Discrete Mathematics and Theoretical Computer Science
 vol. 27:3 #17 (2025)

Low complexity binary words avoiding $(5/2)^+$ -powers

James Currie*

Narad Rampersad[†]

University of Winnipeg, Winnipeg, Canada

revisions 25th June 2025, 13th Oct. 2025; accepted 15th Oct. 2025.

Rote words are infinite words that contain 2n factors of length n for every $n \ge 1$. Shallit and Shur, as well as Ollinger and Shallit, showed that there are Rote words that avoid $(5/2)^+$ -powers and that this is best possible. In this note we give a structure theorem for the Rote words that avoid $(5/2)^+$ -powers, confirming a conjecture of Ollinger and Shallit.

Keywords: Rote word, factor complexity, $(5/2)^+$ -power, structure theorem

1 Introduction

Two central concepts in combinatorics on words are *power avoidance* and *factor complexity*. Recently, Shallit and Shur (2019) initiated the systematic investigation of the interplay between these two concepts. They examined two dual problems: 1) Given a particular power avoidance constraint, determine the range of possible factor complexities among all infinite words avoiding the specified power; and, 2) Given a class of words with specified factor complexities, determine the powers that are avoided by at least one word in this class.

A well-known classical result provides a solution for the latter problem for the class of *Sturmian words*, i.e., the class of infinite words that contain n+1 factors of length n for every $n \ge 1$: the *Fibonacci word* avoids $(5+\sqrt{5})/2$ -powers, and this is best possible among all Sturmian words (Carpi and de Luca (2000)). The Sturmian words are the aperiodic infinite words with the least possible factor complexity function; Shallit and Shur (2019) and Ollinger and Shallit (2024) studied another class of infinite words with low complexity, namely, the *Rote words*, which are the infinite words that contain 2n factors of length n for every $n \ge 1$ (Rote (1994)). Each paper gives an example of an infinite Rote word that avoids $(5/2)^+$ -powers and shows that this is best possible among all Rote words. Ollinger and Shallit end their paper by observing that the Rote words that avoid $(5/2)^+$ -powers appear to have a certain rigid structure

ISSN 1365-8050

© 2025 by the author(s)

Distributed under a Creative Commons Attribution 4.0 International License

^{*}The work of James Currie is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number DDG-2024-00005].

[†]The work of Narad Rampersad is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2019-04111].

reminiscent of the famous structure theorem of Restivo and Salemi (1985) for the class of overlap-free words. In this note we obtain the precise structure theorem.

To state our first structure theorem, we introduce *proper words* and *antiproper words*, which are ternary words.

Definition 1. For $u \in \Sigma_3^*$, denote the Parikh vector of u by $\pi(u)$ so that $\pi(u) = [|u|_0, |u|_1, |u|_2]$. For $x, y \in \Sigma_3^*$, we say that $\pi(x) > \pi(y)$ if:

- 1. We have $|x|_i \geq |y|_i$ for all $i \in \Sigma_3$.
- 2. For at least one $i \in \Sigma_3$ we have $|x|_i > |y|_i$.

Call a word $u \in \Sigma_3^*$ proper if:

- 1. Word u has no factor xyxyx where $\pi(x) > \pi(y)$.
- 2. None of the words 00, 11, 22, 20, 10101, 2121, or 10210210 is a factor of u.

Call a word $u \in \Sigma_3^{\omega}$ proper if all of its finite factors are proper.

Call a word $u \in \Sigma_3^*$ antiproper if its reverse u^R is proper. Call a word $\boldsymbol{u} \in \Sigma_3^{\omega}$ antiproper if all of its finite factors are antiproper.

Proper words obey a structure theorem similar to that of Restivo and Salemi, as do antiproper words. We introduce a morphism $f: \Sigma_3^* \to \Sigma_3^*$ and its reverse $h: \Sigma_3^* \to \Sigma_3^*$, given by:

$$f(0) = 0121$$
 $h(0) = 1210$
 $f(1) = 021$ $h(1) = 120$
 $f(2) = 01$ $h(2) = 10$.

Theorem 1. (First Structure Theorem)

- 1. Let $\mathbf{u} \in \Sigma_3^{\omega}$ be proper. Then a final segment of \mathbf{u} has the form $f(\mathbf{v})$ for some proper $\mathbf{v} \in \Sigma_3^{\omega}$.
- 2. Let $\mathbf{u} \in \Sigma_3^{\omega}$ be antiproper. Then a final segment of \mathbf{u} has the form $h(\mathbf{v})$ for some antiproper $\mathbf{v} \in \Sigma_3^{\omega}$.

For our second structure theorem we consider the length-4 factors of a Rote word.

Definition 2. Let F be the set

$$F = \{0110, 1001, 0011, 1100, 0010, 0100, 1101, 1010\}.$$

Let $g: \Sigma_3^* \to \Sigma_2^*$ be the morphism given by

$$g(0) = 011$$

 $g(1) = 0$
 $g(2) = 01$.

We denote the complement of a binary word w by \overline{w} ; thus $\overline{1101} = 0010$. We extend this notation to binary languages in the usual way. We denote the reversal of a word w by w^R ; thus $1101^R = 1011$. We extend this notation to languages in the usual way.

We can now characterize the structure of Rote words that avoid $(5/2)^+$ -powers.

Theorem 2. (Second Structure Theorem) Let \mathbf{w} be a Rote word that avoids $(5/2)^+$ -powers. There are four cases:

- 1. The set of length-4 factors of \mathbf{w} is F. For every positive integer n, a final segment of \mathbf{w} has the form $g(f^n(\mathbf{u}))$ for some proper $\mathbf{u} \in \Sigma_3^{\omega}$.
- 2. The set of length-4 factors of \mathbf{w} is \bar{F} . For every positive integer n, a final segment of \mathbf{w} has the form $\overline{g(f^n(\mathbf{u}))}$ for some proper $\mathbf{u} \in \Sigma_3^{\omega}$.
- 3. The set of length-4 factors of \mathbf{w} is F^R . For every positive integer n, a final segment of \mathbf{w} has the form $g(h^n(\mathbf{u}))$ for some proper $\mathbf{u} \in \Sigma_3^{\omega}$.
- 4. The set of length-4 factors of \mathbf{w} is $\overline{F^R}$. For every positive integer n, a final segment of \mathbf{w} has the form $\overline{g(h^n(\mathbf{u}))}$ for some proper $\mathbf{u} \in \Sigma_3^{\omega}$.

2 Preliminaries

For a positive integer n, let $\Sigma_n = \{0, 1, \dots, n-1\}$ and let Σ_n^* denote the set of all finite words over Σ_n . By a binary word we mean a (finite or infinite) word over Σ_2 . Let w be a word and write w = xyz. Then the word x is a *prefix* of w, the word y is a *factor* of w, and the word z is a *suffix* of w. A map $f: \Sigma_m^* \to \Sigma_n^*$ is a *morphism* if f(xy) = f(x)f(y) for all x and y.

Let w have length ℓ and smallest period p. The *exponent of* w is the quantity $k = \ell/p$ and w is called a k-power. A k^+ -power is a word with exponent > k. A 2-power is a *square* and a 2^+ -power is an *overlap*. A word w avoids k-powers (resp. k^+ -powers) if none of its factors are k'-powers for any k' >= k (resp. k' > k); we also say that w is k-power-free (resp. k^+ -power-free).

Let x be an infinite word. The factor complexity of x is the function of n that associates each length n with the number of factors of x of length n. A Sturmian word is any infinite word with factor complexity n+1; a Rote word is any infinite word with factor complexity 2n.

Recently the morphisms f and g have proved useful in several constructions (Currie et al. (2023); Dvořáková et al. (2024); Ollinger and Shallit (2024)). Dvořáková et al. (2024) showed that $g(f^{\omega}(0))$ avoids $(5/2)^+$ -powers, while Ollinger and Shallit (2024) showed that the factor complexity of this word is 2n (i.e., that it is a Rote word). The latter authors conjectured that there is a structure theorem involving f and g for the class of $(5/2)^+$ -power-free Rote words.

A prototypical structure theorem of this type was obtained by Restivo and Salemi (1985) for the class of binary overlap-free words. (See also Fife (1980); Shur (1996); Shallit (2011).) In this case, the structure is specified using the Thue–Morse morphism

$$\mu(0) = 01$$

 $\mu(1) = 10.$

Restivo and Salemi showed the following:

Theorem 3. Let $\mathbf{w} \in \Sigma_2^{\omega}$ be overlap-free. Then a final segment of \mathbf{w} has the form $\mu(\mathbf{u})$ where \mathbf{u} is overlap-free.

Karhumäki and Shallit (2004) later showed that the same structure theorem holds for the class of binary $(7/3)^+$ -power-free words. In this note we establish a similar structure theorem for the class of $(5/2)^+$ -power-free Rote words in terms of the morphisms f and g given above. The reader may also compare the present structure theorem with the main result of Currie et al. (2020–2021), which establishes a structure theorem for the class of infinite 14/5-power-free binary rich words (rich means that every factor of length n contains n distinct non-empty palindromes), and which also involves a sub-family of Rote words, namely the complementary symmetric Rote words.

3 Obtaining the structure theorem

Lemma 1. Let \mathbf{w} be an infinite binary word which avoids $\frac{5}{2}^+$ powers. Then both of the words 0110 and 1001 are factors of \mathbf{w} .

Proof: A backtrack search shows that the longest $\frac{5}{2}^+$ power free binary word not containing 0110 has length 14. Thus 0110 (and symmetrically, 1001) is a factor of \boldsymbol{w} .

Lemma 2. Let **w** be an infinite binary word which avoids $\frac{5}{2}$ powers. At least 3 of the words in

$$C = \{0010, 0100, 1011, 1101\}$$

are factors of w.

Proof: Six backtrack searches (one for each pair) show that the longest $\frac{5}{2}^+$ power free binary word omitting a pair of these factors has length 44.

Lemma 3. Let \mathbf{w} be an infinite binary word with factor complexity at most 2n, which avoids $\frac{5}{2}^+$ powers. Both of 0011 and 1100 are factors of \mathbf{w} .

Proof: Consider the set of seven binary words

```
A = \{0010, 0100, 0101, 1010, 1011, 1101, 1100\}.
```

For each word $a \in A$, a backtrack search shows that the longest $\frac{5}{2}^+$ power free binary word containing neither of a and 0011 as a factor has length no more than 31.

It follows that if 0011 is not a factor of \boldsymbol{w} , then \boldsymbol{w} contains the seven words of A as length 4 factors. By Lemma 1, it also contains 0110 and 1001 as factors. However, now \boldsymbol{w} contains 9 factors of length 4, contradicting the fact that its factor complexity is at most 2n.

We conclude that 0011 (and symmetrically, 1100) is a factor of \boldsymbol{w} .

Lemma 4. Let \boldsymbol{w} be an infinite binary word with factor complexity at most 2n, which avoids $\frac{5}{2}^+$ powers. At least one of 0101 and 1010 is a factor of \boldsymbol{w} .

Proof: Consider the set D containing 17 binary words of length 9 given by

For each word $d \in D$, a backtrack search shows that the longest $\frac{5}{2}^+$ power free binary word containing none of d, 0101, and 1010 as a factor has length no more than 88. It follows that if neither of 0101 and 1010 is a factor of \boldsymbol{w} , then every word of D is a factor. However, this would imply that \boldsymbol{w} contained 17 factors of length 8, contradicting the fact that its factor complexity is at most 2n. We conclude that at least one of 0101 and 1010 is a factor of \boldsymbol{w} .

Theorem 4. Let \boldsymbol{w} be an infinite binary word with factor complexity at most 2n, which avoids $\frac{5}{2}^+$ powers. Up to binary complement and/or reversal, the set of length 4 factors of \boldsymbol{w} is

$$\{0110, 1001, 0011, 1100, 0010, 0100, 1101, 1010\}.$$

Proof: By Lemma 1, the set of length 4 factors includes 0110 and 1001. By Lemma 3, the set of length 4 factors includes 0011 and 1100. Combining Lemmas 2 and 4 with the fact that \boldsymbol{w} has at most 8 length 4 factors, the set of length 4 factors contains exactly 3 words from $C = \{0100, 0010, 1011, 1101\}$ and exactly one word from $\{0101, 1010\}$. Since each word of C maps to each of the others under complement and/or reversal, assume without loss of generality that the 3 words from C are 0010, 0100, and 1101. Thus \boldsymbol{w} does not contain the factor 1011.

A backtrack search shows that the longest $\frac{5}{2}^+$ power free binary word not containing 1011 or 1010 as a factor has length 20. We conclude that \boldsymbol{w} contains the factor 1010, so that set of length 4 factors of \boldsymbol{w} is

$$\{0110, 1001, 0011, 1100, 0010, 0100, 1101, 1010\}.$$

Lemma 5. Suppose that $u \in \Sigma_3^*$, $w \in \Sigma_2^*$, and $g : \Sigma_3^* \to \Sigma_2^*$ is a non-erasing morphism. If g(u) = w, and w avoids $\frac{5}{2}^+$ powers, then u has no factor xyxyx where $\pi(x) > \pi(y)$.

Proof: Suppose u has a factor xyxyx where $\pi(x) > \pi(y)$. Then |g(x)| > |g(y)|, and w contains the $\frac{5}{2}^+$ power g(x)g(y)g(x)g(y)g(x).

Lemma 6. Suppose that $u, v \in \Sigma_3^*$, and $f: \Sigma_3^* \to \Sigma_3^*$ is a non-erasing morphism. If f(v) = u, and u has no factor xyxyx where $\pi(x) > \pi(y)$, then v has no factor xyxyx where $\pi(X) > \pi(Y)$.

Proof: Suppose v has a factor XYXYX where $\pi(X) > \pi(Y)$. Let x = f(X) and y = f(Y). Then $\pi(x) > \pi(y)$, and u contains the factor xyxyx.

Lemma 7. Let \boldsymbol{w} be an infinite binary word which avoids $\frac{5}{2}^+$ powers. Suppose that the set of length 4 factors of \boldsymbol{w} is

$$F = \{0110, 1001, 0011, 1100, 0010, 0100, 1101, 1010\}.$$

Then a final segment of \boldsymbol{w} has the form $g(\boldsymbol{u})$ for some proper $\boldsymbol{u} \in \Sigma_3^{\omega}$.

Proof: Since 111 is not a factor of \boldsymbol{w} , any final segment of \boldsymbol{w} beginning with 0 has the form $g(\boldsymbol{u})$ for some $\boldsymbol{u} \in \Sigma_3^{\omega}$. We will show, replacing \boldsymbol{u} by one of its final segments if necessary, that \boldsymbol{u} is proper.

The fact that \boldsymbol{u} has no factor xyxyx where $\pi(x) > \pi(y)$ follows from Lemma 5.

We conclude by showing that none of the words 00, 11, 22, 20, 10101, 2121, or 10210210 is a factor of \boldsymbol{u} :

Word 00: If 00 is a factor of \boldsymbol{u} , then \boldsymbol{w} contains the factor g(00) = 011011. However, then \boldsymbol{w} contains 1011, which is not in F.

Word 11: If 11 is a factor of \boldsymbol{u} , then 11a is a factor of \boldsymbol{u} for some $a \in \Sigma_3$. Then \boldsymbol{w} contains the factor g(11a), which starts with g(1)g(1)0 = 000, a $\frac{5}{2}^+$ power.

Word 22: If 22 is a factor of \boldsymbol{u} , then \boldsymbol{w} contains the factor $g(22) = 0101 \notin F$.

Word 20: If 20 is a factor of u, then w contains the factor q(20) = 01011, which starts with $0101 \notin F$.

Word 10101: If 10101 is not a factor of \boldsymbol{u} more than once, replace \boldsymbol{u} by one of its final segments not containing 10101.

On the other hand, if 10101 is a factor of \boldsymbol{u} more than once, then a10101b is a factor of \boldsymbol{u} for some $a,b\in\Sigma_3$. Since 11 is not a factor of \boldsymbol{u} , we can in fact specify that $a\in\Sigma_3-\{1\}$. This implies that 1 is the last letter of g(a). Also, 0 is the first letter of g(b). Then \boldsymbol{w} contains the factor g(a10101b), which contains 1g(10101)0=10011001100, a $\frac{5}{2}^+$ power.

Word 2121: If 2121 is a factor of \boldsymbol{u} , then 2121a is a factor of \boldsymbol{u} for some $a \in \Sigma_3 - \{1\}$. Thus 01 is a prefix of g(a), and \boldsymbol{w} contains the factor g(2121)01 = 01001001, a $\frac{5}{2}^+$ power.

Word 10210210: If 10210210 is a factor of \boldsymbol{u} , then \boldsymbol{w} contains the factor

$$g(10210210) = 0011010011010011,$$

a $\frac{5}{2}^+$ power.

We can now prove Theorem 1:

Proof of Theorem 1: Assume without loss of generality, replacing \boldsymbol{u} by a final segment if necessary, that \boldsymbol{u} starts with the letter 0. Write \boldsymbol{u} as a concatenation of 0-blocks, i.e., words which start with 0, and contain the letter 0 exactly once. Since \boldsymbol{u} is proper, it does not contain a factor 00 or 20. It follows that its 0-blocks end with 1. Since every occurrence of 2 in a proper word can only be followed by a 1, \boldsymbol{u} cannot contain the factor 212; otherwise it would contain the forbidden factor 2121. We conclude that the 0-blocks of \boldsymbol{u} are among 01, 021 and 0121. Notice that the last two of these words are always followed by a 0 in \boldsymbol{u} . We thus conclude that a final segment of \boldsymbol{u} has the form $f(\boldsymbol{v})$ for some $\boldsymbol{v} \in \Sigma_3^\omega$. We will show, replacing \boldsymbol{v} by one of its final segments if necessary, that \boldsymbol{v} is proper.

The fact that \boldsymbol{v} has no factor xyxyx where $\pi(x) > \pi(y)$ follows from Lemma 6.

We conclude by showing that a final segment of v contains none of the words 22, 20, 00, 11, 10101, 2121, or 10210210 as a factor:

Word 22: If 22 is not a factor of v more than once, then replace v by one of its final segments not containing 22. Otherwise, 22 is a factor of v more than once, so that u contains a factor 1f(22) = 10101. This is impossible, since u is proper.

Word 20: If 20 is not a factor of \boldsymbol{v} more than once, then replace \boldsymbol{v} by one of its final segments not containing 20. Otherwise, 20 is a factor of \boldsymbol{v} more than once, so that \boldsymbol{u} contains a factor 1f(20) = 1010121, which starts with 10101. This is impossible, since \boldsymbol{u} is proper.

Word 00: Suppose that 00 is a factor of \boldsymbol{v} . If 000 is a factor of \boldsymbol{v} , then f(000) = 012101210121 is a factor of \boldsymbol{u} . However 012101210121 = xyxyx where x = 0121, $y = \epsilon$, and cannot be a factor of \boldsymbol{u} . It follows that 000 is not a factor of \boldsymbol{v} .

If 00 is not a factor of \boldsymbol{v} more than once, then replace \boldsymbol{v} by one of its final segments not containing 00. Otherwise, 00 is a factor of \boldsymbol{v} more than once, so that 100a is a factor of \boldsymbol{v} for some $a \in \Sigma_3$. Since f(a) starts with 0, this implies that \boldsymbol{u} has a factor f(100a), starting with 021012101210. This contains the word xyxyx where x = 210, y = 1, which is impossible, since \boldsymbol{u} is proper.

Word 11: If 11 is not a factor of v more than once, then replace v by one of its final segments not containing 11. Otherwise, 11 is a factor of v more than once, so that u contains a factor 1f(11)0 = 10210210, which is impossible, since u is proper.

Word 10101: If 10101 is not a factor of \boldsymbol{v} more than once, then replace \boldsymbol{v} by one of its final segments not containing 10101. Otherwise, 10101 is a factor of \boldsymbol{v} more than once, so that \boldsymbol{u} contains a factor 1f(10101)0 = 1021012102101210210 = xyxyx, where x = 10210 and y = 12. This is impossible, since \boldsymbol{u} is proper.

Word 2121: If 2121 is not a factor of \boldsymbol{v} more than once, then replace \boldsymbol{v} by one of its final segments not containing 2121. Otherwise, 2121 is a factor of \boldsymbol{v} more than once. Since 22 is not a factor of \boldsymbol{v} , a2121b is a factor of \boldsymbol{v} for some $a,b\in\Sigma_3$ where $a\neq 2$. Then f(a) ends in 21 and f(b) begins with 0. Thus \boldsymbol{u} contains the factor 21f(2121)0=2101021010210=xyxyx where x=210, and y=10, which is impossible, since \boldsymbol{u} is proper.

Word 10210210: If 10210210 is a factor of \boldsymbol{v} , then \boldsymbol{u} contains the factor

$$f(10210210) = 0210121010210121010210121 = xyxyx$$

where x = 0210121, and y = 01, which is impossible, since **u** is proper.

The proof for antiproper words is the same, *mutatis mutandi*.

We can now prove Theorem 2:

Proof of Theorem 2: The first case follows from Theorem 1 and Lemma 7 by induction. The other cases follow, *mutatis mutandi*.

As an example of the third case of the theorem, Shallit and Shur (2019) consider a word $\tau(\mathbf{G})$, where $\tau: \Sigma_3^* \to \Sigma_2^*$ is the morphism given by

$$\tau(0) = 0$$

$$\tau(1) = 01$$

$$\tau(2) = 011$$

and **G** is the fixed point of θ , where $\theta: \Sigma_3^* \to \Sigma_3^*$ is the morphism given by

$$\theta(0) = 01$$

 $\theta(1) = 2$
 $\theta(2) = 02$.

Letting σ be the permutation $0 \to 1 \to 2 \to 0$, one checks that $\tau = g\sigma$ and $\theta^2 = \sigma^{-1}h\sigma$. It follows that

$$\begin{split} \tau(\mathbf{G}) &= \tau(\theta^{2n}(\theta^{\omega}(0))) \\ &= g\sigma((\sigma^{-1}h\sigma)^{n-1}(\sigma^{-1}h\sigma(\theta^{\omega}(0))) \\ &= gh^{n-1}(\boldsymbol{u})), \end{split}$$

where $\mathbf{u} = h(\sigma(\theta^{\omega}(0)))$, which is antiproper.

Many open problems remain concerning the relationship between low factor complexity and avoidable powers. Moving to a ternary alphabet, Shallit and Shur (2019) showed that the word

```
\mathbf{G} = 0120201020120102012 \cdots
```

has critical exponent $2.4808627\cdots$ and factor complexity 2n+1 for all $n\geq 1$. They conjectured that this exponent is minimal among all infinite ternary words with complexity 2n+1. This conjecture was recently confirmed by Currie (2025). It would thus be natural to explore the possibility of a structure theorem for this class of words.

4 Appendix: Python code and output

The backtrack searches mentioned in the paper run quickly in Python. Here is our code and its output:

```
def fhpf(w): #Word w is 5/2+ power suffix free
   p=1
   while (5*p<2*len(w)):
        if (w[(-(p+1)//2)-p:]==w[(-(p+1)//2)-2*p:-p]):
            return(False)
        p=p+1
    return (True)
def good(w): # Word w has no suffix which is a 5/2+ power, or is in the
             # set Factors.
    for f in Factors:
        k=len(f)
        if ((len(w) >= k) and(w[-k:] == f)):
            return(False)
    return(fhpf(w))
def search(target): # This returns the lexicographically least word not
                    \# containing a 5/2+ power or a word in the set Factors
   w=''
   Max=0
   while (len(w) <=target):
        if (good(w)):
            Max=max(Max, len(w))
```

```
if (len(w) ==target):
                return(w)
            w+='0'
        else:
            while((len(w)>0) and (w[-1]=='1')):
               w=w[:-1]
            if(len(w) ==0):
                print('Longest 5/2+-power-free word with no factor in ',Factors,'
                    has length ', Max)
                return()
            c = chr(ord(w[-1]) + 1)
            w=w[:-1]
            w+=c
    return()
# Lemma 1
print('=======')
print('Computations for Lemma 1')
print(' ')
Factors=['0110']
search(200)
# Lemma 2
print(' ')
print('=======')
print('Computations for Lemma 2')
print('')
C=['0010','0100','1011','1101']
for i in range(4):
    for j in range(i,4):
        Factors=[C[i]]
        Factors.append(C[j])
        search(200)
# Lemma 3
print(' ')
print('========')
print('Computations for Lemma 3')
print(' ')
A=['0010','0100','0101','1010','1011','1101','1100']
for j in A:
    Factors=['0011']
    Factors.append(j)
    search(200)
# Lemma 4
```

```
print(' ')
print('======')
print('Computations for Lemma 4')
print(' ')
D=['00100110','01001100','10011001','00110010',
 for j in D:
      Factors=['0101','1010']
      Factors.append(j)
      search(200)
# Theorem 4
print(' ')
print('=======')
print ('Computations for Theorem 4')
print(' ')
Factors=['1011','1010']
search(200)
______
Computations for Lemma 1
Longest 5/2+-power-free word with no factor in ['0110'] has length 14
Computations for Lemma 2
Longest 5/2+-power-free word with no factor in ['0010', '0100'] has length 44
Longest 5/2+-power-free word with no factor in ['0010', '1011'] has length 28
Longest 5/2+-power-free word with no factor in ['0010', '1101'] has length 13
Longest 5/2+-power-free word with no factor in ['0100', '1011'] has length 13
Longest 5/2+-power-free word with no factor in ['0100', '1101'] has length 28 Longest 5/2+-power-free word with no factor in ['1011', '1101'] has length 44
Computations for Lemma 3
Longest 5/2+-power-free word with no factor in ['0011', '0010'] has length 15 Longest 5/2+-power-free word with no factor in ['0011', '0100'] has length 31 Longest 5/2+-power-free word with no factor in ['0011', '0101'] has length 12
Longest 5/2+-power-free word with no factor in ['0011', '1010'] has length 18
Longest 5/2+-power-free word with no factor in ['0011', '1011'] has length 15 Longest 5/2+-power-free word with no factor in ['0011', '1101'] has length 31 Longest 5/2+-power-free word with no factor in ['0011', '1100'] has length 30
Computations for Lemma 4
```

```
Longest 5/2+-power-free word with no factor in ['0101', '1010', '00100110']
                                                                                     has length
                                                    ['0101', '1010', '01001100']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                    ['0101', '1010', '10011001']
Longest 5/2+-power-free word with no factor in
                                                                                                  3.3
                                                                                     has length
                                                    ['0101', '1010', '00110010']
['0101', '1010', '01100100']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  50
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  24
                                                    ['0101', '1010', ['0101', '1010',
                                                                      '11001001'1
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                      '10010011']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  24
                                                    ['0101', '1010', '00110011']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  52
                                                    ['0101', '1010',
                                                                      '01100110']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                    ['0101', '1010',
                                                                      '11001101'i
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  50
                                                    ['0101', '1010', '10011011']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  2.4
                                                    ['0101', '1010', ['0101', '1010',
                                                                      '00110110']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  2.4
                                                                      '01101100'1
                                                                                     has length
Longest 5/2+-power-free word with no factor in
                                                    ['0101', '1010', '11011001']
['0101', '1010', '10110010']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  2.4
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                  8.8
                                                    ['0101', '1010', '10110011']
['0101', '1010', '11001100']
Longest 5/2+-power-free word with no factor in
                                                                                     has length
                                                                                                 50
Longest 5/2+-power-free word with no factor in
                                                                                    has length
Computations for Theorem 4
Longest 5/2+-power-free word with no factor in ['1011', '1010'] has length 20
```

References

- A. Carpi and A. de Luca. Special factors, periodicity, and an application to Sturmian words. *Acta Informatica*, 36:983–1006, 2000.
- J. Currie, L. Mol, and N. Rampersad. The repetition threshold for binary rich words. *Discrete Math. Theor. Comput. Sci.*, 22, 2020–2021. Paper No. 6.
- J. Currie, P. Ochem, N. Rampersad, and J. Shallit. Properties of a ternary infinite word. *RAIRO-Theor. Inf. Appl.*, 57(1), 2023.
- J. D. Currie. Words with factor complexity 2n+1 and minimal critical exponent. https://arxiv.org/abs/2507.09387v2, 2025.
- L. Dvořáková, K. Medková, and E. Pelantová. Complementary symmetric Rote sequences: the critical exponent and the recurrence function. *Discrete Math. Theor. Comput. Sci.*, 22, 2020–2021. Paper No. 10.
- L. Dvořáková, P. Ochem, and D. Opočenská. Critical exponent of binary words with few distinct palindromes. *The Electronic Journal of Combinatorics*, 31(2), 2024. #P2.29.
- E. D. Fife. Binary sequences which contain no BBb. Trans. Amer. Math. Soc., 261:115-136, 1980.
- J. Karhumäki and J. Shallit. Polynomial versus exponential growth in repetition-free binary words. *J. Combinatorial Theory Ser. A*, 105:335–340, 2004.
- N. Ollinger and J. Shallit. The repetition threshold for Rote sequences. https://arxiv.org/abs/ 2406.17867, 2024.

- A. Restivo and S. Salemi. Overlap-free words on two symbols. In M. Nivat and D. Perrin, editors, Automata on Infinite Words, volume 192 of Lecture Notes in Computer Science, pages 198–200. Springer, 1985
- G. Rote. Sequences with subword complexity 2n. J. Number Theory, 46:196–213, 1994.
- J. O. Shallit. Fife's theorem revisited. In G. Mauri and A. Leporati, editors, *Developments in Language Theory*, volume 6795 of *Lecture Notes in Computer Science*. Springer, Berlin, Heidelberg, 2011.
- J. O. Shallit and A. M. Shur. Subword complexity and power avoidance. *Theoret. Comput. Sci.*, 792: 96–116, 2019.
- A. M. Shur. Overlap-free words and Thue-Morse sequences. *Internat. J. Algebra Comput.*, 6:353–367, 1996.