
Discrete Mathematics and Theoretical Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vol. 27:3 #26 (2025)

Homomorphisms of (n,m)-graphs with respect
to generalized switch
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The study of homomorphisms of (n,m)-graphs, that is, adjacency preserving vertex mappings of graphs with n types of
arcs and m types of edges was initiated by Nešetřil and Raspaud in 2000. Later, some attempts were made to generalize
the switch operation that is popularly used in the study of signed graphs, and study its effect on the above mentioned
homomorphism.

In this article, we too provide a generalization of the switch operation on (n,m)-graphs, which to the best of our knowl-
edge, encapsulates all the previously known generalizations as special cases. We approach the study of homomorphisms
with respect to the switch operation axiomatically. We prove some fundamental results that are essential tools in the
further study of this topic. In the process of proving the fundamental results, we have provided yet another solution to
an open problem posed by Klostermeyer and MacGillivray in 2004. We also prove the existence of a categorical product
for (n,m)-graphs with respect to a particular class of generalized switch which implicitly uses category theory. This is
a counter intuitive solution as the number of vertices in the Categorical product of two (n,m)-graphs on p and q vertices
has a multiple of pq many vertices, where the multiple depends on the switch. This solves an open question asked by
Brewster in the PEPS 2012 workshop as a corollary. We also provide a way to calculate the product explicitly, and
prove general properties of the product. We define the analog of chromatic number for (n,m)-graphs with respect to
generalized switch and explore the interrelations between chromatic numbers with respect to different switch operations.
We find the value of this chromatic number for the family of forests using group theoretic notions.

Keywords: colored mixed graphs, switching, homomorphisms, categorical product, chromatic number.

1 Introduction
A graph homomorphism is an edge-preserving vertex mapping of a graph G to a graph H . It is also known
as an H-coloring of G and the notion was introduced as a generalization of coloring [32]. It allows us
to unify certain important constraint satisfaction problems, especially related to scheduling and frequency
assignments, which are otherwise expressed as various coloring and labeling problems on graphs [24]. Thus,
the notion of graph homomorphism manages to capture a wide range of important applications in an uniform
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setup. When viewed as an operation on the set of all graphs, it induces rich algebraic structures: a quasi
order (and a partial order), a lattice, and a category [24].

The study of graph homomorphisms can be classified into three major branches:

(i) The study of various application-motivated optimization problems are modeled using graph homo-
morphisms. These usually involve finding an H having certain prescribed properties such that every
member of a graph family F is H-colorable [21, 23, 48, 53].

(ii) The study of the algorithmic aspects of theH-coloring problem, including characterizing its dichotomy,
and finding exact (polynomial) approximation or parameterized algorithms for the hard problems [11,
17, 19].

(iii) The study of the algebraic structures that arise from the notion of graph homomorphisms [24].

Unsurprisingly, these three areas of research have interdependencies and connections. The notion of
graph homomorphisms, initially introduced for undirected and directed graphs, later got extended to hy-
pergraphs [22, 43], 2-edge-colored graphs [1], k-edge-colored graphs [20] and (n,m)-graphs [41]. These
graphs, due to their various types of adjacencies, manage to capture complex relational structures and are
useful for mathematical modeling. For instance, the Query Evaluation Problem (QEP) in graph database
(the immensely popular databases that are now used to handle highly interrelated data in social networks
like Facebook, Twitter, etc.), is modeled on homomorphisms of (n,m)-graphs [2, 5].

From a theoretical point of view, apart from being the generalization of the well-studied graph homomor-
phisms of oriented, signed, 2-edge-colored, and k-edge-colored graphs, homomorphisms of (n,m)-graphs
are known to have connections with some topics in graph theory as well as other mathematical disciplines.
On the one hand, they relate to graph theoretic notions such as harmonious coloring [1], flows [7], and
acyclic coloring [41]. On the other hand, they also have connections with the study of Coxeter groups [1],
and binary predicate logic [41]. It is worth mentioning that in a work by Borodin, Kim, Kostochka, West [7],
the then best approximation of Jaeger’s conjecture for planar graphs was established by showing that every
planar graph with girth at least 20t−2

3 has circular chromatic number at most 2 + 1
t . However, this follows

as a corollary of the main result of the paper [7] which is a theorem on homomorphisms of (n,m)-graphs.
Thus, indeed the study of homomorphisms of (n,m)-graphs is a significant area of research. However,

as there are not many known well-structured (n,m)-graphs, the study of its homomorphisms becomes ex-
tremely difficult. In contrast, there are known well-structured oriented, and signed graphs such as the Paley
tournaments, signed Paley graphs, and Tromp constructions [31, 45]. In an other work [14], we have imple-
mented the theory from this work (related to the switch operation) to construct some well-structured (0, 3)
and (1, 1)-graphs and used them to prove upper bounds for (n,m)-chromatic number of partial 2-trees.

In recent times, researchers have started further extending the graph homomorphism studies by exploring
the effect of switch operation on homomorphisms. Notably, homomorphisms of signed graphs, which are
essentially obtained by observing the effect of the switch operation on 2-edge-colored graphs, has gained
immense popularity [36, 39, 45, 50] due to its strong connection with graph minor theory. Also, graph homo-
morphism with respect to some other switch-like operations, such as, push operation on oriented graphs [27],
cyclic switch on k-edge-colored graphs [10], and switching (n,m)-graphs with respect to Abelian groups
of special type (which does not allow switching an edge to an arc or vice versa) [12, 29] and switching
(n,m)-graphs with respect to non-Abelian group [15] to list a few, has been recently studied. Naturally, all
three main branches of research listed above in the context of graph homomorphism are also explored for
the above-mentioned extensions and variants. However, in comparison, the global algebraic structure is a
less explored branch for the extensions.
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Organization: In this article, we introduce a homomorphism with respect to a generalized switch operation
(using a group Γ) on (n,m)-graphs which, in particular, allows arcs to become edges and vice-versa. We call
it a Γ-homomorphism whose detailed definition is deferred to the next section. In particular, it is possible
to view the set of all (n,m)-graphs as a category with Γ-homomorphism playing the role of morphism.
However, in this article, we have refrained from using the language of category theory as much as possible,
and have used the language of graph theory instead.

• In Section 2 we introduce the notion of Γ-homomorphisms of (n,m)-graphs and prove some basic
results. In particular, we show that the switch operation defined by us is (strictly) more general than
the switch operation defined by Leclerc, MacGillivray, and Warren [29].

• In Section 3 we study algebraic properties of Γ-homomorphisms and explore their relation with
(n,m)-homomorphisms. In particular, we solve a generalized version of an open problem due to
Klostermeyer and MacGillivray [27]. Also, we show that the important notion of “core” is well-
defined in this setup (category).

• In Section 4 we establish the existence of a categorical product and a co-product of (n,m)-graphs
under Γ-homomorphism. Furthermore, we prove some fundamental properties of these categorical
products and co-products. Interestingly, given two (n,m)-graphs G and H of order p and q, respec-
tively, their categorical product is a graph on |Γ|pq vertices.

• In Section 5 we define and study the Γ-chromatic number for the family of forests, where the Γ-
chromatic number is defined using Γ-homomorphism. This result generalizes Theorem 1.1 of [41].

• In Section 6 we conclude our work and propose possible future directions for research on this topic.

2 Homomorphisms of (n,m)-graphs and generalized switch
Throughout this article, we follow the standard graph theoretic, algebraic and category theory notions from
West [51], Artin [4], and Jacobson [25], respectively.

An (n,m)-graph G is a graph with vertex set V (G), arc set A(G) and edge set E(G), where each arc is
colored with one of the n colors from {2, 4, . . . , 2n} and each edge is colored with one of the m colors from
{2n + 1, 2n + 2, . . . , 2n +m}. See Figure 1(a) for an example of a (2, 2)-graph. In particular, if there is
an arc of color i from u to v, we, equivalently, view it as a reverse arc from v to u of color (i − 1). In this
scenario, we say that v is an i-neighbor of u, or equivalently, u is an (i − 1)-neighbor of v. Furthermore,
if there is an edge of color j between u and v, then we say that u (resp., v) is a j-neighbor of v (resp., u).
Figure 1(b) depicts all possible types of adjacencies of the vertex u in a (2, 2)-graph. For convenience, we
use the following convention throughout this article: if u is an i-neighbor of v, then we say v is an i-neighbor
of u. In particular, i = i.

Let Γ ⊆ S2n+m, where S2n+m is the permutation group on An,m = {1, 2, . . . , 2n, 2n+1, . . . , 2n+m}.
A σ-switch at a vertex v of an (n,m)-graph is to change the incident arcs and edges of v in such a way
that its t-neighbors become σ(t)-neighbors for all t ∈ An,m where σ ∈ Γ. To Γ-switch a vertex v of an
(n,m)-graph is to apply a σ-switch on v for some σ ∈ Γ. An (n,m)-graph G′ obtained by a sequence
of Γ-switches performed on the vertices of G is a Γ-equivalent graph of G. For an example, consider the
Γ = ⟨σ⟩, a subgroup of S6 that is generated by σ =

(
1 2 3 4 5 6

)
. Figure 2 is a (1, 2)-graph G′

that is Γ-equivalent graph of G from the example shown in Figure 1(a) which is obtained after switching
the highlighted vertices using σ-switch. Notice that, the switch operation, the way it is defined, may freely
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Fig. 1: (a) An example of a (2, 2)-graph G. (b) The 2n + m = 6 possible types of adjacencies for a vertex u in a
(2, 2)-graph.

Fig. 2: A (2, 2)-graph G and its Γ-equivalent graph G′.

convert an arc (resp., reverse arc, edge) of any color to an arc, reverse arc, or an edge of any color. Thus, the
set of arcs and edges of G and G′ may differ even if G and G′ are Γ-equivalent.

In the very first work on (n,m)-graphs, Nešetřil and Raspaud [41] in 2000, extended the notion of graph
homomorphisms to homomorphisms of (n,m)-graphs(i), this generalization for particular cases implies the
study related to homomorphisms of oriented, signed and k-edge colored graphs [1, 10, 36, 39, 48, 49].

Definition 2.1. Let G and H be two (n,m)-graphs. An (n,m)-homomorphism of G to H is a vertex
mapping ϕ : V (G) → V (H) satisfying the following: for any u, v ∈ V (G), if u is a t-neighbor of v, then
f(u) is a t-neighbor of f(v) in H , where t ∈ An,m.

We now extend the Definition 2.1 to homomorphisms of (n,m)-graphs with Γ-switch.

Definition 2.2. A Γ-homomorphism of G to H is a function f : V (G) → V (H) such that there exists a
Γ-equivalent graph G′ of G satisfying the following: for any u, v ∈ V (G) = V (G′), if u is a t-neighbor of

v in G′ then f(u) is a t-neighbor of f(v) in H , where t ∈ An,m. We denote this by G Γ−→ H .

A Γ-isomorphism of G to H is a bijective Γ-homomorphism whose inverse is also a Γ-homomorphism.
We denote this by G ≡Γ H . Observe that if Γ = ⟨e⟩ is the singleton group with the identity element e, then
our Γ-homomorphism definition becomes the same as homomorphism of (n,m)-graphs.

A related work [29] on homomorphism with respect to a switch operation on (n,m)-graphs has been
studied in which, an Abelian subgroup of Sm ⊗ (S2 ≀ Sn) acts on the vertices of (n,m)-graph such that
the incident edges switch color with edges and the incident arcs switch color with arcs. Formally, let ϕ ∈
Sm, ψ ∈ Sn, and π = (p1, p2, . . . , pn) ∈ (Z2)

n, for an ordered triple γ = (ϕ, ψ, π), an LMW-switch(ii) [29]
at a vertex v is said to be the process of transforming G into an (n,m)-graph Gv,γ where edges with color
i incident to v changes to edges with color ϕ(i), arcs of color j incident to v, changes to arcs of color ψ(j)

(i) In their work, (n,m)-graphs were termed as colored mixed graphs and (n,m)-homomorphisms of (n,m)-graphs as colored homo-
morphism of colored mixed graphs. Also, in [7], (n,m)-graphs are referred as s-graphs.

(ii) No particular name was given for this switch in [29]. We use the initials of the author names for convenience.
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Fig. 3: An example of a Γ homomorphism: G Γ−→ H .

with the orientation reversed if and only if pj = 1 in π. This definition is a natural extension to the definitions
given in [10, 27] for switching or pushing in the case of (n,m) = {(1, 0), (0,m)} graphs. In this paper, we
study a more generalized switch operation on (n,m) graphs which also captures LMW-switch in particular.
There have also been studies of Γ switch-homomorphisms of (n,m)-graphs when Γ is non-Abelian [26].
Here, we restrict ourselves to Abelian subgroups Γ of S2n+m unless otherwise stated.

Let u, v be any two adjacent vertices of an (n,m)-graph G. A (n,m)-switch-commutative group Γ ⊆
S2n+m is such that for any σ, σ′ ∈ Γ, by performing σ-switch on u and σ′-switch on v, the adjacency
between u and v changes in the same way irrespective of the order of the switches. Observe that, this
property not only depends on the group but also depends on the values of n andm. Thus, in the definition we
have included the term (n,m) as well. However, for convenience, whenever (n,m) is clear from the context,
we will use the term switch-commutative instead of (n,m)-switch-commutative. In particular, whenever we
are in the context of a switch-commutative group, the sequence in which we apply the switches becomes
redundant. A Γ-switch, where Γ is a switch-commutative group (in the context), in general, is called a
commutative switch.

Theorem 2.3. Every LMW-switch operation is a commutative switch operation. Moreover, there exists
infinitely many commutative switches which are not LMW-switches.

Proof: Let G be an (n,m)-graph and let u, v ∈ V (G) such that v is a t-neighbor of u. Consider an Abelian
subgroup Γ ⊆ Sm ⊗ (S2 ≀ Sn). Let σu and σv be two LMW-switches of Γ acting on vertices u and v
respectively. By definition, σu(t) = (ϕu(t), ψu(t), πu(t)) is applied on u and σv(t) = (ϕv(t), ψv(t), πv(t))
is applied on v. It is enough to prove that this LMW-switch action is a commutative switch operation. That
is, to show that, the adjacency between u and v changes in the same way irrespective of the order in which
the switches σu and σv are applied on u and v, respectively.

Suppose t is the color of an edge. As Γ is Abelian, σu(σv(t)) = σv(σu(t)). As ϕu and ϕv are responsible
for changing the color of the edge, which is a symmetric relation between u and v, they commute.
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Suppose t is the color of an arc. Then after applying the switches, the color of the arc changes as per the
functions ψu and ψv and it does not matter in which order the switches are applied as the color of the arc
(not the direction) is a symmetric relation between u and v, and as Γ is commutative. On the other hand, the
change in the direction of the arc is determined by πu(t) · πv(t). To be precise, if πu(t) · πv(t) = 0 then the
direction does not change, and if πu(t) · πv(t) = 1 then the direction changes. This completes the first part
of the proof.

To prove the moreover part, we give an example of a commutative switch which is not an LMW -switch.
Consider (1, 1)-graph G. Let C3 = {e, σ, σ2} ⊆ S3, where, σ =

(
1 2 3

)
. For two adjacent vertices say

u, v ∈ V (G), σ applied on u and then σ applied on v yields the same result as that of σ applied on v first
and then on u. Thus, Γ is a commutative switch whereas it is clearly not a LMW-switch as an arc (color 2)
is switched to edge (color 3) under this operation. Further, we can extend this example to (n, n)-graph, for
any n ∈ N and Γ ⊊ S3n, where Γ = C3 ⊕ C3 ⊕ C3 · · · ⊕ C3, we have n-types of arc and n-types of edges,
where i-th C3 is {e, σi, σ2

i }, σi =
(
2i− 1 2i 3i

)
, respectively.

3 Basic algebraic properties
Let Γ ⊆ S2n+m be a switch-commutative group and letG be an (n,m)-graph with set of vertices {v1, v2, . . . ,
vk}. We construct the (n,m)-graph G∗ of G with respect to Γ as follows: take |Γ| many copies of G, in-
dexed by the elements of Γ. That is, for each σ ∈ Γ, its corresponding copy of G is denoted as Gσ . The
vertex corresponding to vi ∈ V (G) in Gσ is denoted as vσi . A vertex vσi is a t-neighbor of vσ

′

j in G∗ if and
only if vi is a t-neighbor of vj in G where i, j ∈ {1, 2, . . . , k} and σ, σ′ ∈ Γ. We now define the Γ-switched
graph denoted by ρΓ(G) of G. The Γ-switched graph ρΓ(G) on (|Γ| × |V (G)|) vertices is obtained from
G∗ by performing σ-switch on all the vertices of Gσ for all σ ∈ Γ.

Given an (n,m)-graph G and two vertices u, v ∈ V (G) such that v is a t-neighbor of u, in ρΓ(G), by
definition, vσ

′
is either a σ′(σ(t))-neighbor of uσ , or a σ(σ′(t))-neighbor of uσ . Observe that, σ′(σ(t)) and

σ(σ′(t)) may not be equal unless Γ is a switch-commutative group. Thus, it is important to assume that Γ
is switch-commutative while defining ρΓ(G). Note that, the notion of ρΓ(G) is a natural generalization of
the notions push-digraph for oriented graphs [27] or double switching graphs for signed graphs [39] (in both
cases the relevant groups are switch-commutative).

From the example in Theorem 2.3, we have seen that the subgroup Γ = ⟨σ⟩ ⊊ S3, where σ =
(
1 2 3

)
,

is a (1, 1)-switch-commutative group. Refer to Figure 4 for the construction of ρΓ(G) for an (1, 1)-graph G.

Lemma 3.1. Let u, v be two vertices of an (n,m)-graph G such that v is a t-neighbor of u. Suppose
σu, σv are applied on u and v respectively. Then Γ is a switch-commutative group if any only if we have
σv(σu(t)) = σu(σv(t)), for all σu, σv ∈ Γ and for all t ∈ An,m.

Proof: Let u and v be vertices of G such that v is a t-neighbor of u. Suppose σu is applied on u. Then, v is
a σu(t)-neighbor of u. By our convention, we have u is a σu(t)-neighbor of v. Now we apply σv on v, we
get, u is a σv(σu(t))-neighbor of v, this implies, v is a σv(σu(t)) neighbor of u.

Since v is a t-neighbor of u, we have, u is a t-neighbor of v. Now we apply, σv first on v, therefore, u is
a σv(t)-neighbor of v, and this is same as v is a σv(t)-neighbor of u, then we apply σu on u, we have, v is a
σu(σv(t))-neighbor of u.

If Γ is switch-commutative, we get,

σv(σu(t)) = σu(σv(t))
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aσ
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bσ
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aσ

cσbσ

σ-switch applied
Gσ
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c
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2
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2
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2

Fig. 4: (a) The process of constructing ρΓ(G) from the (1, 1)-graph G (also depicted). (b) The graph ρΓ(G) where
Γ = ⟨(1 2 3)⟩. Notice that (1 2 3) is not a LMW-switch, but is a commutative switch.

Moreover, if
σv(σu(t)) = σu(σv(t))

for all σu, σv ∈ Γ and for all t ∈ An,m, then Γ is switch-commutative (by definition).

Corollary 3.2. Let G be an (n,m)-graph and let Γ be a switch-commutative group. Suppose v is a t-
neighbor of u in G, and σu, σv ∈ Γ is applied on u, v respectively. Then after the switches, v becomes a
σv(σu(t)-neighbor of u or equivalently, v is a σu(σv(t))-neighbor of u.

Theorem 3.3. The Γ-switched graph ρΓ(G) is well defined for all (n,m)-graphs G if and only if Γ is a
switch-commutative group.

Proof: If Γ is a switch-commutative group, it is clear that ρΓ(G) is well defined for all (n,m)-graphs G.
Suppose that for every (n,m)-graph G, the Γ-switched graph ρΓ(G) is well defined. We prove that Γ is a
switch-commutative group. Let v be a t-neighbor of u for some u, v ∈ V (G). Then by definition, vσj is
a σj(σi(t))-neighbor of uσi in ρΓ(G) or vσj is a σi(σj(t))-neighbor of uσi in ρΓ(G), where vσj , uσi are
vertices from the copies Gσj and Gσi , for any σi, σj ∈ Γ respectively. As, ρΓ(G) is well defined, the order

in which we switch the vertices should not matter, which forces σj(σi(t)) = σi(σj(t)), Thus, by Lemma 3.1,
Γ is a switch-commutative group.

This Γ-switched graph helps build a bridge between ⟨e⟩-homomorphism and Γ-homomorphism of two
(n,m)-graphs. We prove a useful property of a switch-commutative group.

Proposition 3.4. Let G and H be two (n,m)-graphs. We have G Γ−→ H if and only if G
⟨e⟩−−→ ρΓ(H), where

Γ is a switch-commutative group.

Proof: For the “only if” part of the proof, suppose f : G Γ−→ H . Thus, f : G′ ⟨e⟩−−→ H for some G′ ≡Γ G.
Consider, ϕ : G→ ρΓ(H) such that,

ϕ(g) = f(g)σ
−1
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where σ is the switch applied on g while obtaining G′ from G. We want to prove that ϕ is an ⟨e⟩-
homomorphism.

Let gj be a t-neighbor of gi in G. Suppose the switches σi, σj ∈ Γ is applied on gi, gj respectively to get
G′. Thus by Corollary 3.2,

gj is a σj(σi(t))-neighbor of gi in G′.

As f is an ⟨e⟩-homomorphism, we have,

f(gj) is a σj(σi(t))-neighbor of f(gi) in H.

By the definition of ρΓ(G),

f(gj)
σj

−1

is a σ−1
j (σ−1

i (σj(σi(t))))-neighbor of f(gi)σi
−1

in ρΓ(H).

Thus, it is enough to prove,

σ−1
j (σ−1

i (σj(σi(t)))) = t

Due to Lemma 3.1, we have,
σj(σi(t)) = σi(σj(t))

which implies

σ−1
j (σ−1

i (σj(σi(t)))) = σ−1
j (σ−1

i (σi(σj(t)))) = σ−1
j (σj(t)) = t = t.

This implies, ϕ is an ⟨e⟩-homomorphism an completes the “only if” part of the proof.

For the “if” part of the proof, let f : G
⟨e⟩−−→ ρΓ(H) be an ⟨e⟩-homomorphism. If f(g) = hσ for some

h ∈ V (H) and some σ ∈ Γ, then set φ(g) = h, for all g ∈ V (G). Moreover, construct G′ from G by
applying σ on g, for all g ∈ V (G). Since V (G) = V (G′) and G′ is Γ-equivalent to G, it is enough to show
that φ is an ⟨e⟩-homomorphism of G′ to H .

Suppose f(gi) = hσi
i and f(gj) = h

σj

j and let gj be a t-neighbor of gi in G′. We now have to show that
hj is a t-neighbor of hi in H . As

gj is a t-neighbor of gi in G′,

by Corollary 3.2, we have,

gj is a σ−1
j (σ−1

i (t))-neighbor of gi in G.

As f is an ⟨e⟩-homomorphism,

f(gj) is a σ−1
j (σ−1

i (t))-neighbor of f(gi) in ρΓ(H).

That is,

h
σj

j is a σ−1
j (σ−1

i (t))-neighbor of hσi
i in ρΓ(H).

Thus, by Corollary 3.2, we have,

hj is a σj(σi(σ−1
j (σ−1

i (t))))-neighbor of hi in H.
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Therefore, it is enough to prove,

σj(σi(σ
−1
j (σ−1

i (t)))) = t

By Lemma 3.1, we have,
σj(σi(t)) = σi(σj(t))

which implies

σi(σj(σ
−1
j (σ−1

i (t)))) = σi(σj(σ
−1
j (σ−1

i (t)))) = σi(σ
−1
i (t)) = σi(σ

−1
i (t)) = t

Thus, hj is a t-neighbor of hi in H . This completes the “if” part of the proof.

Theorem 3.5. Let G and H be (n,m)-graphs. Then, G ≡Γ H if and only if ρΓ(G) ≡⟨e⟩ ρΓ(H), where Γ
is a switch-commutative group.

Proof: For the “only if” part of the proof, suppose that G ≡Γ H. Let G′ be a Γ-equivalent graph of G such

that f : G′ ⟨e⟩−−→ H is an ⟨e⟩-isomorphism. Suppose that G has vertices g1, g2, . . . , gp, and G′ is obtained by
performing a τi-switch on gi, where gi ∈ V (G) and τi ∈ Γ. For convenience, the particular switch applied
on gi is called τi

For any gσi
i ∈ V (ρΓ(G)) we define the function ϕ : V (ρΓ(G)) → V (ρΓ(H)) as follows:

ϕ(gσi
i ) = (f(gi))

τ−1
i σi .

Next we prove that ϕ is a ⟨e⟩-isomorphism of ρΓ(G) to ρΓ(H).
Let gσj

j be a t-neighbor of gσi
i in ρΓ(G). Then by Corollary 3.2,

gj is a σ−1
j (σ−1

i (t))-neighbor of gi in G

and

gj is a τj(τi(σ−1
j (σ−1

i (t)))) -neighbor of gi in G′.

As f is a ⟨e⟩-isomorphism,

f(gj) is a τj(τi(σ−1
j (σ−1

i (t)))) -neighbor of f(gi) in H.

Now,

(f(gj))
σj is a σj(σi(τj(τi(σ−1

j (σ−1
i (t)))))) -neighbor of (f(gi))σi in ρΓ(H).

Thus,

ϕ(g
σj

j ) = (f(gj))
τ−1
j σj is a τ−1

j σj(τ
−1
i σi(τj(τi(σ

−1
j (σ−1

i (t)))))) -neighbor of ϕ(gσi
i ) = (f(gi))

σi .

As Γ is switch-commutative, we get,

τ−1
j σj(τ

−1
i σi(τj(τi(σ

−1
j (σ−1

i (t)))))) = σj(σi(τ
−1
j (τ−1

i (τj(τi(σ
−1
j (σ−1

i (t)))))))).
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By repeated application of Lemma 3.1 on (1), (2) and (3), we get,

σj(σi(τ
−1
j (τ−1

i (τj(τi(σ
−1
j (σ−1

i (t)))

(1)

))

(2)

))

(3)

) = t

Therefore, ϕ(gσj

j ) is a t-neighbor of ϕ(gσi
i ) in ρΓ(H). Thus, ϕ a ⟨e⟩-isomorphism of ρΓ(G) to ρΓ(H).

For the “if” part of the proof, suppose ρΓ(G) ≡⟨e⟩ ρΓ(H) and we have to show G ≡Γ H .
Assume g1, g2, . . . , gp be the vertices ofG. A sequence of vertices in ρΓ(G) of the form (gσ1

1 , gσ2
2 , . . . , g

σp
p )

is a representative sequence of G in ρΓ(G), where σi ∈ Γ is any element for i ∈ {1, 2, . . . , p} (repetition of
elements among σi is allowed here).

Given an ⟨e⟩-isomorphism ψ : ρΓ(G)
⟨e⟩−−→ ρΓ(H) and a representative sequence S of G in ρΓ(G), define

the set
YS,ψ = {vσ | ψ(vσ) = (ψ(v))σ where v ∈ S and σ ∈ Γ}.

Let YS∗,φ be the set satisfying the property |YS∗,φ| ≥ |YS,ψ| where S varies over all representative sequences
and ψ varies over all ⟨e⟩-isomorphisms.

We proceed by the method of contradiction to show that YS∗,φ = V (ρΓ(G)). Thus, let us assume the
contrary, that is, let YS∗,φ ̸= V (ρΓ(G)). This implies that there exists a vσ ∈ V (ρΓ(G)), for some v ∈ S
and some σ ∈ Γ such that φ(vσ) ̸= (φ(v))σ . Let us fix g = φ−1(φ(v)σ) ∈ ρΓ(G). Next let us define the
function

φ̂(x) =


φ(x) if x ̸= g, vσ,

φ(g) if x = vσ,

φ(vσ) if x = g.

Next we are going to show that φ̂ is an ⟨e⟩-isomorphism of ρΓ(G) and ρΓ(H). So, we need to show that x
is a t-neighbor of y in ρΓ(G) if and only if φ̂(x) is a t-neighbor of φ̂(y) in ρΓ(H). Notice that, it is enough
to check this for x = g and x = vσ while y varies over all vertices of ρΓ(G). We will separately handle the
exceptional case when x = vσ and y = g first.

(i) If x = vσ and y = g, then φ(v) and φ(v)σ are non-adjacent by the definition of ρΓ(G). Thus,
v = φ−1(φ(v)) and g = φ−1(φ(v)σ) are non-adjacent. Hence x = vσ and y = g are also non-
adjacent. Therefore, φ̂(x) = φ(g) and φ̂(y) = φ(vσ) are non-adjacent.

(ii) If x = vσ and y ̸= g, then y is a t-neighbour of x in ρΓ(G) if and only if φ(y) is a t-neighbor of
φ(x) in ρΓ(H), as φ is an ⟨e⟩-isomorphism. Observe that φ̂(x) = φ(g) = φ(v)σ as g = φ−1(φ(v)σ),
and φ̂(y) = φ(y). Since x = vσ , y is a σ−1(t)-neighbor of v in ρΓ(G), if and only if φ(y) is a
σ−1(t)-neighbor of φ(v) in ρΓ(H), if and only if, φ(y) = φ̂(y) is a t-neighbour of φ(v)σ = φ̂(x) in
ρΓ(H).

(iii) If x = g and y ̸= vσ , then y is a t-neighbor of x in ρΓ(G) if and only if, φ(y) is a t-neighbor of
φ(x) = φ(g) = φ(v)σ in ρΓ(H), as g = φ−1(φ(v)σ). The previous statement holds if and only if
φ(y) is a σ−1(t)-neighbor of φ(v) in ρΓ(H) if and only if y is a σ−1(t)-neighbor of v in ρΓ(G) if and
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only if y is a t-neighbor of vσ in ρΓ(G) if and only if φ(y) = φ̂(y) is a t-neighbor of φ(vσ) = φ̂(x) in
ρΓ(H) .

However, now we have |YS∗,φ| < |YS∗,φ̂|. This is a contradiction to the definition of YS∗,φ, and hence
YS∗,φ = V (ρΓ(G)).

Let v1, v2 be two distinct vertices in S∗. If φ(v1)σ = φ(v2) for any σ ∈ Γ, then φ(vσ1 ) = φ(v2). This
implies vσ1 = v2 because φ is a bijection. However, this is not possible as v1, v2 are distinct vertices from
a representative sequence S∗ of G in ρΓ(G). Hence, φ(v1)σ ̸= φ(v2) for any v1, v2 ∈ S∗. That means,
φ(S∗) = R is a representative sequence of H in ρΓ(H). Thus, note that ⟨e⟩-isomorphism restricted to
the induced subgraph ρΓ(G)[S∗] is also an ⟨e⟩-isomorphism to the induced subgraph ρΓ(H)[R]. That is,
ρΓ(G)[S

∗] ≡⟨e⟩ ρΓ(H)[R]. As ⟨e⟩ ⊆ Γ, this also means ρΓ(G)[S∗] ≡Γ ρΓ(H)[R].
Moreover, as S∗ and R are representative sequences of G and H , respectively, we have ρΓ(G)[S∗] ≡Γ G

and ρΓ(H)[R] ≡Γ H . Thus we are done by composing the Γ-isomorphisms.

The above result generalizes results by Brewster and Graves [10] (see Theorem 12) and Sen [47] (see
Theorem 3.4). Additionally, it (re)solves an open problem given by Klostermeyer and MacGillivray [27]
(see Open Problem 2 in the conclusion) by restricting the result to (n,m) = (1, 0), where Γ is the group in
which the only non-identity element simply reverses the direction of the arcs.

The next result follows from the fundamental theorem of finite abelian groups.

Theorem 3.6. Let Γ1 be an abelian, (n,m)-switch-commutative group. Let Γ2 ⊆ Γ1. If p2 ∤ |Γ1| for any
prime p, then ρΓ1

(G) ≡⟨e⟩ ρΓ1/Γ2
(ρΓ2

(G)).

Proof: Since Γ1 is a finite Abelian group, Γ1/Γ2 and Γ2 both are normal subgroups of Γ1, As, p2 ∤ |Γ1|,
we have Γ1/Γ2 × Γ2

∼= Γ1. Observe that every element σ ∈ Γ1 can be uniquely written as α.β, where
α ∈ Γ1/Γ2, β ∈ Γ2 (unique factorization). Now let G be an (n,m)-graph. We prove, f : ρΓ1

(G) →
ρΓ1/Γ2

(ρΓ2(G)) is an isomorphism. Consider,

f : V (ρΓ1
(G)) → V (ρΓ1/Γ2

(ρΓ2
(G)),

f(uσ) = (uβ)α.

where α ∈ Γ1/Γ2, β ∈ Γ2, and α.β = σ.
Let σ1 = α1.β1 and σ2 = α2.β2, where σ1, σ2 ∈ Γ1, α1, α2 ∈ Γ1/Γ2, β1, β2 ∈ Γ2. Now consider

the following two sequences of switches on u and v, respectively. The first sequence is: β1 applied on u,
α1 applied on u, β2 applied on v, α2 applied on v. Suppose as a result of the above-mentioned sequence
of switches, v becomes an s-neighbor of u. The second sequence is: β1 applied on u, β2 applied on v,
α1 applied on u, α2 applied on v. Since Γ1 is switch-commutative, as a result of the above-mentioned
sequence of switches, v must become an s-neighbor (from initially being a t-neighbor) of u. From the above
observation we can conclude that vσ2 is an s-neighbor of uσ1 in ρΓ1(G) and (vβ2)α2 is an s-neighbor of
(uβ1)α1 in ρΓ1/Γ2

(ρΓ2
(G)). This proves that f is an isomorphism.

A Γ-core of an (n,m)-graph G is a subgraph H of G such that G Γ−→ H , whereas H does not admit a
Γ-homomorphism to any of its proper subgraphs.

Theorem 3.7. The core of an (n,m)-graph G is unique up to Γ-isomorphism.

Proof: Let H1 and H2 be two Γ-cores of G. We have to show that H1 and H2 are Γ-isomorphic.
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Note that, there exist Γ-homomorphisms f1 : G
Γ−→ H1 and f2 : G

Γ−→ H2 as H1, H2 are Γ-cores. More-
over, there exists the inclusion Γ-homomorphisms i1 : H1

Γ−→ G and i2 : H2
Γ−→ G.

Now consider the composition Γ-homomorphism f2 ◦ i1 : H1
Γ−→ H2. Note that it must be a surjective

vertex mapping. Not only that, for any non-adjacent pair u, v of vertices in H1, the vertices (f2 ◦ i1)(u) and
(f2 ◦ i1)(v) are non-adjacent in H2. The reason is that, if the above two conditions are not satisfied, then
the composition Γ-homomorphism f2 ◦ i1 ◦ f1 : G

Γ−→ H2 can be considered as a Γ-homomorphism to a
proper subgraph of H2. This will contradict the fact that H2 is a Γ-core. Therefore, f2 ◦ i1 is a bijective
Γ-homomorphism whose inverse is also a Γ-homomorphism. In other words, f2◦i1 is a Γ-isomorphism.

Due to the above theorem, it is possible to define the Γ-core ofG and let us denote it by coreΓ(G). Notice
that, this is the analogue of the fundamental algebraic concept of core in the study of graph homomorphism.

4 Categorical products
Taking the set of (n,m)-graphs as objects and their Γ-homomorphisms as morphisms, one can consider the
category of (n,m)-graphs with respect to Γ-homomorphism. In this section, we study whether products
and co-products exist in this category or not. The existence of categorical product and co-product will not
only contribute in establishing the category of (n,m)-graphs with respect to Γ-homomorphism as a richly
structured category, but it will also show that the lattice of (n,m)-graphs induced by Γ-homomorphisms is
a distributive lattice with the categorical products and co-products playing the roles of join and meet, re-
spectively. Moreover, categorical product [24] was useful in proving the density theorem [42] for undirected
and directed graphs. Thus, it is not wrong to hope that it may become useful to prove the analogue of the
density theorem in our context. It is worth commenting that the the idea to prove the existence of categorical
products in this context generalizes the idea of the same in the context of signed graphs from [38].

Before proceeding further with the results, let us recall what categorical product and co-product mean in
our context. Let G,H be two (n,m)-graphs and let Γ ⊆ S2n+m be an Abelian group.

The categorical product of G and H with respect to Γ-homomorphism is an (n,m)-graph P having two
projection mappings of the form fg : P

Γ−→ G and fh : P
Γ−→ H satisfying the following universal property:

if any (n,m)-graph P ′ admit Γ-homomorphisms ϕg : P ′ Γ−→ G and ϕh : P ′ Γ−→ H , then there exists a unique

Γ-homomorphism φ : P ′ Γ−→ P such that ϕg = fg ◦ φ and ϕh = fh ◦ φ. Refer Figure 5 for its commutative
diagram.

The categorical co-product of G and H with respect to Γ-homomorphism is an (n,m)-graph C along
with the two inclusion mappings of the form ig : G

Γ−→ C and ih : H
Γ−→ C satisfying the following universal

property: if for any (n,m)-graph C ′ there are Γ-homomorphisms ϕg : G
Γ−→ C ′ and ϕh : H

Γ−→ C ′, then

there exists a unique Γ-homomorphism φ : C
Γ−→ C ′ such that ϕg = φ ◦ ig and ϕh = φ ◦ ih. Refer Figure 6

for its commutative diagram.
Let G,H be two (n,m)-graphs and let Γ ⊆ S2n+m be a switch-commutative group. Then G ×⟨e⟩ H

denotes the (n,m)-graph on the vertex set V (G)×V (H), where (u, v) is a t-neighbor of (u′, v′) inG×⟨e⟩H
if and only if u is a t-neighbor of u′ inG and v is a t-neighbor of v′ inH . Moreover, the (n,m)-graphG×ΓH
is the subgraph of ρΓ(G)×⟨e⟩ ρΓ(H) induced by the set of vertices

X = {(uσ, vσ) : (u, v) ∈ V (G)× V (H) and σ ∈ Γ}.

Theorem 4.1. The categorical product of (n,m)-graphs G and H with respect to Γ-homomorphism exists
and is Γ-isomorphic to G×Γ H , where Γ is a switch-commutative group.
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G

P P ′

H

fg

fh

ϕg

ϕh

φ

Fig. 5: Product of G and H.

G

C C ′

H

ig ϕg

φ

ih ϕh

Fig. 6: Co-product of G and H.

Proof: Let (G ×Γ H)′ be Γ-switched graph of G ×Γ H , where we apply σ−1 on (uσ, vσ) ∈ V (G ×Γ H).
Thus, we define fg(uσ, vσ) = u and fh(uσ, vσ) = v as the two projections. Observe that fg and fh are
⟨e⟩-homomorphisms of (G ×Γ H)′ to G and H , respectively. If there exists an (n,m)-graph P ′ such that,
ϕg : P

′ Γ−→ G and ϕh : P ′ Γ−→ H , then define ϕ : P ′ Γ−→ G×Γ H such that ϕ(p) = (ϕg(p), ϕh(p)). From the
definition of ϕ, we have ϕg = fg ◦ ϕ and ϕh = fh ◦ ϕ. Note that this is the unique way we can define ϕ
which satisfies the universal property from the definition of products. Thus,G×ΓH is indeed the categorical
product of G and H with respect to Γ-homomorphism once we prove its uniqueness up to Γ-isomorphism.

Suppose P1 with projection mappings fg, fh and P2 with projection mappings ϕg, ϕh are two (n,m)-

graphs that satisfy the universal properties of categorical product of G and H , then there exists φ : P1
Γ−→ P2

and φ′ : P2
Γ−→ P1 with ϕg ◦ φ = fg , ϕh ◦ φ = fh and fg ◦ φ′ = ϕg , fh ◦ φ′ = ϕh. Now consider the

composition, φ′ ◦ φ : P1
Γ−→ P1. Since, fg ◦ (φ′ ◦ φ) = (fg ◦ φ′) ◦ φ = ϕg ◦ φ = fg and fh ◦ (φ′ ◦ φ) =

(fh ◦ φ′) ◦ φ = ϕh ◦ φ′ = fh
We can conclude that φ′ ◦ φ is a identity homomorphism on P1. Similarly φ ◦ φ′ must be the identity

homomorphism on P2. Thus implying, φ′ = φ−1 is an Γ-isomorphism of P2 and P1.

In PEPS 2012 workshop, Brewster asked whether Categorical product exists for signed graphs or not. The
above theorem answers this question in affirmative as a special case (with respect to Γ-homomorphisms of
(0, 2)-graphs, where Γ is non-trivial).

Corollary 4.2. For any (n,m)-graphs G and H , and a switch-commutative group Γ ⊆ S2n+m, we have
ρΓ(G×Γ H) ≡⟨e⟩ ρΓ(G)×⟨e⟩ ρΓ(H).

Proof: The proof follows from Theorem 3.5 and Theorem 4.1.

Let G+H denote the disjoint union of the (n,m)-graphs G and H .

Theorem 4.3. The categorical co-product of (n,m)-graphs G and H with respect to Γ-homomorphism
exists and is Γ-isomorphic to G+H , where Γ is any subgroup of S2n+m.

Proof: Consider the inclusion mapping ig : G
Γ−→ G + H , and ih : H

Γ−→ G + H . Suppose there exists

an (n,m)-graph C and there are Γ-homomorphisms ϕg : G
Γ−→ C and ϕh : H

Γ−→ C, then there exists a

Γ-homomorphism φ : G+H
Γ−→ C such that

φ(x) =

{
ϕg(x) if x ∈ V (G),

ϕh(x) if x ∈ V (H).

Observe that, ϕg = φ ◦ ig and ϕh = φ ◦ ih. Note that such a φ is unique.
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Suppose we have P with Γ-homomorphisms fg, fh and P ′ with Γ-homomorphisms ϕg, ϕh satisfying the

universal property of categorical co-product of G and H , then there exists Γ-homomorphisms, φ : P Γ−→ P ′

and φ′ : P ′ Γ−→ P with ϕg = φ ◦ fg , ϕh = φ ◦ fh and fg = φ′ ◦ ϕg , fh = φ′ ◦ ϕh. Now consider the

composition, φ′ ◦ φ : P Γ−→ P . Since, (φ′ ◦ φ) ◦ fg = φ′ ◦ (φ ◦ fg) = φ′ ◦ ϕg = fg and (φ′ ◦ φ) ◦ fh =
φ′ ◦ (φ ◦ fh) = φ′ ◦ ϕh = fh We can say that φ′ ◦ φ is the identity mapping on P . Similarly φ ◦ φ′ must
be the identity mapping on P . Thus implying, φ′ = φ−1 is an Γ-isomorphism of P ′ and P . Therefore, we
have, the categorical co-product of (n,m)-graphs G and H with respect to Γ-homomorphism is G+H .

Thus both categorical product and co-product exists with respect to Γ-homomorphism when Γ is a switch-
commutative group. Furthermore, the usual algebraic identities hold with respect to these operations too.

Corollary 4.4. For any (n,m)-graphs G and H , and a switch-commutative group Γ ⊆ S2n+m, we have
ρΓ(G+H) ≡⟨e⟩ ρΓ(G) + ρΓ(H).

Proof: The proof follows from Theorem 3.5 and Theorem 4.3.

Theorem 4.5. For any (n,m)-graphs G,H,K and Γ, a switch-commutative group, We have the following.

(i) G×Γ H ≡Γ H ×Γ G,

(ii) G×Γ (H ×Γ K) ≡Γ (G×Γ H)×Γ K,

(iii) G×Γ (H +K) ≡Γ (G×Γ H) + (G×Γ K).

Proof: (i) Consider the mapping ϕ : G ×Γ H → H ×Γ G, such that, ϕ(gσ, hσ
′
) = (hσ

′
, gσ) We show

that ϕ is a Γ-isomorphism. Let (gσ1
1 , hσ1

1 ), (gσ2
2 , hσ2

2 ) ∈ V (G×Γ H), suppose, (gσ2
2 , hσ2

2 ) is a t-neighbor of
(gσ1

1 , hσ1
1 ) in G ×Γ H , which implies, gσ2

2 is a t-neighbor of gσ1
1 in G and hσ2

2 is a t-neighbor of hσ1
1 in H ,

and hence, (hσ2
2 , gσ2

2 ) is a t-neighbor of (hσ1
1 , gσ1

1 ) in H ×Γ G. Thus ϕ is a Γ-isomorphism.

(ii) Observe that when Γ = ⟨e⟩, the function ϕ(g, (h, k)) = ((g, h), k) is a ⟨e⟩-isomorphism of G ×Γ

(H×ΓK) to (G×ΓH)×ΓK where g ∈ G, h ∈ H , and k ∈ K. Next we will prove it for general Γ. Notice
that by Theorem 4.1, we have,

ρΓ(G×Γ (H ×Γ K)) = ρΓ(G)×⟨e⟩ ρΓ(H ×Γ K) = ρΓ(G)×⟨e⟩ (ρΓ(H)×⟨e⟩ ρΓ(K)) (1)

and
ρΓ((G×Γ H)×Γ K) = ρΓ(G×Γ H)×⟨e⟩ ρΓ(K) = (ρΓ(G)×⟨e⟩ ρΓ(H))×⟨e⟩ ρΓ(K). (2)

Since we have already proved that our equality holds for Γ = ⟨e⟩, we obtain, ρΓ(G) ×⟨e⟩ (ρΓ(H) ×⟨e⟩
ρΓ(K)) ≡⟨e⟩ (ρΓ(G)×⟨e⟩ ρΓ(H))×⟨e⟩ ρΓ(K). Therefore by equations (1) and (2) we have

ρΓ(G×Γ (H ×Γ K)) ≡⟨e⟩ ρΓ((G×Γ H)×Γ K).

By Theorem 3.5 we have
G×Γ (H ×Γ K) ≡Γ (G×Γ H)×Γ K.

This concludes the proof.

(iii) When Γ = ⟨e⟩ consider the the function ϕ(g, x) = (g, x) where g ∈ G and if x ∈ (H + K).
However, here if x ∈ H , then the image (g, x) ∈ G×Γ H and if x ∈ K, then the image (g, x) ∈ G×Γ K.
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Observe that ϕ is a ⟨e⟩-isomorphism of G×Γ (H +K) to (G×ΓH)+ (G×ΓK). Next we will prove it for
general Γ. Notice that by Theorem 4.1, we have,

ρΓ(G×Γ (H +K)) = ρΓ(G)×⟨e⟩ ρΓ(H +K) = ρΓ(G)×⟨e⟩ (ρΓ(H) + ρΓ(K)) (3)

and

ρΓ((G×Γ H) + (G×Γ K)) = ρΓ(G×Γ H) + ρΓ(G×Γ K)

= (ρΓ(G)×⟨e⟩ ρΓ(H)) + (ρΓ(G)×⟨e⟩ ρΓ(K)).
(4)

Since we have already proved that our equality holds for Γ = ⟨e⟩, we obtain,

ρΓ(G)×⟨e⟩ (ρΓ(H) + ρΓ(K)) ≡⟨e⟩ (ρΓ(G)×⟨e⟩ ρΓ(H)) + (ρΓ(G)×⟨e⟩ ρΓ(K)).

Therefore by equations (3) and (4) we have

ρΓ(G×Γ (H +K)) ≡⟨e⟩ ρΓ((G×Γ H) + (G×Γ K)).

By Theorem 3.5 we have
G×Γ (H +K) ≡Γ (G×Γ H) + (G×Γ K).

This concludes the proof.

Remark 4.6. The existence of product and co-product in the category of (n,m)-graphs with Γ-homomorphism
playing the role of morphism shows the richness of the category. Moreover, it also shows that the Γ-
homomorphism order, that is an order defined by G ⪯ H when G Γ−→ H defines a lattice on the set of
all Γ-cores. Here the (cores of the) categorical products and coproducts play the roles of meet and join,
respectively.

5 Chromatic number
We know that the ordinary chromatic number of a simple graph G can be expressed as the minimum |V (H)|
such that G admits a homomorphism to H . The analogue of this definition is a popular way for defining
chromatic number of other types of graphs, namely, oriented graphs, k-edge-colored graphs, (n,m)-graphs,
signed graphs, push graphs, etc. Here also, we can follow the same. The Γ-chromatic number of an (n,m)-
graph is given by,

χΓ:n,m(G) = min{|V (H)| : G Γ−→ H}.

Moreover, for a family F of (n,m)-graphs, the Γ-chromatic number is given by,

χΓ:n,m(F) = max{χΓ:n,m(G) : G ∈ F}.

Let Γ ⊆ S2n+m be an Abelian group acting on the set An,m. For x ∈ An,m, we call the set, Orbx =
{σ(x) : σ ∈ Γ} an orbit of x. A consistent group Γ ⊂ S2n+m is such that each orbit induced by Γ acting
on the set An,m contains i if and only if it contains i for i ∈ {1, 2, . . . , 2n}. Notice that, these orbits form
a partition on the set An,m as the relation, x ∼ y whenever x = σ(y) for some σ ∈ Γ, is an equivalence
relation.

Next we establish a useful observation.
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Theorem 5.1. Let G be any (n,m)-graph, Γ be a switch-commutative group, then we have,

χΓ:n,m(G) ≤ χn,m(G) ≤ |Γ|.χΓ:n,m(G).

Proof: As Γ-homomorphism is, in particular, an ⟨e⟩-homomorphism, the first inequality holds. The second
inequality follows from Proposition 3.4.

An immediate corollary follows.

Corollary 5.2. LetG be an (n,m)-graph and let Γ1,Γ2 ⊆ S2n+m be two switch-commutative groups. Then
we have

χΓ1:n,m(G)

|Γ2|
≤ χΓ2:n,m(G) ≤ |Γ1| · χΓ1:n,m(G).

Proposition 5.3. Let Γ ⊆ S2n+m be a consistent group, G be an (n,m)-graph, and G′ be a Γ-equivalent
graph ofG. If a vertex v is a t-neighbor of u inG, then v must be a σ(t) neighbor of u inG′ for some σ ∈ Γ.

Proof: Observe that, it is enough to prove the statement assuming G′ is obtained from G by performing a
σ-switch on v.

By Lemma 3.1, in G′, v is a σ(t)-neighbor of u. Note that, t ∈ Orbt as Γ is a consistent group. Since
t ∈ Orbt, we have σ(t) ∈ Orbt = Orbt. Therefore, σ(t) ∈ Orbt as Γ is consistent.

Next we focus on studying the Γ-chromatic number of (n,m)-forests.

Theorem 5.4. Let F be the family of (n,m)-forests and let k be the number of orbits of An,m with respect
to the action of Γ. Then,

χΓ:n,m(F) ≤

{
k + 2 if k is even,
k + 1 if k is odd.

Moreover, equality holds if Γ is consistent.

Proof: We first prove the upper bound. Assume that k is odd. In this case consider the complete graph
Kk+1. We will construct a complete (n,m)-graph having Kk+1 as its underlying graph. As (k+1) is even,
we know that Kk+1 can be decomposed into k−1

2 edge-disjoint Hamiltonian cycles and a perfect matching.
Let {α1, α2, . . . αk} be the representatives of the k orbits. Assume that if α and ᾱ are in different orbits

for some α ∈ {2, 4, . . . , 2n}, then either both α and ᾱ are chosen as representatives, or neither of them are
chosen as representatives.

If α and ᾱ are both chosen as representatives, they are called representative pairs (α, ᾱ). For any repre-
sentative pairs (α, ᾱ), notice that α must be color of an arc. For each representative pair (α, ᾱ) orient one
of the Hamiltonian cycles as a directed cycle, and color all its arcs with α (equivalently, all its reverse arcs
with ᾱ). That means, every vertex of the graph will have an α-neighbor and a ᾱ-neighbor.

For those representatives αi for which ᾱ also belongs to the same orbit, we will arbitrarily choose a
previously not chosen αj that is not part of any representative pair, where i, j ∈ {1, 2, . . . , k}. Now we will
choose a Hamiltonian cycle which is not colored, and will color its edges alternatively with the colors αi and
αj while traversing it in a clockwise direction (with respect to any embedding of the cycle). This will ensure
that every vertex of the graph has a βi-neighbor and a βj-neighbor, where βi ∈ {αi, ᾱi} and βj ∈ {αj , ᾱj}.

After finishing this process, as k is odd, one perfect matching will remain uncolored and one αl will
remain unused (in the above process). This αl does not belong to a representative pair, and thus ᾱ belongs
to the orbit of αl. Finally we will color the edges of the perfect matching with αl. Thus all vertices of the
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graph has either an αl-neighbor, or a ᾱl-neighbor. With a little abuse of notation, we denote the so obtained
(n,m)-graph by Kk+1 itself.

We claim that every (n,m)-forest admit a Γ-homomorphism to Kk+1. If not, then there exists a minimal
(with respect to number of vertices) counter-example F that does not admit Γ-homomorphism to Kk+1. Let
u be a leaf with the vertex v as its only neighbor in F , then F \{u} is no longer a minimal counter-example,
thus it admits a Γ-homomorphism f to Kk+1. That means, there exists a Γ-equivalent (n,m)-graph F ′ of
F \ {u} such that f is a ⟨e⟩-homomorphism of F ′ to Kk+1. Suppose v is a β-neighbor of u, and β belongs
to an orbit whose representative is α. If α belongs to a representative pair, then switch u to convert v into
an α-neighbor of u. Otherwise, switch u to convert v into a ᾱ-neighbor of u. Since u is a leaf, this does not
affect any adjacencies in F ′. In either case, u is an αi-neighbor of v for some i ∈ {1, 2, . . . , k}.

Now, we extend f to an ⟨e⟩-homomorphism of F ′ to Kk+1 by mapping u to the αi-neighbor f(v) in
Kk+1, since every vertex in Kk+1 has an αi-neighbor for every i ∈ {1, 2, . . . , k}. That means, there exists
a Γ-homomorphism of F to Kk+1. This contradicts the minimality of F . Hence every (n,m)-forest admits
a Γ-homomorphism to Kn,m.

Secondly, assume that k is even. Note that, if there were (k + 1) orbits instead, then by what we have
proved above, it would be possible to show that every (n,m)-forest admits a Γ-homomorphism to an (n,m)-
graph having Kk+2 as underlying graph. Therefore, assuming a dummy orbit we are done with this case
too.

Next we will prove the tightness of the upper bound when Γ is consistent. Let {α1, α2, . . . , αk} be the
representatives of the k orbits. For odd values of k, consider the star (n,m)-graph S on (k+1) vertices: the
central vertex v having k neighbors v1, v2, . . . , vk. Let vi be a αi-neighbor of v for all i ∈ {1, 2, . . . , k}. No
matter how we switch the vertices of S, the vertex v will have k distinctly adjacent neighbors. Therefore we
have χΓ:n,m(S) ≥ k + 1, and thus χΓ:n,m(F) = k + 1 when k is odd and Γ is consistent.

For even values of k, consider a rooted tree T of height two in which every vertex, other than the leaves,
has exactly one αi-neighbor for i ∈ {1, 2, . . . , k}. Suppose T admits a Γ-homomorphism f to an (n,m)-
graph H . Let r be the root of T . IfH has (k+1) vertices, then the images of the vertices from N [r] under f
will be a spanning subgraph in H . Furthermore, notice that each vertex of N [r] has at least one βi-neighbor,
where βi belongs to the ith orbit. Thus their images should also have the same property, that is each of
them must have at least one βi-neighbor, where βi belongs to the ith orbit. However, as H has only (k + 1)
vertices, each of its vertices are forced to have exactly one βi-neighbor, where βi belongs to the ith orbit.
Now if we restrict ourselves to only the neighbors whose type is from a particular orbit, that must give us a
perfect matching, which is impossible as (k + 1) is odd. Therefore, H must have at least (k + 2) vertices
which implies the lower bound.

The above result implies the upper bound of Theorem 1.1 of [41].

6 Concluding remarks
In this article, we introduced a generalized switch operation on (n,m)-graphs and studied their basic alge-
braic properties. Naturally, this topic generates a lot of interesting open questions, especially, in an effort of
extending the known results in the domain of graph homomorphisms. We list a few of them here.

(i) Is it possible to generalize the notion of exponential graphs (see section 2.4 in [24]) in the category of
(n,m)-graphs with respect to Γ-homomorphism where Γ is switch-commutative?

(ii) Is it possible to obtain the analogue of the Density Theorem (see Theorem 3.30 in [24]) in this context?
At present, such an analogue is unknown even for (0, 2)-graphs.
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(iii) Finding the Γ-chromatic number for other graph families like planar graphs, partial 2-trees, outerplanar
graphs, cycles, grids, graphs having bounded maximum degree, etc. can be other directions of study in
this set up.

(iv) Characterizing (n,m)-graphs Γ-equivalent to a (1, 0)-graph (that is, monochromatic) is an interesting
natural problem.

(v) Studying the (n,m)-cycles may further lead us to finding a characterization of Γ-equivalent graphs,
similar to what Zaslavsky [52] did for signed graphs.

(vi) If Γ is not switch-commutative, then does the categorical product exist?

(vii) Given a pre-decided (n,m)-graph H , a switch-commutative group Γ and an input (n,m)-graph G, the
decision problem “does G admit a Γ-homomorphism to H?” is in NP due to Proposition 3.4. Can we
characterize the full dichotomy of this problem?

As a remark, it is worth mentioning that using the notion of generalized switch (implicitly), it was possible
to improve the existing upper bounds of the ⟨e⟩-chromatic number of (n,m)-partial 2-trees where 2n+m =
3 [14]. Therefore, it will not be surprising if Γ-homomorphism becomes useful as a technique to establish
bounds for (n,m)-chromatic number of graphs.
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