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We present a new probabilistic proof of Otter’s asymptotic formula for the number of unlabelled trees with a given
number of vertices. We additionally prove a new approximation result, showing that the total variation distance
between random Pólya trees and random unlabelled trees tends to zero when the number of vertices tends to infinity.
In order to demonstrate that our approach is not restricted to trees we extend our results to tree-like classes of graphs.
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1 Introduction
A tree is a connected graph without cycles. Cayley’s theorem states that the number un of trees with a
given n-element vertex set satisfies

un = nn−2. (1)

Numerous proofs of this quantity are known Borchardt (1860); Moon (1967); Joyal (1981); Pitman (1999);
van der Hofstad (2017); Foata and Fuchs (1970); Addario-Berry et al. (2023). A common idea is to mark
a root vertex. This way, each tree with n vertices corresponds to precisely n rooted versions, and the
exponential generating series T (z) =

∑
n≥1

nun

n! zn of rooted trees satisfies

T (z) = z exp (T (z)) and T (1/e) = 1.

Two trees are isomorphic if there exists a bijection between their sets of vertices such that any two
vertices are adjacent if and only if their images are adjacent. If each of the trees is endowed with a root
vertex we additionally require that each root vertex is the image of the other under this bijection. This
gives rise to two different numbers of nonisomorphic or unlabelled trees with a given number n ≥ 1
of vertices: The number fn of unlabelled (unrooted) trees, also called free trees, and the number an of
unlabelled rooted trees, also called Pólya trees. Contrarily to the labelled case, different unlabelled trees
with the same number of vertices may correspond to different numbers of rooted versions. See Figure 1.
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Fig. 1: Rooted unlabelled trees with five vertices grouped according to the underlying unrooted tree.

In order to tackle such challenges, Pólya Pólya (1937) developed a general theory for counting objects
up to isomorphism. In particular, he reformulated Cayley’s functional equation for the ordinary generating
series A(z) =

∑
n≥1 anz

n to

A(z) = z exp

∑
i≥1

A(zi)/i

 .

Later, Otter Otter (1948) derived the asymptotic formula

an ∼ cAn
−3/2ρ−n (2)

for constants cA ≈ 0.439924 and ρ ≈ 0.338321, and the fact

A(ρ) = 1.

A full asymptotic expansion was derived by Genitrini Genitrini (2016) using methods of analytic com-
binatorics Flajolet and Sedgewick (2009); Flajolet and Odlyzko (1990). Otter additionally obtained the
asymptotic number of unlabelled trees. Our first contribution in the present work is to provide a new
probabilistic proof of his famous result:

Theorem 1.1 (Otter Otter (1948)). Setting cF = 2πc3A, we have as n tends to infinity

fn ∼ cFn
−5/2ρ−n. (3)

Otter’s method is based on establishing the dissymmetry equation for the ordinary generating series
F (z) =

∑
n≥1 fnz

n

F (z) = A(z)− 1

2
(A(z)2 −A(z2)),

from which the asymptotic expansion of fn may readily be deduced. Alternative proofs of the dissymme-
try equation were given by Harary Harary (1955/56) by using directly equations by Pólya Pólya (1937),
and by Bodirsky, Fusy, Kang and Vigerske Bodirsky et al. (2011) by introducing the cycle pointing
method. Another proof of Equation (3) was given in (Drmota et al., 2011, Thm. 13) using analytic



Probabilistic enumeration and equivalence of nonisomorphic trees 3

integration and singularity analysis. The proof of Theorem 1.1 we present here is based on probabilistic
methods and does not recover the dissymmetry equation.

The development of methods for asymptotically counting objects up to symmetry is of general interest
since there are clear problems in enumerative combinatorics that remain open and pose a serious chal-
lenge. A prominent example is the asymptotic enumeration of unlabelled planar graphs, that is, graphs
that may be drawn in the plane so that edges only intersect at endpoints. Liskovet and Walsh Liskovets
and Walsh (1987) formulated a program for their enumeration. Bender, Gao and Wormald Bender et al.
(2002) established the asymptotic number of labelled 2-connected planar graphs, and the asymptotic num-
ber of connected and unrestricted labelled planar graphs was then obtained in the breakthrough result by
Giménez and Noy Giménez and Noy (2009). An alternative combinatorial approach was later given by
Chapuy, Fusy, Kang and Shoilekova Chapuy et al. (2008), and a third probabilistic proof via large devia-
tion methods was given by S. Stufler (2023). Determining the asymptotic number of nonisomorphic planar
graphs with a given number of vertices however remains a major challenge that requires the development
of new methods and approaches.

Apart for enumerating combinatorial structures, we also want to understand their typical shape when
generated at random. When studying the uniform random free tree Fn with n vertices the main strategy is
to prove properties of the random n-vertex Pólya tree An instead and then transfer the results. The trivial
fact that any free tree with n vertices has at least one and at most n rooted version entails that for any set
E of free trees

P(F (An) ∈ E) an
nfn

≤ P(Fn ∈ E) ≤ P(F (An) ∈ E)an
fn

. (4)

Here F (An) denotes the unrooted tree obtained by forgetting which vertex of An is marked. Hence, the
first order asymptotics for an and fn imply that any property that holds with probability o(1/n) for F (An)
holds with probability o(1) for Fn.

This crude bound may serve in some cases for obtaining concentration inequalities for some graph
parameter, yet it is not strong enough for transferring fluctuations. A successful approach in this regard
for additive parameters is to consider multivariate generating series A(z, w1, w2, . . .) where the additional
variables mark the quantities under consideration. For example, wi could mark the number of vertices of
degree i. The strategy is then to determine equations for A(z, w) that yield a central limit theorem for
the corresponding functional of An, and transfer these equations via the dissymmetry equality to bivariate
equations for F (z, w), which by employing singularity analysis then yield the same central limit theorem
for the functional of Fn.

A minor drawback to this generating function approach is that we need to perform this transfer indi-
vidually for each functional under consideration. A more severe drawback is that sometimes this transfer
is not feasible, for example when we want to prove functional convergence of some contour function to a
limiting stochastic process, or Gromov–Hausdorff–Prokhorov convergence to a limiting random real tree.
This problem was noted for example by Haas and Miermont Haas and Miermont (2012), who established
Aldous’ Brownian tree as scaling limit of random Pólya trees, and noted that at that time the scaling limit
of unlabelled unrooted trees was still an open problem. In order to address this issue, an approach that
allows a transfer of “practically all” properties of An to Fn was presented by S. (Stufler, 2019, Thm. 1.3).
Using the mentioned method of cycle pointing Bodirsky et al. (2011) it was shown that there exists a
random tree Bn with stochastically bounded size Kn = Op(1) so that Bn is independent from (Ak)k≥1

and such that the unrooted tree An−Kn
+ Bn obtained by identifying the root vertices of An−Kn

and Bn
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satisfies
lim
n→∞

dTV(An−Kn
+ Bn,Fn) = 0.

Here dTV denotes the total variation distance. That is, for any two random variables X and Y with values
in a common measurable space it is given by

dTV(X,Y ) = sup
E

|P(X ∈ E)− P(Y ∈ E)| ,

with the index E ranging over all measurable subsets of that space. Thus, the random free tree Fn looks
like a slightly smaller random Pólya tree An−Kn , with some tree attached to its root to make up for the
missing vertices. For all practical purposes, the influence of a stochastically bounded section of a tree is
so small that it may be ignored, hence allowing the transfer of both stochastic process convergence as well
as central limit theorems for graph parameters from An to Fn.

Although for practical purposes the issue of transferring results from An to Fn has hence been resolved,
it is somewhat unsatisfactory that the statement of this approximation theorem is rather cumbersome, in
particular in light of the simpler and even stronger principle we derive in the present work:

Theorem 1.2. It holds that
lim

n→∞
dTV(F (An),Fn) = 0.

More precisely, for each 1/2 < α < 1 there exist constants c, C > 0 such that for all n ≥ 1 and all sets E

|P(F (An) ∈ E)− P(Fn ∈ E)| ≤ exp(−cn2α−1) + P(F (An) ∈ E)Cnα−1.

In other words, random Pólya trees and random free trees are asymptotically equivalent. It appears that
this fact hasn’t been noted anywhere in the literature so far and furnishes all previous transfer arguments.
We also provide extensions of this result to degree restricted free trees and tree-like classes of graphs in
Section 3.

2 Proof of main theorems
Given an n-element set V , the symmetric group S[V ] on that set operates on the set of trees U [V ] with
vertex set V in a natural way, so that σ.T is the tree obtained by relabelling its vertices according to some
permutation σ ∈ S[V ]. The orbits of this group operation correspond bijectively to the n-vertex free trees.
We let Fn denote the collection of n-vertex free trees, and set

Sym(U)[V ] = {(T, σ) | T ∈ U [V ], σ ∈ S[V ], σ.T = T}.

The elements of this set are called symmetries. The cardinality of the orbit of an element from U [V ] equals
the index of its stabilizer. Hence the function

ϕ : Sym(U)[V ] → Fn

that maps a tree T paired with one of its automorphisms σ to the corresponding free tree has the property,
that

|ϕ−1({F})| = n!
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for each free tree F ∈ Fn. This well-known fact Joyal (1981) lies at the heart of the theory of cycle index
series, and ensures that the exponential generating series

Sym(U)(z) =
∑
n≥1

1

n!
|Sym(U)[{1, . . . , n}]|zn

satisfies
Sym(U)(z) = F (z).

For each integer k ≥ 0 we let
Symk(U)[V ] ⊂ Sym(U)[V ]

denote the subset of all symmetries with precisely k fixed points. We define associated generating series
analogously.

Note that if a symmetry (T, σ) has fixed points, then any vertex on the unique path between two fixed
points is also a fixed point. Thus, the fixed points of σ form a subtree of T . Furthermore, the non-fixed
point branches attached to a fixed point v are permuted by the symmetry, obviously without fixing any
single branch. Thus, we may view v together with all its non-fixed points branches as a symmetry of a
rooted tree that only fixes the root-vertex.

It follows that

F (z) = Sym0(U)(z) + U(H(z)) (5)

with

U(z) =
∑
n≥1

nn−2

n!
zn

the exponential generating series of labelled (unrooted) trees, and

H(z) = z exp

∑
i≥2

A(zi)/i


the exponential generating series of symmetries of rooted trees that only fix the root vertex. The equation
for H(z) follows from the fact that any such symmetry induces a fixed point free permutation ν of the
branches attached to the root, which may be grouped according to the length of the corresponding cycle
of ν. For any i ≥ 2, A(zi)/i enumerates i-tuples of (isomorphic) rooted trees equipped with an automor-
phism that permutes them cyclically, see for example (Joyal, 1981, Prop. 10). Hence exp(

∑
i≥2 A(zi)/i)

counts unordered collections of such objects for all i ≥ 2, yielding the stated equation for H(z).
Since A(ρ) = 1 we know that

ρ exp

∑
i≥2

A(ρi)/i

 = 1/e,

and using T (z) = zU ′(z) we obtain
U(1/e) = 1/2.
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Let X1, X2, . . . denote independent copies of a random variable X with probability generating series

E[zX ] = ρz exp

1 +
∑
i≥2

A((ρz)i)/i

 .

Note that X has finite exponential moments. For each k ≥ 0 we set Sk =
∑k

i=1 Xi and let N denote an
independent random variable with probability generating series

E[zN ] = 2U(z/e).

This way,

[zn] (F (z)− Sym0(U)(z)) =
1

2
P(SN = n)ρ−n. (6)

By (Bloznelis, 2019, Thm. 1, (ii), (iii)) and (Hilberdink, 1996, Thm. 1.1) it follows that

P(SN = n) ∼ E[X]−1P(N = ⌊n/E[X]⌋)

as n → ∞. Hence, by Stirling’s formula

[zn] (F (z)− Sym0(U)(z)) ∼
1√
2π

E[X]3/2n−5/2ρ−n. (7)

The centre of a tree is obtained by simultaneously removing all leaves over and over again until we are
left with either an edge or a vertex. The centre is left invariant by any automorphism. Thus, a symmetry
with no fixed points must have an edge as centre, and it must transpose the ends of this edge. Thus, the
two trees attached to the ends must be isomorphic. It follows that

[zn]Sym0(U)(z) ≤ [zn]A(z2) (8)

for all n ≥ 1. Using ρ < 1 it immediately follows from (7) that

[zn]F (z) ∼ 1√
2π

E[X]3/2n−5/2ρ−n. (9)

The class A of Pólya trees may in fact be enumerated analogously. The only difference is that the class
T of rooted trees takes the place of the class U of unrooted trees, and symmetries are required to fix the
root vertex. In particular, each symmetry of A has at least one fixed point. Hence

A(z) = Sym(T )(z) = T

z exp

∑
i≥2

A(zi)/i


and

[zn]A(z) = P(SÑ = n)ρ−n



Probabilistic enumeration and equivalence of nonisomorphic trees 7

with Ñ denoting an independent random variable with probability generating function

E[zÑ ] = T (z/e).

By (Bloznelis, 2019, Thm. 1, (ii), (iii)) and (Hilberdink, 1996, Thm. 1.1) we have again

P(SÑ = n) ∼ E[X]−1P(Ñ = ⌊n/E[X]⌋)

and thus

[zn]A(z) ∼ 1√
2π

E[X]1/2n−3/2ρ−n. (10)

Hence, we recover Equations (2) and (3) with

cA =
1√
2π

E[X]1/2 and cF =
1√
2π

E[X]3/2. (11)

This concludes the proof of Theorem 1.1.
We proceed with the proof of Theorem 1.2. Let 1/2 < α < 1 be given. Our rough strategy is to bound

the probability for a symmetry’s number of fixed points to deviate more than nα from its asymptotic
expectation, and to compare probabilities for rooted and unrooted trees when the fixed points do lie in the
correct window.

The random free tree Fn may be generated by taking a uniformly selected symmetry from the set
Sym(U)[{1, . . . , n}] instead. By Equation (8) the probability for this symmetry to have no fixed points is
given by

[zn]Sym0(U)(z)
fn

= O(ρn/2).

By construction of N and SN , for any 1 ≤ k ≤ n the probability P(N = k | SN = n) is equal to the
probability to observe exactly k fixed points in a random n-sized symmetry that has been conditioned to
exhibit at least one fixed point. Thus

P(N = k | SN = n) =
[zn]Symk(U)(z)

fn − [zn]Sym0(U)(z)
.

Hence, using Equation (6), it follows that

[zn]Symk(U)(z)
fn

= P(N = k, SN = n)
1

2fnρn
.

Hence ∑
0≤k≤n

|k−n/E[X]|≥nα

[zn]Symk(U)(z)
fn

= O(ρn/2) +O(n5/2)
∑

1≤k≤n
|k−n/E[X]|≥nα

P(Sk = n).

Using Lemma 3.3 it follows that∑
0≤k≤n

|k−n/E[X]|≥nα

[zn]Symk(U)(z)
fn

≤ exp(−Θ(n2α−1)). (12)



8 Benedikt Stufler

By analogous arguments (or by combining the rough bounds (4) with Inequality (12)), a similar bound
holds for the symmetries of rooted trees:

∑
1≤k≤n

|k−n/E[X]|≥nα

[zn]Symk(T )(z)

an
≤ exp(−Θ(n2α−1)).

For Pólya trees, bounds and limits for the number of fixed points have also been carried out in previ-
ous works Panagiotou and Stufler (2018); Stufler (2018); Gittenberger et al. (2018). They may also be
expressed as component counts of a Gibbs partition in the dense regime Stufler (2024).

For any set E of n-vertex free trees we can form the corresponding set E ′ of n-vertex symmetries, and
the subset E ′′ ⊂ E ′ of these symmetries S whose number r(S) of fixed points satisfies |k−n/E[X]| < nα.
Hence

|P(F(An) ∈ E)− P(Fn ∈ E)| ≤ exp(−Θ(n2α−1)) +
∑
S∈E′′

∣∣∣∣r(S)n!an
− 1

n!fn

∣∣∣∣ .
Using the second order asymptotics Genitrini (2016) for Pólya trees we obtain

an/fn = n/E[X] +O(1), (13)

and it follows that uniformly for all S ∈ E ′′∣∣∣∣r(S)n!an
− 1

n!fn

∣∣∣∣ = r(S)

n!an
O(nα−1).

Hence

|P(F(An) ∈ E)− P(Fn ∈ E)| ≤ exp(−Θ(n2α−1)) +O(nα−1)
∑
S∈E′′

r(S)

n!an

≤ exp(−Θ(n2α−1)) +O(nα−1)P(F(An) ∈ E).

This concludes the proof of Theorem 1.2.

3 Extensions
3.1 Trees with degree restrictions
Let Ω ⊂ N = {1, 2, . . .} denote a fixed set of positive integers such that 1 ∈ Ω and k ∈ Ω for at least one
k ≥ 3. Since we already treated case with no degree restrictions, we additionally assume Ω ̸= N.

Set Ω∗ = {i − 1 | i ∈ Ω}. We would like to compare the uniform random free tree FΩ
n with vertex

degrees in Ω with the uniform random Pólya tree AΩ∗

n with vertex outdegrees in Ω∗. It is clear that AΩ∗

n is
well defined for n ≡ 1 mod gcdΩ∗ large enough, and FΩ

n is well-defined for n ≡ 2 mod gcdΩ∗ large
enough. In the following we implicitly only consider values of n where the corresponding model makes
sense.
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S. (Stufler, 2019, Thm. 1.3) proved that indeed FΩ
n admits an approximation in total variation by an

(n−Op(1))-vertex random Pólya tree with outdegrees in Ω∗ and a small tree attached to its root to reach
total vertex size n.

However, our assumption Ω ̸= N ensures that there exists an integer k0 ≥ 1 with k0 ∈ Ω∗ \ Ω. The
limiting probability for the root of AΩ∗

n to have degree k0 is positive, whereas FΩ
n by construction has no

vertex with degree k0. Thus, FΩ
n and AΩ∗

n are not asymptotically equivalent, and S. (Stufler, 2019, Thm.
1.3) already provides the best comparison.

In order to achieve an approximation in total variation we need to define a random Pólya tree ÃΩ
n whose

vertex degrees are required to lie in Ω, so that the root has outdegree in Ω and all other vertices have
outdegree in Ω∗.

Proposition 3.1. It holds that
lim
n→∞

dTV(F (ÃΩ
n ),F

Ω
n ) = 0.

For each 1/2 < α < 1 there exist constants c, C > 0 such that for all n ≥ 1 and all sets E

|P(F (ÃΩ
n ) ∈ E)− P(FΩ

n ∈ E)| ≤ exp(−cn2α−1) + P(F (ÃΩ
n ) ∈ E)Cnα−1.

Proof: Due to the strong similarity with the unrestricted case we only sketch the necessary steps. The
probability that a random FΩ-symmetry with n vertices has no fixed points is exponentially small by
analogous arguments as in the unrestricted case. The medium deviation concentration inequality for
the number of fixed points in an AΩ∗

-symmetry was already noted in Panagiotou and Stufler (2018)
and Stufler (2018). The branching process methods there may be easily adapted to get the same bound
for ÃΩ-symmetries. We use branching process methods here in order to elegantly avoid having to deal
with the restrictions imposed by vertex degrees in the fixed point subtree to the sum of the root degrees in
the attached branches. The same concentration inequality for unrooted trees then follows by using rough
bounds as in (4). Hence the rest of the proof is then fully analogous to the unrestricted case. The required
bound on the second order term in the asymptotic expansion for the number of rooted trees required
to generalize Equation (13) follows readily by transfer theorems from the known square-root singular
expansion.

The branches attached to the root of ÃΩ
n form a multiset of degree restricted Pólya trees, with the total

number constrained to lie in Ω. The distribution of the component sizes is hence a special case of an
unlabelled Gibbs partition (with all weights set to 1). Using the main result of Stufler (2020) (slightly
adapted to take into account periodicities) it follows that precisely one of the branches attached to the
root of ÃΩ

n is asymptotically macroscopic, with the rest having a stochastically bounded total size. The
distribution of the largest branch is hence that of AΩ∗

n−Kn
for some independent stochastically bounded

non-negative integer Kn. In other words, ÃΩ
n (and by Proposition 3.1 also TΩ

n ) therefore looks like an
(n−Op(1))-vertex random Pólya tree with outdegrees in Ω∗ and a small tree attached to its root to reach
total vertex size n. Thus, we recover the main result of S. (Stufler, 2019, Thm. 1.3) in a different way
without using the cycle pointing method.

3.2 Subcritical classes of graphs
The definition of a subcritical class of unlabelled graphs (Drmota et al., 2011, Def. 10) involves the
concept of cycle index series ZG of a graph class G, as well as operations such as rooted and derived
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classes of structures. The cycle index series of G is a power series in countably infinitely many variables

ZG(s1, s2, . . .) =
∑
n≥0

1

n!

∑
(G,σ)∈Sym(G)[{1,...,n}]

sσ1
1 sσ2

2 · · ·

with symmetries of graphs being defined analogously as for trees, and σi denoting the number of cycles
of length i in σ for all i ≥ 1. Likewise, for rooted graphs all symmetries are required to fix the root vertex,
and the cycle index series for classes of rooted graphs are defined accordingly. Derived graphs are rooted
graphs, except that the root-vertex is required to have a place-holder label ∗. That is, for a derived class
of graphs the symmetries on a set of vertices U are pairs (G, σ) with G a rooted graph on the vertex set
U ∪ {∗} (assuming always ∗ /∈ U ), and σ : U → U a permutation of U such that the canonical bijective
extension U ∪ {∗} → U ∪ {∗} is a graph automorphism of G. We refer the reader to Joyal (1981);
Bergeron et al. (1998) for details on the technical background of these notions.

A class of graphs G (assumed to be closed under relabelling of vertices) is called block-stable, if it
contains the graph consisting of a single vertex, and any graph lies in G if and only if all its blocks
(maximal 2-connected subgraphs) lie in G. Its subclasses of connected and 2-connected graphs are denoted
by C and G. We let C• and B′ denote the corresponding classes of vertex rooted and derived graphs. The
ordinary generating series and cycle index sums of these classes are related by

G(z) = exp

∑
i≥1

C(zi)/i

 ,

C•(z) = z exp

∑
i≥1

ZB′(C•(zi), C•(z2i, C•(z3i), . . .)/i

 .

The class is termed subcritical in the unlabelled case (Drmota et al., 2011, Def. 10), if additionally the
following conditions are met.

1. C•(z) as positive radius of convergence ρC > 0.

2. ZB′(y, C•(z2), C•(z3), . . .) is analytic at (C•(ρC), ρC).

3.
∑

i≥2 ZB′(C•(zi), C•(z2i, C•(z3i), . . .)/i has radius of convergence strictly larger than ρC .

4. ZC(0, z
2, z3, . . .) has radius of convergence strictly larger than ρC .

Subcriticality for labelled graphs is defined differently, and the relationship whether subcriticality in the
labelled case implies subcriticality in the unlabelled case or vice versa has not been investigated so far.

Subcritical classes of graphs are sometimes called tree-like, as they admit the Brownian tree as scaling
limit and therefore their global shape resembles that of a tree. This was shown for the labelled case
in Panagiotou et al. (2016), the unlabelled rooted case in Stufler (2018), and the unlabelled unrooted case
in Stufler (2021).

In the following we assume that the graph class G is subcritical in the unlabelled case. We let Cn and
C•
n denote the random unlabelled unrooted connected graph and the random unlabelled rooted connected
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graph with n vertices from the classes C and C• of unlabelled graphs. We let F (C•
n) denote the unrooted

graph obtained by forgetting which vertex is marked.
An earlier approximation result (Stufler, 2021, Thm. 1) formulated for block-weighted showed that Cn

may be approximated in total variation by an (n−Op(1))-sized random rooted graph with a small graph
attached to its root to make up for the missing number of vertices. While this is already sufficient for all
practical purposes, the following approximation result provides a more elegant comparison:

Proposition 3.2. It holds that
lim
n→∞

dTV(F (C•
n),Cn) = 0.

For each 1/2 < α < 1 there exist constants c, C > 0 such that for all n ≥ 1 and all sets E

|P(F (C•
n) ∈ E)− P(Cn ∈ E)| ≤ exp(−cn2α−1) + P(F (C•

n) ∈ E)Cnα−1.

Proof: Setting the first variable in a cycle index sum to zero means discarding all symmetries with no
fixed point, hence

Sym0(C)(z) = ZC(0, z
2, z3, . . .).

Consequently, the fourth condition in the definition of subcriticality ensures that only an exponentially
small fraction of symmetries of C have no fixed-points. Furthermore, the concentration inequality for the
number of fixed points in a symmetry of C• was already obtained in Stufler (2018) via branching process
methods. The bound on the second order term in the asymptotics for the number of rooted graphs required
to generalize Equation (13) follows readily from the square-root singular expansions given in Drmota et al.
(2011). Thus, the proof may be carried out entirely analogously as the proof of Theorem 1.2.

Appendix
The following deviation inequality may be found in most textbooks on the subject.

Lemma 3.3 (Medium deviation inequality for one-dimensional random walk). Let (Xi)i∈N be an i.i.d.
family of real-valued random variables with E[X1] = 0 and E[etX1 ] < ∞ for all t in some open interval
containing zero. Then there are constants δ, c > 0 such that for all n ∈ N, x > 0 and 0 ≤ λ ≤ δ it holds
that

P(|X1 + . . .+Xn| ≥ x) ≤ 2 exp(cnλ2 − λx).
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F. Harary. Note on the Pólya and Otter formulas for enumerating trees. Michigan Math. J., 3:109–112,
1955/56. ISSN 0026-2285. URL http://projecteuclid.org/euclid.mmj/1028990020.

T. Hilberdink. On the Taylor coefficients of the composition of two analytic functions. Ann. Acad. Sci.
Fenn., Math., 21(1):189–204, 1996. ISSN 1239-629X.
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