we deduce the stated formula for cn(Λ).

In the next seven theorems, we consider subsets of Cn(1223, 2331, 3112), the fourth set in Theo-
rem 3.3(e). Figure 4 shows the containment relationships between these sets.

Cn(1223, 2331, 3112) 3.3(e)

Cn(1223, 2231, 3112) 3.23

Cn(1123, 2311, 3112) 3.24 Cn(1123, 2331, 3312) 3.26 Cn(1223, 2231, 3312) 3.28

Cn(1123, 2311, 3122) 3.25 Cn(1123, 2311, 3312) 3.27 Cn(1123, 2231, 3312) 3.29

Fig. 4: The subsets of Cn(1223, 2331, 3112) enumerated in this section.

Theorem 3.23. For all n ≥ 1, we have cn(1223, 2231, 3112) = Cn+1 − 1.

Proof: We decompose π ∈ Cn(1223, 2231, 3112) as in Lemma 3.8. Avoidance of 3112 implies that α <
γ. Let k ∈ [n] be such that Set(α) = {2, 3, . . . , k} and Set(γ) = {k + 1, k + 2, . . . , n}. Since π avoids
2231, αβ1 must avoid 112, and since π avoids 1223, β2γ must avoid 112 as well. Thus, the underlying
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permutations of αβ1 and β2γ are decreasing, which implies that β1 and β2 are decreasing, since β1

consists of only right copies of entries, and β2 consists of only left copies. Additionally, avoidance of
2231 forces β2 to be to the left of β1; otherwise, if b1 ∈ B1 appears to the left of b2 ∈ B2 within β, the
subsequence b1b1b21 (where the first copy of b1 is in α) would be an occurrence of 2231.

If β2 = ε, then α1β1 is an arbitrary permutation in Ck(112), and st(γ) is an arbitrary permutation in
Cn−k(112). Thus, by Theorem 2.1, there are

n∑
k=1

CkCn−k = Cn+1 − Cn

possibilities for π in this case.
If β2 ̸= ε, then avoidance of 2231, together with the fact that α < β, forces A = ∅. In this case, we

have
π = k(k − 1) . . . 1β2 k(k − 1) . . . 1 γ,

where st(1β21γ) is an arbitrary permutation in Cn−k+1 whose underlying permutation is 1(k + 1)k . . . 2
and does not start with 11. Indeed, st(1β21γ) has these properties because β2γ has a decreasing un-
derlying permutation, and β2 ̸= ε. Additionally, these properties guarantee that π avoids the patterns
1223, 2231, 3112. Since the number of permutations in Cn−k+1 with a given underlying permutation is
Cn−k+1 and the number of those that start with 11 is Cn−k, the total number of possibilities for π in this
case is

n−1∑
k=1

(Cn−k+1 − Cn−k) = Cn − C1.

Adding up both cases, we obtain

cn(1223, 2231, 3112) = (Cn+1 − Cn) + (Cn − C1) = Cn+1 − 1.

Theorem 3.24. For all n ≥ 2, we have

cn(1123, 2311, 3112) =
n3 + 3n2 + 8n− 12

6
.

Proof: Let n ≥ 2, and decompose π ∈ Cn(1123, 2311, 3112) as in Lemma 3.8. Avoidance of 1123 and
2311 forces γ and α to be weakly decreasing, respectively. Avoidance of 3112 requires α < γ.

If B2 = ∅, we must have

π = jj(j−1)(j−1) . . . (i+1)(i+1) i(i−1) . . . 1 i(i−1) . . . 1nn(n−1)(n−1) . . . (j+1)(j+1) (17)

for some 1 ≤ i ≤ j ≤ n, giving
(
n+1
2

)
permutations.

If |B2| = 1, Lemma 3.8, along with the fact that α < γ and γ is weakly decreasing, imply that
B2 = {n}. In this case, π has a form similar to equation (17), with 1 ≤ i ≤ j ≤ n − 1, but where the
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first n is instead inserted in β (i.e., between the two copies of 1), in one of the i available positions. The
number of permutations of this form is ∑

1≤i≤j≤n−1

i =

(
n+ 1

3

)
. (18)

Finally, consider the case |B2| ≥ 2. Avoidance of 2311 forces C = ∅, and avoidance of 1123 forces
A = ∅. Therefore,

π = i(i− 1) . . . 1n(n− 1) . . . 1n(n− 1) . . . (i+ 1) (19)

for some 1 ≤ i ≤ n− 2, giving n− 2 permutations.
Adding up the three cases,

cn(1123, 2311, 3112) =

(
n+ 1

2

)
+

(
n+ 1

3

)
+ n− 2 =

n3 + 3n2 + 8n− 12

6
.

Theorem 3.25. For all n ≥ 2, we have cn(1123, 2311, 3122) = n2 + n− 2.

Proof: Since π avoids 3122, it also avoids 3112 by Lemma 3.4. It follows that Cn(1123, 2311, 3122) ⊆
Cn(1123, 2311, 3112), the set that we enumerated in Theorem 3.24. In the proof of this theorem, the only
case where π may contain the pattern 3122 is when B2 = {n}. In this case, we must have j = n − 1 in
order to avoid 3122. Therefore, equation (18) becomes

n−1∑
i=1

i =

(
n

2

)
,

and adding up the three cases, we now get

cn(1123, 2311, 3122) =

(
n+ 1

2

)
+

(
n

2

)
+ n− 2 = n2 + n− 2.

Theorem 3.26. For all n ≥ 1, we have cn(1123, 2331, 3312) = 2n2 − 3n+ 2.

Proof: We decompose π ∈ Cn(1123, 2331, 3312) as in Lemma 3.8. Avoidance of 1123 forces γ to be
weakly decreasing. By Lemma 3.4, avoidance of 3312 implies avoidance of 3112, which requires α < γ.

Since π avoids 2331, αβ1 avoids 122, and so does τ := α1β11. Since τ also avoids 3312, Lemma 3.17
applied to the reversal of τ implies that

τ = j(j − 1) . . . (i+ 1) j(j − 1) . . . (i+ 1) ii(i− 1)(i− 1) . . . 11 (20)

for some 0 ≤ i < j ≤ n.
If B2 = ∅, then γ = nn(n − 1)(n − 1) . . . (j + 1)(j + 1), and any choice of 0 ≤ i < j ≤ n gives a

valid π, producing
(
n+1
2

)
permutations.
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If |B2| = 1, then B2 = {n} and γ = n (n − 1)(n − 1) . . . (j + 1)(j + 1). If i = 0, then τ = j(j −
1) . . . 1 j(j − 1) . . . 1, and we can insert the other n in any of the j positions in β, giving

∑n−1
j=1 j =

(
n
2

)
possibilities for π. If i ≥ 1 (that is, B1 = ∅), then the other n is the only entry in β, so we get

(
n−1
2

)
possibilities, one for each choice of 1 ≤ i < j ≤ n− 1.

Finally, if |B2| ≥ 2, avoidance of 1123 implies that A = ∅ and that, in β, the elements of B2 are to the
left of those of B1. It follows that

π = j(j−1) . . . 1n(n−1) . . . (k+1) j(j−1) . . . 1n(n−1) . . . (k+1) kk(k−1)(k−1) . . . (j+1)(j+1)

for some 1 ≤ j ≤ k ≤ n− 2, giving
(
n−1
2

)
permutations.

Adding up all the cases,

cn(1123, 2331, 3312) =

(
n+ 1

2

)
+

(
n

2

)
+

(
n− 1

2

)
+

(
n− 1

2

)
= 2n2 − 3n+ 2.

Theorem 3.27. For all n ≥ 2, we have

cn(1123, 2311, 3312) =
n2 + 7n− 10

2
.

Proof: We have that Cn(1123, 2311, 3312) = Cn(1123, 2311, 3112) ∩ Cn(1123, 2331, 3312), the sets
from Theorems 3.24 and 3.26. Indeed, by Lemma 3.4, avoidance of 3312 implies avoidance of 3112, and
avoidance of 2311 implies avoidance of 2331. Inclusion to the left is trivial.

Let us follow the proof of Theorem 3.24 and count only permutations that avoid 3312. If B2 = ∅,
the permutation in equation (17) avoids 3312 only if 1 = i ≤ j ≤ n, giving n permutations, or if
2 ≤ i = j ≤ n, giving n − 1 permutations. If B2 = {n}, the copy of n in β can be inserted in one
position if 1 = i ≤ j ≤ n − 1, giving n − 1 permutations, and in i positions if 2 ≤ i = j ≤ n, giving∑n−1

i=2 i =
(
n
2

)
− 1 permutations. If |B2| ≥ 2, all n− 2 permutation in equation (19) avoid 3312.

Adding up the three cases,

cn(1123, 2311, 3312) = n+ (n− 1) + (n− 1) +

(
n

2

)
− 1 + (n− 2) =

n2 + 7n− 10

2
.

Theorem 3.28. For all n ≥ 1, we have

cn(1223, 2231, 3312) =
n3 + 2n

3
.

Proof: We have Cn(1223, 2231, 3312) ⊆ Cn(1223, 2231, 3112) by Lemma 3.4. As in the proof of Theo-
rem 3.23, decomposing π ∈ Cn(1223, 2231, 3312) as in Lemma 3.8, we have α < γ, and the elements of
β2 are to the left of those of β1. Thus, we can write π = α1β2β11γ.
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Since π avoids 2231, αβ1 avoids 112, and so the word τ1 := α1β11 is a nonnesting permutation that
avoids 112 and 3312. By Lemma 3.17 applied to the reversal of τ1, we have

τ1 = j(j − 1) . . . (i+ 1) j(j − 1) . . . (i+ 1) ii(i− 1)(i− 1) . . . 11

for some 0 ≤ i < j ≤ n. On the other hand, the word τ2 := β2γ, after standardizing (by subtracting
j from each entry), is also a nonnesting permutation that avoids 112 (since π avoids 1223) and 3312, so
again we must have

τ2 = n(n− 1) . . . (k + 1)n(n− 1) . . . (k + 1) kk(k − 1)(k − 1) . . . (j + 1)(j + 1)

for some j ≤ k ≤ n.
Now let us analyze how τ1 and τ2 can overlap with each other. If i = 0, the above conditions imply

that

π = j(j − 1) . . . 1n(n− 1) . . . (ℓ+ 1) j(j − 1) . . . 1

ℓ(ℓ− 1) . . . (k + 1)n(n− 1) . . . (k + 1) kk(k − 1)(k − 1) . . . (j + 1)(j + 1),

for some 1 ≤ j ≤ k ≤ ℓ ≤ n. However, to avoid double-counting, we do not count the case when
k = n− 1 and ℓ = n, since, for any given j ∈ [n− 1], such indices would produce the same permutation
π as when k = ℓ = n. This gives

(
n+2
3

)
− (n− 1) different permutations.

If i ≥ 1, then avoidance of 2231 forces π = τ1τ2. In this case, we get a permutation for each choice of
indices 1 ≤ i < j ≤ k ≤ n, but again, to avoid double-counting, we do not allow k = n− 1. This gives(
n+1
3

)
−
(
n−1
2

)
different permutations.

Adding the two cases,

cn(1223, 2231, 3312) =

(
n+ 2

3

)
− (n− 1) +

(
n+ 1

3

)
−
(
n− 1

2

)
=

n3 + 2n

3
.

Theorem 3.29. For all n ≥ 1, we have cn(1123, 2231, 3312) = n2.

Proof: We have that Cn(1123, 2231, 3312) = Cn(1123, 2331, 3312) ∩ Cn(1223, 2231, 3312), the sets
from Theorems 3.26 and 3.28. This is because, by Lemma 3.4, avoidance of 2231 implies avoidance of
2331, and avoidance of 1123 implies avoidance of 1223.

Let us follow the proof of Theorem 3.26 and consider only permutations that avoid 2231. In the cases
B2 = ∅ and |B2| ≥ 2, all

(
n+1
2

)
+
(
n−1
2

)
permutations in that proof avoid 2231.

In the case B2 = {n}, if i = 0, then n has to be inserted in the first position of β in order for π to avoid
2231, giving n− 1 permutations coming from the choices of 1 ≤ j ≤ n− 1 in equation (20). If i ≥ 1, all
permutations contain 2231, so we do not count them here.

Adding up all the cases,

cn(1123, 2231, 3312) =

(
n+ 1

2

)
+

(
n− 1

2

)
+ n− 1 = n2.
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The last result in this subsection concerns a set of nonnesting permutations avoiding two patterns.
Despite the simple formula, the proof is a more technical than the above ones. We define a grand Dyck
word of length 2n to be a sequence of n us and n ds with no other restrictions. It is well know that the
the number of grand Dyck words of length 2n is

(
2n
n

)
, and that its generating function is

∑
n≥0

(
2n
n

)
=

1√
1−4x

.

Theorem 3.30. For all n ≥ 1, we have

cn(1322, 2231) =

(
2n

n

)
− 2n−1.

Proof: We decompose π ∈ Cn(1322, 2231) as in Lemma 3.8. Since π avoids 1322, β2γ avoids 211, so its
underlying permutation is increasing. Similarly, since π avoids 2231, αβ1 avoids 112, so its underlying
permutation is decreasing. It follows that β2 is increasing and β1 is decreasing.

Let us show that β = β2β1, that is the elements in B2 are to the left of the elements of B1 in β. Suppose
for contradiction that b1 ∈ B1 and b2 ∈ B2 and that b1 is to the left of b2 within β. Then β contains the
subsequence b11b1b21b2. If b1 < b2, then b1b1b21 is an occurrence of 2231, and if b1 > b2, then 1b1b2b2
is an occurrence of 1322, which is a contradiction in both cases.

If A ∪ C = ∅, we have π = β11β2β11β2, and π is determined by which elements from {2, 3, . . . , n}
are in B1, giving 2n−1 permutations if n ≥ 1. The corresponding ordinary generating function is

1 +
∑
n≥1

2n−1xn =
1− x

1− 2x
. (21)

Suppose now that A ∪ C ̸= ∅, and let us show that B < A ∪ C. Indeed, if there were elements b ∈ B
and a ∈ A such that a < b, then aab1 would an occurrence of 2231. Similarly, if there was a c ∈ C such
that c < b, then 1bcc would an occurrence of 1322. Let us assume that the smallest element in A ∪ C is
in A; the case where it is in C is symmetric.

Since π avoids 1322, for each c ∈ C, all the elements of α larger than c must come before those
smaller than c. Similarly, since π avoids 2231, for each a ∈ A, all the elements of γ smaller than a
must come before those larger than a. This means that we have disjoint unions A = A1 ⊔ A2 ⊔ . . . and
C = C1 ⊔ C2 ⊔ . . . where the Ai and Ci are nonempty intervals (i.e., sets of consecutive integers) such
that

B < A1 < C1 < A2 < C2 < . . . , (22)

all the elements of Ai+1 appear to the left of those of Ai, and all the elements of Ci appear to the left of
those of Ci+1, for all i.

Denoting the restriction of π to the elements in each Ai by π|Ai
, the word st(π|Ai

) is an arbitrary
nonnesting permutation avoiding 112, so it can be encoded as a Dyck word by replacing the first copy
of each entry with a u and the second copy with a d. Denote this word by w(π|Ai). Similarly, st(π|Ci)
forms an arbitrary nonnesting permutation avoiding 211, which can be encoded as a Dyck word w(π|Ci).
It follows that the restriction of π to A ∪ C can be encoded as a grand Dyck word

. . . w(π|C2
)r w(π|A2

)w(π|C1
)r w(π|A1

), (23)

that is, for each of the sets Ai and Ci in the opposite order from equation (22) and we consider their
associated Dyck words, reversing the ones coming from the sets Ci. Viewing words as lattice paths with
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steps u = (1, 1) and d = (1,−1) starting at the origin, the reversed Dyck words correspond to portions of
the path below the x-axis.

If β = ε, we can recover π uniquely from the above grand Dyck word, which has length 2(n − 1).
However, to deal with arbitrary β, we have to modify the last portion w(π|A1) of the above word, to
take into account how the elements of A1 and B1 may be interleaved. Let a = minA1, which is the
rightmost entry of π|A1

, and write B1 = BL
1 ⊔ BR

1 , where BL
1 (resp. BR

1 ) are the elements whose first
copy appears before (resp. after) the second copy of a. Note that BL

1 > BR
1 , since β1 is decreasing,

and that BL
1 > B2, since otherwise π would contain 1322 (with a playing the role of 3). Therefore,

BR
1 ∪ B2 = {2, 3, . . . , k + 1} for some 0 ≤ k ≤ n − 2. Note also that, in γ, the elements of B2 must

appear to the left of the elements of C, since otherwise, any c ∈ C to the left of b2 ∈ B2 would create a
subsequence aacb2, which is an occurrence of 2231.

The restriction of π to A1 ∪ BL
1 ∪ {1}, after standardizing, is a nonnesting permutation avoiding 112,

which can be encoded as a Dyck word w(π|A1∪BL
1 ∪{1}). However, this is not an arbitrary Dyck word,

but rather one with the property that the rightmost u (which corresponds to the first copy of 1) is preceded
by a d (which corresponds to the second copy of a). Given a Dyck word with this property, we not only
can recover st(π|A1∪BL

1 ∪{1}), by we also know that |BL
1 | + 1 is precisely the number of ds after the last

u. Dyck words whose rightmost u is preceded by a d, by turning this pair du into ud, are in bijection with
Dyck words ending in dd. Let w′(π|A1∪BL

1 ∪{1}) be the Dyck word obtained after this transformation.
Replacing w(π|A1) with w′(π|A1∪BL

1 ∪{1}) on the right of equation (23), we obtain a grand Dyck word
ending with dd. Denote this word by g(π).

The remaining piece of information needed to determine π is which elements of {2, 3, . . . , k + 1}
belong to B2, since the rest must belong to BR

1 .
The map π 7→ (g(π), B2) is a bijection from permutations π ∈ Cn(1322, 2231) where the smallest

element of A ∪ C is in A, to pairs consisting of a grand Dyck word g(π) of semilength n − k (for
some 0 ≤ k ≤ n − 2) ending with dd, and a subset B2 ⊆ {2, 3, . . . , k + 1}. For permutations π ∈
Cn(1322, 2231) where the smallest element of A ∪ C is in C, a symmetric construction produces a pair
(g(π), B1), where the Dyck word g(π) ends with uu, and B1 ⊆ {2, 3, . . . , k + 1}.

The generating function for grand Dyck words ending with dd or uu, or equivalently, nonempty grand
Dyck words not ending with ud or du, is

1√
1− 4x

− 1− 2x√
1− 4x

.

On the other hand, the generating function for subsets of {2, 3, . . . , k + 1} is 1
1−2x .

Multiplying these and adding equation (21), we deduce that

∑
n≥0

cn(1322, 2231)x
n =

(
1− 2x√
1− 4x

− 1

)
1

1− 2x
+

1− x

1− 2x
=

1√
1− 4x

− x

1− 2x
,

and so, extracting coefficients,

cn(1322, 2231) =

(
2n

n

)
− 2n−1.
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As an example of the construction in the proof of Theorem 3.30, let

π = 17 16 17 16 15 15 12 11 10 12 9 8 11 7 10 5 4 1 2 3 6 9 8 7 5 4 1 2 3 6 13 14 13 14 ∈ C17(1322, 2231),

which has A2 = {15, 16, 17}, C1 = {13, 14}, A1 = {10, 11, 12}, BL
1 = {7, 8, 9}, BR

1 = {4, 5},
B2 = {2, 3, 6}, and k = 5. Then w(π|A2

) = uuddud, w(π|C1
)r = dduu,

w(π|A1∪BL
1 ∪{1}) = w(12 11 10 12 9 8 11 7 10 1 9 8 7 1) = uuuduudududddd,

and w′(π|A1∪BL
1 ∪{1}) = uuuduuduuddddd. Concatenating these words, we get

g(π) = uuddud dduu uuuduuduuddddd.

3.3 Patterns with non-adjacent repeated letters
In this subsection we consider sets of patterns of length 4 that include patterns with repeated letters in
non-adjacent positions. For the sets we consider, the number of nonnesting permutations avoiding them
is still given by nice formulas.

Theorem 3.31. For all n ≥ 2, we have cn(1132, 3112, 3121) = 5 · 3n−2 − 1.

Proof: Let Λ = {1132, 3112, 3121}, and decompose π ∈ Cn(Λ) as in Lemma 3.8. Avoidance of 1132
requires γ to be weakly increasing, avoidance of 3112 requires α < γ, and avoidance of 3121 requires
α ≤ β, so in particular |B1| ≤ 1. By Lemma 3.8, the entries in B2 form an increasing sequence in both β
and γ, and γ consists of the elements of B2 followed by the elements of C, each of which is duplicated.
In particular, π ends with n if and only if γ ̸= ε. Let cn = cn(Λ), and let rn denote the number of
permutations in Cn(Λ) that end with an n, so that cn − rn is the number of those that do not.

Let us first focus on permutations that do not end with an n, namely those with γ = ε, and suppose
that n ≥ 2. If β = ε, these are permutations of the form π = α11, where st(α) is an arbitrary element of
Cn−1(Λ). If β ̸= ε, then the condition α ≤ β and the nonnesting property implies that π = α1n1, where
st(αn) is an arbitrary element of Cn−1(Λ) ending with its largest entry. It follows that

cn − rn = cn−1 + rn−1. (24)

Now consider permutations in Cn(Λ) that end with an n, and suppose that n ≥ 3. If C ̸= ∅, these
permutations end in fact with nn, and removing this pair of entries yields an arbitrary permutation in
Cn−1(Λ), so these are counted by cn−1. Suppose now that C = ∅, which requires B2 ̸= ∅ for the
permutation to end with n. Consider two cases depending on the cardinality of A, with subcases depending
on whether |B1| equals 0 or 1.

• Case A ̸= ∅. We must have |B2| ≤ 1 in this case; otherwise, taking i, i′ ∈ B2 with i < i′, the
subsequence 22i′i, where i′ is an entry in β and i is an entry in γ, would be an occurrence of 1132.
Combined with the above conditions, this forces B2 = {n}.

If |B1| = 0, we must have π = α1n1n, where st(α) is an arbitrary element of Cn−2(Λ), giving
cn−2 permutations.

If |B1| = 1, we must have B1 = {n − 1}, where n − 1 is also the largest entry in α, and so
π = α1(n− 1)n1n, where st(α(n− 1)) is an arbitrary element of Cn−2(Λ) ending with its largest
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entry. Indeed, if this word avoids 1132, 3112 and 3121, then so does π. This subcase contributes
rn−2 permutations, except when n = 3, in which case the resulting permutation π = 212313 has
A = ∅, so it will be counted in the next case instead.

• Case A = ∅. If |B1| = 0, the only possibility is π = 12 . . . n123 . . . n.

If |B1| = 1, we must have B1 = {2} and B2 = {3, 4, . . . , n}. If n ≥ 4, avoidance of 1132 requires
that 2 appears at the end of β; otherwise π would contain the subsequence 22n3, where n is an
entry in β and 3 is an entry in γ. This forces π = 21 34 . . . n 21 34 . . . n, except when n = 3, where
we get the additional permutation π = 21 23 1 3 which was not counted in the previous case.

Combining both cases for permutations ending with an n, we obtain

rn = cn−1 + cn−2 + rn−2 + 2 (25)

for n ≥ 3.
Adding equations (24) and (25), and then using the equality rn−1+rn−2 = cn−1−cn−2, which follows

from equation (24) with the index shifted by one, we obtain the recurrence

cn = 2cn−1 + rn−1 + cn−2 + rn−2 + 2 = 3cn−1 + 2

for n ≥ 3. From this recurrence, along with the initial condition c2 = 4, we can prove the formula
cn = 5 · 3n−2 − 1 by induction.

Theorem 3.32. For all n ≥ 1, we have cn(1231, 1321, 2132, 2312, 3123, 3213) = n!Fn.

Proof: Let Λ = {1231, 1321, 2132, 2312, 3123, 3213}. Patterns in Λ are precisely those of the form ijki,
where ijk ∈ S3. It follows that π ∈ Cn(Λ) if and only every arc in its associated matching connects
adjacent entries, or entries having only one entry in between.

Let an be the number of such matchings of [2n]. Such a matching either has an arc (2n−1, 2n), giving
rise to a matching of [2n− 2] on the remaining vertices, or it has arcs (2n− 3, 2n− 1) and (2n− 2, 2n),
giving rise to a matching of [2n − 4]. Therefore, an = an−1 + an−2, with initial conditions a1 = 1 and
a2 = 2, implying that an = Fn.

Each matching can be labeled in n! ways to form a permutation in Cn(Λ), proving the stated formula.

Our last two results are proved using exponential and ordinary generating functions, respectively.

Theorem 3.33. The exponential generating function for nonnesting permutations that avoid {1231, 1321}
is ∑

n≥0

cn(1231, 1321)
xn

n!
=

2

3− e2x

Proof: Let Λ = {1231, 1321}. We will find a differential equation satisfied by A(x) =
∑

n≥0 cn(Λ)
xn

n! .
The coefficient of xn

n! in the derivative A′(x) counts permutations π ∈ Cn+1(Λ). As in Lemma 3.8, such
permutations can be written as π = α1β1γ, where β has no repeated entries, and Set(α) ∩ Set(γ) = ∅.
Additionally, β is either empty or has length 1, since two distinct values in β would create an occurrence
of 1231 or 1321.



36 Sergi Elizalde, Amya Luo

If β = ε, then the standardized words st(α) and st(γ) are arbitrary Λ-avoiding nonnesting permuta-
tions.

If β = b for some b ∈ {2, 3, . . . , n + 1}, and the other copy of b appears in α, then st(αb) and st(γ)
are again arbitrary Λ-avoiding nonnesting permutations (with the caveat that st(αb) is nonempty). If the
other copy of b appears in γ, the same is true for st(α) and st(bγ).

It follows that π ∈ Cn+1(Λ) equals one of the following:

(1) α11γ, where st(α) ∈ Ck(Λ) and st(γ) ∈ Cn−k(Λ) for some 0 ≤ k ≤ n,

(2) α1b1γ, where st(αb) ∈ Ck(Λ) and st(γ) ∈ Cn−k(Λ) for some 1 ≤ k ≤ n,

(3) α1b1γ, where st(bγ) ∈ Ck(Λ) and st(α) ∈ Cn−k(Λ) for some 1 ≤ k ≤ n.

Summing over n ≥ 0, case (1) contributes A(x)2 to the exponential generating function, since Set(α)
and Set(γ) form an arbitrary ordered partition of {2, 3, . . . , n + 1} into two nonempty sets, see e.g.
(Stanley, 1999, Prop. 5.1.1). Each of the cases (2) and (3) contributes (A(x)− 1)A(x) because one of the
blocks is nonempty. This gives the differential equation

A′(x) = A(x)2 + 2(A(x)− 1)A(x) = 3A(x)2 − 2A(x),

with initial condition A(0) = 1. Solving this equation, we deduce that A(x) = 2
3−e2x .

Theorem 3.34. The ordinary generating function for nonnesting permutations that avoid {1231, 1321,
2113} is ∑

n≥0

cn(1231, 1321, 2113)x
n =

1 + 2x−
√
1− 8x+ 4x2

6x
.

Proof: Let Λ = {1231, 1321, 2113}. Decomposing permutations π ∈ Cn+1(Λ) as in the proof of Theo-
rem 3.33, the additional condition of avoiding 2113 requires α > γ. Thus, Set(γ) = {2, 3, . . . , k + 1}
and Set(α) = {k+2, k+3, . . . , n+1} for some 0 ≤ k ≤ n, which makes the use of ordinary generating
functions suitable in this case.

Letting B(x) =
∑

n≥0 cn(Λ)x
n, the same three cases as in the proof of Theorem 3.33, plus the empty

permutation, give the equation

B(x) = 1 + xB(x)2 + 2x(B(x)− 1)B(x).

Solving for B(x), we obtain the stated expression for the generating function.

4 Further research
In a preprint version of this article, we proposed the open problem of finding a formula for the number of
noncrossing permutations avoiding a single pattern in S3. This problem has recently been solved for the
pattern 132 in Archer and Laudone (2025). The question remains open for the pattern 123, as it does in
the noncrossing case studied in Archer et al. (2019).

Problem 1. Find an expression for cn(123).
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The values of cn(123) for 1 ≤ n ≤ 8 are 1, 4, 17, 82, 406, 2070, 10729, 56394, . . . . This sequence does
not appear in the Online Encyclopedia of Integer Sequences OEIS Foundation Inc. (2023) at the time of
writing this paper.

For nonnesting permutations avoiding sets of patterns of length 4, we have presented some results in
Section 3, but there are many other sets to be considered. In Table 4 we list some cases that seem to give
interesting enumeration sequences. All the conjectures have been checked for n up to 8.

Λ Conjecture for cn(Λ) OEIS code

{1322} 1

n

n−1∑
k=0

(
3n

k

)(
2n− k − 2

n− 1

)
A007297

{1132, 2213}
OGF:

(1− x)2 −
√
(1− x)4 − 4x(1− x)2

2x
A006319{1233, 1322}

{1132, 3312} 3n − 3 · 2n−1 + 1 A168583

{1231, 1312, 2231, 3221} OGF:
1− 3x+ 2x2

(1− 3x)(1− x− x2)
A099159

Tab. 4: Some conjectures on the enumeration of nonnesting permutations avoiding other patterns.

We also note that for some of the sets of patterns in Table 3 we arrived at the same enumeration
formulas, such as Cn+1−1, using different proof methods. It would be interesting to find direct bijections
explaining these Wilf equivalences. In the same vein, we wonder if there is a simple bijective proof of
Theorem 2.6, namely, a bijection between Cn(132, 213) and pairs of Fibonacci objects of the same size.

Tables 1, 2 and 3 show that some of the enumeration sequences of pattern-avoiding nonnesting per-
mutations are constant, others are polynomials, others grow exponentially, and others grow factorially. It
would be interesting to understand the possible asymptotic behaviors of these sequences, the nature of
their generating functions, and how these are determined by the properties of the avoided patterns.

Finally, in Elizalde (2024), it is shown that the polynomial enumerating all nonnesting permutations
with respect to the number of descents has an unexpectedly simple factorization, and that its coefficients
are palindromic. This suggests the study of the distribution of the number of descents on pattern-avoiding
nonnesting permutations. Combining (Elizalde, 2024, Thm. 2.6) with our Lemma 3.1, we obtain similar
factorizations for the descent polynomials of nonnesting permutations avoiding patterns of the form ijjk.
Specifically, denoting the number of descents by des(α1 . . . αk) = |{i : αi > αi+1}| and the Narayana
polynomials by Nn(t) =

∑n−1
d=0

1
n

(
n
d

)(
n

d+1

)
td, we have the following refinement of Lemma 3.2.

Theorem 4.1. Let Σ ⊆ S3, and let Λ = {σ1σ2σ2σ3 : σ ∈ Σ}. Then, for any n ≥ 1,∑
π∈Cn(Λ)

tdes(π) = Nn(t)
∑

π̂∈Sn(Σ)

tdes(π̂).

It follows, for example, that
∑

π∈Cn(1332)
tdes(π) = Nn(t)

2. In particular, the distribution of the number
of descents over Cn(1332) is symmetric. It is not hard to show that this distribution is also symmetric over
Cn(132, 231), Cn(121) and Cn(112). It would be interesting to determine which sets of patterns have this
property.
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