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Probabilistic counters are well-known tools often used for space-efficient set cardinality estimation. In this paper, we
investigate probabilistic counters from the perspective of preserving privacy. We use the standard, rigid differential
privacy notion. The intuition is that the probabilistic counters do not reveal too much information about individuals
but provide only general information about the population. Therefore, they can be used safely without violating the
privacy of individuals. However, it turned out, that providing a precise, formal analysis of the privacy parameters of
probabilistic counters is surprisingly difficult and needs advanced techniques and a very careful approach.

We demonstrate that probabilistic counters can be used as a privacy protection mechanism without extra randomi-
sation. That is, the inherent randomisation of the protocol is sufficient to protect privacy, even if the probabilistic
counter is used multiple times. In particular, we present a specific privacy-preserving data aggregation protocol based
on Morris Counter and MaxGeo Counter. Some of the results presented are devoted to counters that have not been
investigated so far from the perspective of privacy protection. Another part is an improvement of the previous results.
We show how our results can be used to perform distributed surveys and compare the properties of counter-based
solutions and a standard Laplace method.

Keywords: probabilistic counter, Morris counter, differential privacy

1 Introduction
Since Big Data related topics have been widely developed in recent years, solutions that focus on saving
memory resources have become very popular. We would like to consider a standard example of such
space-efficient mechanisms, namely probabilistic counters, which are used to represent the cardinality of
dynamically counted events. More precisely, we would like to indicate the occurrence of n events using a
very small (significantly less than logn) number of bits. We assume that n is unknown in advance and may
change. Clearly, a simple information-theoretic argument convinces us that it is not feasible if we demand
an exact representation of the number of events. Nevertheless, there are some very efficient solutions
that require only Θ(log logn) bits and guarantee sufficient accuracy for a wide range of applications. As
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examples, one can point most probabilistic counters – probabilistic structures well known in the literature
since the seminal Morris’ paper Morris (1978) followed by its thorough mathematical analysis by Flajolet
in Flajolet (1985). They are used as building blocks in many space-efficient algorithms in the field of
data mining or distributed data aggregation in networks or smart metering, just to mention a few (Baquero
et al. (2009) or Cichoń and Gotfryd (2018)).

In this paper, we investigate probabilistic counters from the privacy-protection perspective. Our analysis
is based on a differential privacy notion, which is commonly considered the only state-of-the-art approach.
The differential privacy has the undeniable advantage of being mathematically rigorous and formally
provable, contrary to previous anonymity-derived privacy definitions. This approach to privacy-preserving
protocols can be used to give a formal guarantee for privacy that is resilient to any form of post-processing.
For a survey about differential privacy properties, see Dwork and Roth (2014) and references therein.
Analysis of protocols based on differential privacy is usually technically complex, but by using this notion,
we are immune to, e.g., linkage attacks (see, for example Narayanan and Shmatikov (2009, 2010)).

The idea behind differential privacy is as follows: for two ”neighbouring” scenarios that differ only
in the participation of a single user, a differentially private mechanism should provide a response chosen
from very similar distributions. Roughly speaking, differential privacy is described by two parameters: ε
– which controls a similarity of probabilities of common events – and δ – which is related to a probability
of unusual events. The smaller the parameters, the better from the privacy point of view. In effect, judging
by the output of the mechanism, one cannot say if a given individual (user) was taken into account for
producing a given output. Intuitively, probabilistic counters should provide a high level of differential
privacy since, statistically, many various numbers of events are ”squeezed” into a small space of possible
output results. In the case of one counter considered in our paper (MaxGeo) counter, one can find some
similar, recent results about the privacy the algorithm offers. Nevertheless, the question about the value of
the parameters of the potential differential privacy property remains open (see the discussion in Section 2).
Moreover, when considering a small number of events n, an additional problem may occur, as it may be
possible to distinguish that the number of events is different from n − 1 or n + 1 with a significant
probability.

In our paper, we provide a very precise analysis of two well known probabilistic counters from the per-
spective of preserving privacy. It turned out that this task is surprisingly complex from the mathematical
point of view. Our primary motivation is to find possibly accurate privacy parameters for the two most
fundamental probabilistic counter protocols, namely the Morris Counter Morris (1978) and the MaxGeo
Counter Szpankowski and Rego (1990). Note that the second one is used for yet another popular algorithm
— HyperLogLog Flajolet et al. (2007). One may realise that these two counters are relatively old; how-
ever, they, together with their modifications, have been extensively used until these days. Morris Counter
is often used in big data solutions, for instance, to measure network’s capabilities Einziger et al. (2018).
The most crucial examples of refinements of the HyperLogLog algorithm are mentioned in Section 2.

We claim that a high-precision analysis in the case of probabilistic counters is particularly important.
This is because even a mechanism with very good privacy parameters can cause a serious privacy breach
when used multiple times. That is, privacy loss/information leakage accumulates over multiple releases
(see, e.g., Dwork and Roth (2014)). Probabilistic counters in realistic scenarios may be used as funda-
mental primitives and subroutines in more complex protocols, since the differential privacy property is
immune to post-processing.

We also show that those two probabilistic counters can be used safely without any additional randomisa-
tion, even in very demanding settings. It is commonly known that no deterministic algorithm can provide
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non-trivial differential privacy. However, Probabilistic counters have inherent randomness, achieving the
desired privacy parameters. In other words, one can say that probabilistic counters are safe by design,
and we do not need any additional privacy-orientated methods. In particular, what is most important,
existing, working implementations do not need to be changed if we start demanding the provable privacy
of a system.

Finally, we demonstrate how our results can be used for constructing a data aggregation protocol based
on probabilistic counters that can be used in some specific scenarios until we want them to satisfy even
more rigorous privacy properties.

To the best of our knowledge, most of the results are new and deal with protocols not considered before
in the context of privacy preservation. Some other (such as the MaxGeo counter) improve some previous
results (e.g. Smith et al. (2020)).

1.1 Paper structure and results
Starting from this point, for the sake of clarity, we use the abbreviation DP as a shortcut for differential
privacy, while this property is described by some parameters.

The main contribution of our paper is as follows:

• We prove that the classic Morris Counter satisfies (ε(n), δ(n))-DP with
ε(n) = O

(
(log(n))2

n

)
and δ(n) = O

(
max

{
n−(ln(n))c−1

, n−1 (ln(n))
−c
})

, for any c > 0 (Theo-
rem 2 in Section 6).

• We prove that the Morris Counter satisfies the (L(n), 0.00033)-DP property (see Definition 2),
where L(n) = − ln (1− 16/n) ≈ 16/n (Theorem 1 in Section 6). In Observation 2, we also show
that the constant 16 cannot be improved.

• We prove that MaxGeo Counter satisfies the property (ε, δ) -DP (Definition 2 is provided in Section

3) if the number of events n (in Section 4 the concept of event is clarified) is at least
ln(δ)

ln (1− 2−lε)
,

where lε =
⌈
log
(

eε

eε−1

)⌉
(Theorem 3 in Section 4).

• We construct a distributed survey protocol to preserve privacy based on probabilistic counters in
Section 5 and compare it with the Laplace method, which is considered as the actual state of the art
of differentially private protocols and is not based on probabilistic counters.

The remainder of this paper is organised as follows. First, in Section 2 we mention work related to
our paper and some popular examples of other probabilistic counters, which are not considered in this
paper. In Section 3, we recall the differential definition of privacy. In Section 4 we describe probabilistic
counters; further, we recall the definitions of both Morris and MaxGeo Counters. Moreover, we state
Fact 1, a useful reformulation of the standard definition of differential privacy for probabilistic counters.
In Section 5, we demonstrate how a probabilistic counter can be used to construct a data aggregation
protocol in a very particular, yet natural scenario. Section 6 consists of formulations of our main results
for both counters. Section 7 gives some ideas about the realisation of the scenario and the comparison
of both counters. We also compare these solutions with the standard Laplace method (Section 7). For
convenience of the reader, we provide the proofs in Section 8, as they are rather technical. For more
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clarity, some proofs and lemmas are moved to A. Finally, in Section 9 we present conclusions and future
work propositions.

2 Previous and Related Work
In our paper, we provide a detailed analysis of some probabilistic counters from the perspective of dif-
ferential privacy. Differential privacy concepts have been discussed in many papers in recent years. One
can also find a well developed body of literature devoted to probabilistic counters and similar structures.
Therefore, we limit the related literature review to the most relevant papers.

Differential Privacy literature In our paper, we focus on the inherent privacy guarantees of some prob-
abilistic structures defined as differential privacy. The idea of differential privacy has been introduced for
the first time in Dwork et al. (2006b); however, its precise formulation in the widely used form appeared
for the first time in Dwork (2006). There is a long list of papers concerning differential privacy, e.g. Dwork
et al. (2006a); Dwork and Lei (2009); Dwork et al. (2010), to mention a few.

Most of these papers focus on a centralised (global) model, namely, a database with a trusted party
holding it. See that in our paper, despite the distributed setting, we have the same (non-local) trust model.
In particular, we assume an existence of a curator that is entitled to gather and see all participants’ data
in the clear and release the computed data to a wider (possibly untrusted) audience. Comprehensive
information on differential privacy can be found in Dwork and Roth (2014).

Probabilistic counters and their applications The idea of probabilistic counters, along with the well-
known Morris Counter was presented in the seminal paper Morris (1978). The aim was to construct a very
small data structure to represent a large set of events of some kind. In our paper, we focus on the Morris
Counter analysed in detail in Flajolet (1985). The second structure discussed in our paper is MaxGeo
Counter, introduced and analysed in Szpankowski and Rego (1990). More detailed and precise analysis
can be found in Eisenberg (2008). The most important application of MaxGeo Counter can be found
in Flajolet et al. (2007), where the authors propose the well-known HyperLogLog algorithm. Its practical
applications are widely described in Heule et al. (2013). There are several widely used improvements of
the HyperLogLog algorithm: HyperLogLog+ Heule et al. (2013), Streaming HyperLogLog with sketches
based on historical inverse probability Cohen (2015) or martingal estimator Ting (2014) or empirically
adjusted HyperBitBit (proposed by R. Sedgewick Sedgewick (2018)). The main goal of these adjustments
is to reduce the memory requirements (see, e.g., Yun et al. (2015) or Ting (2019)). For instance, some of
the above solutions are used in database systems for query’ optimisation or for document classification
purposes. Moreover, the MaxGeo counter was used in Palmer et al. (2002), for an adjustment of the
ANF tool, developed for data mining from extensive graphs, which enables it to answer many different
questions based on some neighbourhood function defined on the graph.

Unsurprisingly, one of the main applications of the approximate counter is to compute the size of
a database or its specific subset. A set of such applications can be found in Flajolet and Martin (1985).
In Van Durme and Lall (2009), the authors use Morris Counter for online, probabilistic, and space-efficient
counting over streams of fixed, finite length. The authors of Cichon and Macyna (2011) proposed an
application of a Morris Counter system for flash memory devices. Another application, presented in
Csűrös (2010), is a revisit of Morris Counter designed for binary floating-point numbers. In Gronemeier
and Sauerhoff (2009), Morris Counter is used in a well-known problem of counting frequency moments
of long data streams. The authors of Dice et al. (2013) focused on making probabilistic counters scalable
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and accurate in concurrent settings. The paper on probabilistic counters in hardware can be found in Riley
and Zilles (2006). A slightly modified version of Morris Counter called Morris+ was recently introduced
in Nelson and Yu (2022) with the proof of its optimality in terms of accuracy–memory trade-off.

In random graphs theory, Morris Counter is usually connected to greedy structures. For instance, in an
arrangement of a randomly labelled graph in Gilbert model G(n, p), it is possible to construct a greedy
stable set Sn, which size has the same distribution as the Morris Counter Mn of the base a = (1 − p)−1

(see, e.g., Frieze and Karonski (2015) or Bollobás (1998) for the fundamentals of random graph theory).
There are many other birth processes that are quite similar to the Morris Counter, which are applicable

in a variety of disciplines like biology, physics, or the theory of random graphs. Short descriptions of such
examples can be found in Crippa and Simon (1997). When talking about probabilistic counters, it is worth
mentioning the Bloom filter Bloom (1970), which are space-efficient probabilistic data structures that are
representations of sets. There exists a probabilistic counter that approximates the number of elements
represented by the given Bloom filter Swamidass and Baldi (2007).

Other common examples of probabilistic counters are Fp counters Alon et al. (1999); Indyk (2000),
which approximate the p-th moments of frequencies of occurrences of different elements in the database.
Let us also mention a paper Mishra and Sandler (2006) in which one can find numerous applications of
similar constructions to create pseudorandom sketches in Big Data algorithms.

Notice that the variety of possible applications of probabilistic counters creates an opportunity to exploit
inherent differential privacy properties. However, a new challenge arises — to calculate the parameters of
differential privacy for those counters, which are not connected straightforwardly with Morris or MaxGeo
Counters.

Probabilistic counters and preserving privacy Some probabilistic counters and similar structures
were previously considered in terms of privacy preservation. We mention only the papers strictly related
to the algorithms discussed in our paper (i.e., Morris Counter and MaxGeo). The authors of Desfontaines
et al. (2019) show that in the scenario of using different types of probabilistic counters for set cardinality
estimation with the Adversary being able to extract the intermediate values of the counter, privacy is not
preserved. Note that in this paper, we perform data aggregation instead of cardinality estimation. More-
over, we assume the Adversary is not able to extract any intermediate values from the counter. That is,
we consider a global model, while the result from Desfontaines et al. (2019) assumes the settings closer
to the classic local model Dwork and Roth (2014).

One of the main results of this submission is a careful and tight analysis of Morris Counter from
the context of preserving privacy. To the best of our knowledge, such analises have not been provided
so far. Our second contribution is an analogous analysis of the MaxGeo. There are a few very recent
papers presenting privacy-preserving protocols that use the Flajolet–Martin sketch as a building block.
In Flajolet and Martin (1985), so called Flajolet—Martin sketch was introduced. In Smith et al. (2020)
authors consider a general concept of a probabilistic counter, based on several MaxGeo counters and its
differential privacy. Nevertheless, they incorrectly call it a generalisation of the Flajolet–Martin sketch
(they probably confuse the Flajolet–Martin sketch with LogLog sketch).

We concern a concept of MaxGeo counter, which is a core of LogLog or HyperLogLog sketch, however,
it can be used in other arrangements as well. These papers in some cases provide an analysis of the privacy
guaranteed by Flajolet—Martin with the global model. In all the cases, the conclusion is positive in the
sense that the protocol itself provides some level of differential privacy without adding extra randomness.
Beneath papers provide an analysis of privacy guaranteed by the sketches related to LogLog algorithm,
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which can be seen as the processing of the fundamental MaxGeo counters. From this point of view, our
contribution about MaxGeo counters has a larger applicative potential.

In Smith et al. (2020) the authors consider, among others, a sketch that can be seen as a particular appli-
cation of the MaxGeo counter. They introduce its differentially private version via trick (adding artificial
utilities) and provide its accuracy when used to count the number of elements in multisets. Accidentally,
a proof of the basic theorem from Smith et al. (2020) uses an incorrect argument (inappropriate utilisation
of Hoeffding’s inequality), so it is difficult to compare the results precisely. Nevertheless, the overlap of
results between our paper and Smith et al. (2020) is only partial.

In Choi et al. (2020), the authors consider the LogLog sketch as a subroutine. After a careful anal-
ysis, they show that it is asymptotically (ε, δ = negl(λ))-DP (with respect to the numbers of different
elements), when the number of elements counted by the mechanism is at least 8Kλmax( 1ε , 1), where
K is some accuracy parameter, λ is some security parameter and negl(x) is some negligible function
of argument x (Theorem 4.2 in Choi et al. (2020)). Nevertheless, the analysis does not explain how to
choose parameters K and λ in order to obtain (ε, δ)-DP for a given ε and δ parameters. Moreover, a
consideration of asymptotic behaviour (with respect to the number of unique elements n) is not relevant
when the hash function restricts the possible result to the size bounded by its domain. Our analysis of the
MaxGeo counter provides an exact (non-asymptotic) dependence between n and the parameters ε and δ.

We also mention that some other pseudorandom structures have been analysed from the perspective of
differential privacy. For example, in Klonowski and Piotrowska (2018), the authors considered Bloom
filters as a means of constructing a privacy-preserving aggregation protocol.

3 Differential Privacy Preliminaries
In this section, we briefly recall differential privacy. For more details, see, e.g. Dwork and Roth (2014).
We denote the set of (positive) natural numbers by N and the set of all integers by Z. Moreover, let
N0 = N ∪ {0}. For a, b ∈ Z let us define a discrete interval [a, b] ∩ Z by [a : b]. We also define
[n] = {1, 2, . . . , n} for n ∈ N. We assume that there exists a trusted curator who holds, or securely
obtains, the data of individuals in a (possibly distributed) database x. Every row of x consists of the data
of some individual. By X , we denote the space of all possible rows. The goal is to protect the data of
every single individual, even if all users except one collude with an adversary to breach the privacy of this
single, uncorrupted user. On the other hand, the curator is responsible for producing a release – a possibly
accurate response to a requested query. This response is then released to the public, who is allowed to
perform a statistical analysis on it. The differential privacy is, by design, resilient to post-processing
attacks, so even if the adversary obtains the public release, he will not be able to infer anything about
specific individuals participating in this release.

For simplicity, we interpret databases as their histograms in N|X |
0 , so we can focus only on unique rows

and the numbers of their occurrences.

Definition 1 (Distance between databases) The ℓ1 distance between two databases x, y ∈ N|X |
0 is de-

fined as
∥x− y∥1 =

∑
i∈X
|xi − yi|,

where xi and yi denote the numbers of occurrences of an item (an individual) i in the databases x and y,
respectively.
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One can easily see that ∥x− y∥1 measures how many records differ between x and y. Moreover, ∥x∥1
measures the size of the database x.

A privacy mechanism is a randomised algorithm used by the curator that takes a database as input and
produces the output (the release) using randomisation.

Definition 2 (Differential Privacy – from Dwork and Roth (2014)) A randomized algorithm M with
domain N|X | is (ε, δ)-differentially private (or (ε, δ)-DP), if for all S ⊆ Range(M) and for all x, y ∈ N|X |

such that ∥x− y∥1 ⩽ 1 the following condition is satisfied:

P (M(x) ∈ S) ⩽ exp(ε) · P (M(y) ∈ S) + δ,

where the probability space is over the outcomes of the mechanismM.

When δ = 0,M is called (ε)-DP mechanism.
An intuition of (ε, δ)-DP is as follows: if we choose two consecutive databases (that differ exactly

on one record), the mechanism will likely return indistinguishable values. In other words, it preserves
privacy with high probability, but it is admissible for a mechanism to be out of control with negligible
probability δ.

Example 1 (Laplace noise) In the central model, a standard and widely used mechanism with the (ε)-DP
property is the so-called Laplace noise. A variable X has Laplace distribution with parameter λ (denoted
as X ∼ L(λ)), if its probability density function is

f(x) =
1

2λ
exp

(
−|x|
λ

)
.

Note that E (X) = 0 and Var(X) = 2λ2.
Let c(x) be the number of rows in x, which satisfy a given property. Note that c in the differential

privacy literature is usually referred to as count query. Imagine that an aggregating mechanism is defined
as follows: M(x) = c(x) + L(ε−1). ThenM is (ε)-DP (for more precise properties of Laplace noise,
see Dwork and Roth (2014)).

In the privacy analysis of large-scale distributed protocols, two types of approaches are typically distin-
guished: event/record-level (e.g., Wang et al. (2019); Papernot et al. (2017)), where information about a
specific event/record is protected, and user-level privacy (e.g., McMahan et al. (2018)), which protects the
privacy of the users themselves. Generally, the latter is a stronger model (see the discussion in McMahan
et al. (2018)).

Fundamentally, the model analysed in our work pertains to event-level privacy. That is, we protect
information regarding whether a counter incrementation event occurred. This corresponds to a scenario
in which a participant can perform a certain action only once (for example, liking a specific message
on typical social media platforms). These results can be directly adapted to scenarios where a single
user may be associated with multiple counter increments using standard methods. Naturally, the strength
of the privacy guarantee in such a framework must depend heavily on additional assumptions (such as
constraints on the number of events or the associations between users).

4 Probabilistic Counters — preliminaries
This paper focuses on probabilistic counters, further denoted by M . The notion of a probabilistic counter
is ambiguous in the literature. It is a stochastic process that can be interpreted as a mechanism defined
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on the space of all possible inputs, which should estimate some goal value in some sense. The exact
definition of this approximation is not crucial from the DP-point of view; thus we do not consider it in
this paper.

Each increase in the data source counted by the probabilistic counter is called an increment request.
Due to the randomised nature of probabilistic counters, each may change the value of the counter, but not
necessarily. We will also indicate the single increment request by ′1′. For the sake of generality, we also
assume that the counter can get as an input ′0′, and in such a case it simply does nothing. This is useful
for real-life scenarios, e.g., data aggregation (see Section 5). Obviously, only increment requests impact
the counter’s final result; hence, we indicate the counter’s value after n increment requests by Mn, and
we are not considering the number of the rest of the rows.

In Figure 1, one can see a graphical representation of the probabilistic counter. As mentioned, increment
requests are indicated by ′1′ and other rows by ′0′ input. The dice represent randomness. The X-mark
indicates that there is no action.

Fig. 1: Graphical depiction of the probabilistic counter.

We emphasise that the probabilistic counter depends on the number of increment requests. We want
to show that if we reveal its final value, then it does not expose any sensitive data about any single
record. Moreover, note that if x and y differ only by one input ′0′, then P (M(x) ∈ S) = P (Mn ∈ S) =
P (M(y) ∈ S), where n is the number of increment requests for both x and y. See that then the condition
in Definition 2 is trivially fulfilled. Hence, for our convenience, in this paper, we use the marking of only
the number n of increment requests provided by individuals when talking about the probabilistic counter
Mn.

Fact 1 Let M be a probabilistic counter with a discrete Range(M) = A. Moreover assume that for all
n,m ⩾ 1, such that |n−m| ⩽ 1, there exists such Sn ⊂ A that for all s ∈ Sn

P (Mn = s) ⩽ exp(ε) · P (Mm = s) (1)

and
P (Mn /∈ Sn) ⩽ δ . (2)

Then M is (ε, δ)-DP.

Note that, for our setting, Fact 1 is fully compatible with the intuition of regular differential privacy
(Definition 2). Indeed, Fact 1 can easily be derived from the observation that any set B ⊂ A is a disjoint
union of B ∩ Sn and B ∩ S′

n.
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Remark that ε and δ in Fact 1 can also be treated as functions of a parameter n, i.e. with respect to
the number of increment requests. Thence, we can consider the differential privacy of the variable Mn,
when n is known, or (ε(n), δ(n))-DP of the probabilistic counter M . The second variant lets us provide a
precise dependence of privacy parameters of the counter as the number of increment requests gets large.

4.1 Morris Counter
We begin with a short description of the Morris Counter (originally referred to as an approximate counter
Morris (1978); Flajolet (1985)). Fix a > 1. The algorithm 1 is a very simple pseudocode of the Morris
Counter Morris (1978).

1 M ← 1;
2 while receive request do
3 generate r ∼ Uni([0, 1]);
4 if r < a−M then
5 M ←M + 1;

Algorithm 1: Morris Counter Algorithm

Roughly speaking, we start with M = 1. Each incoming increment request triggers a random event.
This event increments the counter (M ← M + 1) with probability a−M (r ∼ Uni([0, 1]) generates
a number uniformly at random from the interval [0, 1], using in practice some Pseudo Random Number
Generator). Note that this approximate counting protocol can be easily distributed. Indeed, any entity who
wants to increment the counter only has to send the request to increment it. These requests can be queued
on the server and resolved one after another. A detailed description of the approximate counting method
can be found in Morris (1978); Flajolet (1985). Throughout this article, we examine only a standard
Morris Counter i.e., with the base a = 2. Morris Counter can also be defined recursively.

Definition 3 The Morris Counter is a Markov process (Mn, n ∈ N0) that satisfies:

P (M0 = 1) = 1 ,

P (Mn+1 = l|Mn = l) = 1− 2−l ,

P (Mn+1 = l + 1|Mn = l) = 2−l ,

for any l ∈ N and n ∈ N0.

Note that Definition 3 can be derived directly from a run of Algorithm 1. From now on, let P (Mn = l) =
pn,l. Directly from Definition 3 we get the following recursion:

pn+1,l = (1− 2−l)pn,l + 2−l+1pn,l−1 (3)

for l ∈ N and n ∈ N0 with starting and boundary conditions p0,1 = 1, p0,l = 0 for l ⩾ 2 and pn,0 = 0 for
n ∈ N0.

Accuracy versus Differential Privacy The accuracy of Morris Counter has been thoroughly analysed
in various classical papers. The first detailed analysis was proposed by Ph. Flajolet in Flajolet (1985). In
this part, we present the essence of theorems presented in this paper, which will be useful later on.
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First, we provide the asymptotics of the expected value and the variance of Morris Counter, with precise
numerical approximations of constants:

Fact 2 Let Mn denote Morris Counter after n successive increment requests. Then this random variable
has an expected value E (Mn) ≈ log(n) − 0.27395 (in this paper log states for binary logarithm) and a
variance Var(Mn) ≈ 0.763014.

Realize that Fact 2 guarantees high concentration ofMn around its average — a characteristic desirable
in order to satisfy differential privacy definition. Fact 2 also justifies a definition of moving discrete
intervals:

In = [⌈log(n)⌉ − 4 : ⌈log(n)⌉+ 4] ∩ [n+ 1] , (4)

which will emerge as a crucial point of our further considerations of this Markov process in terms of
differential privacy in this section. Let us mention that usually [⌈log(n)⌉ − 4 : ⌈log(n)⌉ + 4] ⊆ [n + 1],
so one may think that In are symmetric discrete intervals of length 8, centred at ⌈log(n)⌉.

The lion’s share of applications of Morris Counter is based on counting a number of occurrences, that
is, the number of increment requests. In order to estimate this value, we may use (3) and simply obtain
E
(
2Mn+1

)
= E

(
2Mn

)
+ 1, so together with the assumption M0 = 1 we obtain the following.

E
(
2Mn

)
= n+ 2 . (5)

Hence 2Mn − 2 is an unbiased estimator of the number of increments n. Remark that n can be saved in
⌈log(n)⌉ bits. On the other hand, Fact 2 shows that on average, log(log(n)) + O(1) bits are required to
store Mn. As announced earlier, this is the crucial advantage of Morris Counter. Moreover, analogously
to (5) we may obtain

Var(2Mn − 2) =
n(n+ 1)

2
. (6)

Formulas (5) and (6) will be used in the example of data aggregation analysis in Section 5.

4.2 MaxGeo Counter
We begin with a short description of MaxGeo Counter. Algorithm 2 shows its pseudocode. Informally,
for each increment request, the server has to generate a random variable from the geometric distribution
Geo(1/2) (ranged in N). The final result is the maximum taken over all these random variables generated.

1 C ← 1;
2 while receive request do
3 generate r ∼ Geo(1/2);
4 C ← max{C, r};
5 return C;

Algorithm 2: MaxGeo Counter Algorithm

The expectation and variance of the maximum of n i.i.d. geometric variables have already been anal-
ysed in the literature. For instance, Szpankowski and Rego Szpankowski and Rego (1990) provided exact
formulas for the’ expected value and variance of such variables. However, they are impractical for large
applications n. Hence, they also provided asymptotics (here, for a maximum of n independent Geo(1/2)
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distributions): E (Mn) = log(n)+O(1) and Var(Mn) = log(n)+O(1) and thus, similarly to the Morris
Counter, there are only log(log(n)) +O(1) bits required on average to save the MaxGeo Counter after n
increment requests.

4.3 General Probabilistic Counting with Stochastic Averaging
Here we recall briefly a General Probabilistic Counting with Stochastic Averaging algorithm, based on
the original idea from Flajolet and Martin (1985). Assume that there are m, initially empty lots related
to some independent copies of some probabilistic counter. For each increment request, we connect it
to one of the groups uniformly at random. Finally, we perform incrementation requests separately and
independently for each lot, obtaining the following. M [1],M [2], . . . ,M [m].

Without delving into details, for the original PCSA algorithm, E (Mn) ≈ log(φn), whereMn is a value
of a specific probabilistic counter connected with PCSA after n increment requests and φ is some magic
constant. If we denote the mean of these counters m after the total number of increment requests n by
σn(m), then we may introduce the statistic:

Ξn(m) =

⌊
m

φ
2σn(m)

⌋
.

Then (according to Flajolet and Martin (1985)), for any m = 2k, k ∈ N, E (Ξn(m)) ≈ n
(
1 + 0.31

m

)
and

Var(Ξn(m)) = n2
(
0.61
m

)
.

Note that averaging reduces the variance of the probabilistic counter. Remark that ”Stochastic Averag-
ing” in PCSA algorithm refers to the random choice of the number of entities in each group, and it slightly
differs from the standard averaging solution via the Monte Carlo method with groups of equal size.

An important conclusion is that we may apply the idea of original PCSA in general to any probabilistic
counters.

4.4 LogLog counter
In Durand and Flajolet (2003) a LogLog algorithm was proposed. It is based on m = 2k counters
(M [j])mj=1, where k > 0. We may interpret this algorithm in the context of probabilistic counters. In
such a scenario, it takes a hashed value (binary sequence) as input on every increment request. The first
k bits of the hash determine which of the m counters should be incremented (the index j is chosen as
the decimal representation of the sequence restricted to these first k bits; hence it translates the increment
request of the LogLog counter to the increment request of one of the m internal counters). Consider the
first non-zero bit of a tail of the sequence (starting from (k + 1)-th bit). Its position R in this tail follows
the Geo

(
1
2

)
distribution assuming the uniform distribution of the input sequences. If R > M [j], then

M [j] should become R. Otherwise, it does not change.
Therefore, LogLog counter is, in fact, a general PCSA that uses m MaxGeo counters. It can be used to

estimate the cardinality of increment requests n using the following estimator:

LogLog(m)
n = αmm2

1
m

m∑
j=1

Mn[j]

,

with the scaling constant given by the formula

αm =

(
Γ

(
− 1

m

)
2−1/m − 1

ln(2)

)−m

,
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where Γ is Euler’s Gamma function.
It is worth mentioning that αm is an increasing sequence and αm ≈ 0.79 for m ⩾ 64 (e.g. α8 ≈

0.69763 . . ., α64 = 0.78356 . . . and the limit is α∞ = 0.79402 . . .).
We are interested in the expectation and accuracy of the cardinality estimator, which can be briefly de-

scribed as follows: E
(
LogLog(m)

n

)
≈ n and Var(LogLog(m)

n ) ≈ 1.69n2

m (see Durand and Flajolet (2003)

for more details). However, in order to control the LogLog counter, on average about m log log
(
n
m

)
bits

of memory are needed.
An interesting fact is that the expectation of a single MaxGeo counter is logarithmic and the estimator

of n is of the form Cm2σn(m), for some constant C (just as in the case of the original PCSA).
Since LogLog counter is an effect of processing of some MaxGeo counters, therefore its differential

privacy is based on the same property of the auxiliary counters.

4.5 HyperLogLog
The maximum of geometric variables is also used as a primitive in the well known HyperLogLog algo-
rithm (see Flajolet et al. (2007)). Therefore, its privacy properties are important both from the theoretical
and practical point of view. Essentially, in HyperLogLog we perform the general PCSA algorithm, but
the final estimation is somehow different:

HyperLogLog(m)
n := αmm

2

 m∑
j=1

2−Mn[j]

−1

,

where αk is a constant dependent only on k (see Flajolet et al. (2007) for more details). It should be noted
that HyperLogLog related algorithms (mentioned in Section 1) are the best-known procedures designated
for cardinality estimation, and are close to optimum Indyk and Woodruff (2003). According to Flajolet
et al. (2007), for m = 2k, where k ⩾ 4,

E
(
HyperLogLog(m)

n

)
= n(1 + ψ3(n) + o(1)), with |ψ3(n)| < 5 · 10−5

and

Var(HyperLogLog)(m)
n = n2

(
βm√
m

+ ψ4(n) + o(1)

)2

, with |ψ4(n)| < 5 · 10−4 ,

where βm
m→∞−→

√
2 log(2)− 1 = 1.03896 . . . and βm ⩽ 1.106 for m ⩾ 16.

5 Privacy-Preserving Survey via Probabilistic Counters
In this section, we present an example scenario for data aggregation using probabilistic counters. We
assume that there is a server (alternatively, we call it aggregator) and a collection of nodes (e.g., mobile
phone users), and we want to perform a boolean survey with a sensitive question. That is, each user sends
′0′ if his answer is no and ′1′ if the answer is yes. We assume that the connections between users and
the server are perfectly secure, and the data can safely get to the trusted server. This can be performed
using standard cryptographic solutions. The server’s goal is to publish the sum of all responses ′1′ in a
way that preserves privacy. This goal could obviously be achieved by simply collecting all the data and
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adding an appropriately calibrated Laplace noise (see Dwork and Roth (2014)). However, we aim to show
that probabilistic counters have inherently sufficient randomness to be differentially private without any
auxiliary randomising mechanism.

We can present the general scenario in the following way:

1. each user sends his/her bit of data to the server using secure channels,

2. server plugs the data points sequentially into the counter,

3. if the data point is ′1′, the counter receives increment request, otherwise, the data is ignored,

4. each increment request is being processed by the counter and may lead (depending on randomness)
to an increase of the value of the counter,

5. when all data are processed, the value of the counter is released to the public.

Note that we assume that the Adversary has access only to the released value. We also released only
the counter value itself, which does not estimate the responses of ′1′. This estimation is a function of
the released value, which is different for Morris or MaxGeo Counter. There can also be various ways
to estimate the actual number using a counter value. However, this does not matter for our case, as
differential privacy is conveniently fully resilient to post-processing (see Dwork and Roth (2014)). The
graphical representation of our scenario considered is presented in Figure 2.

Fig. 2: Scenario for data aggregation using probabilistic counters. We assume that the Adversary does not
have any way to extract information from within the rectangle.

Adversary Our assumptions about the Adversary are the same as in most differential privacy papers.
Namely, he may collude with any subset of the participants (e.g., all except the single user whose privacy
he wants to breach). On the other hand, the aggregator is trusted. See that even though we have a
distributed system in mind, this is, in fact, a central differential privacy scenario. We do not assume
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pan-privacy. This means that the algorithm’s internal state is not subject to the constraints of differential
privacy. Obviously, if the Adversary knew the internal state of the counter at any time or could observe
whether, after receiving data from a specific user, the server had to perform computations to potentially
increment the counter (implying a ′1′ response) or not, he would easily violate the privacy. We also do not
assume privacy under continual observation. The survey is not published iteratively but once only after it
is finished. In short, the Adversary cannot

• extract or tamper with the internal state of the counter,

• extracts any information from the server or channels between users and the server.

The Adversary can

• collude with any subset C of the participants (e.g., know their data or send them all ′0′ to the server)
in order to breach the privacy of the user not belonging to C,

• obtain the final result of the aggregation and perform any desired post-processing on it.

6 Formulation of main results
In this section, we state main results. The proofs are postponed to Section 8 for the convenience of the
reader.

6.1 Morris Counter Privacy
In this subsection, we investigate the Morris Counter in terms of (ε, δ)-DP. Here we present the main
result:

Theorem 1 Let M denote the Morris Counter and assume |n−m| ⩽ 1. Then

P (Mn = l) ⩽

(
1− 16

n

)−1

· P (Mm = l) + δ,

where δ < 0.00033, so M is (L(n), 0.00033)-DP with

L(n) = − ln

(
1− 16

n

)
=

16

n
+

128

n2
+O(n−3) ⩽

16

n− 8
.

An explanation is postponed to subsection 8.1.

6.2 General result on Morris’ Counter privacy
In this part, we show that the Morris’ Counter guarantees privacy with both parameters tending fast to
zero. The analysis is based on the observations from the previous case. However, instead of In (see
Section 4.1 for the discussion), we consider intervals

Jn(c) = [⌈log(n)⌉ − ⌈c log(ln(n))⌉ : ⌈log(n)⌉+ ⌈c log(ln(n))⌉] ∩ [n+ 1] ,

where c is some positive constant such that ⌈c log(ln(n))⌉ ⩾ 1, for large enough n.
We can now state our next contribution:
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Theorem 2 Let M denote the Morris Counter. If c > 0 satisfies ⌈c log(ln(n))⌉ ⩾ 1, then M is

(ε(n), δ(n))-DP with parameters ε(n) = O
(

(log(n))2

n

)
and δ(n) = O

(
n−(ln(n))c−1

+ n−1 (ln(n))
−c
)

.

A proof is given in subsection 8.2

6.3 MaxGeo Counter Privacy
In this subsection, we present a theorem that shows the privacy guarantees of MaxGeo Counter. Assume
that we have n increment requests. In the case of MaxGeo Counter, it means that we generate random
variables X1, . . . , Xn, where Xi ∼ Geo(1/2) are pairwise independent. Ultimately, the result of the
counter is maximum over all Xi’s, namely X = max(X1, . . . , Xn). Now we are ready to present our
second main contribution.

Theorem 3 LetM denote the MaxGeo Counter, and n denote the number of increment requests. Consider
m such that |n−m| ⩽ 1. Fix ε > 0 and δ ∈ (0, 1) and let

lε =

⌈
log

(
eε

eε − 1

)⌉
.

If

n ⩾
ln(δ)

ln (1− 2−lε)

(
≈ − ln(δ)

ε

)
, (7)

then
P (Mn ∈ S) ⩽ exp(ε) · P (Mm ∈ S) + δ,

so M is (ε, δ)-DP.

A proof is postponed to subsection 8.3.

7 Practical applications
7.1 Discussion on arragements of the survey scenario
We usually consider probabilistic counters to be some kind of estimator. There is always a trade-off
between its precision and the quality of privacy. Ultimately, it means that for fixed privacy parameters
(ε, δ) we can calculate the minimum number of increment requests necessary to satisfy given privacy
parameters. This can be done by artificially adding them before actually collecting data. Of course, it
has to be taken into account that the initial added value should be subtracted from the final estimation of
the appropriate cardinality before publication, and this change can impact the precision of the estimation
(especially when the expected number of increment requests is very small). If we can perform such a
preprocessing, then for every (ε, δ), we can easily know how many artificial counts have to be added.
Nevertheless, we have to be aware that if the total number of increment requests is small, we may obtain a
poor approximation, so this approach should be used whenever the privacy is much more important than
the precision.

Note that, in light of our theorems 1 and 3, both the Morris Counter and the MaxGeo Counter preserve
differential privacy in such a scenario. Assume that at least n users have ′1′, therefore at least n incremen-
tation requests. See that we can either know it based on domain knowledge (e.g., we expect that at least
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some fraction of users will send ′1′ based on similar surveys) or add x counts to the counter artificially
initially. The number x should be chosen according to the maximal amenable value of the parameter ε
for a given application, but we recommend choosing rather small values of x. Obviously, in the case of
artificial counts, this has to be taken into account when estimating the final sum. Using the Morris counter,
we obtain (L(n), 0.00033)-DP with

L(n) = − ln

(
1− 16

n

)
⩽

16

n− 8
.

Example 2 Consider a result of Morris Counter with a small number n of increment requests (for ex-
ample, a number of respondents suffering from a rare illness). Therefore, we will likely require the pa-
rameter ε to be at most some threshold, e.g. 1. Therefore, from Theorem 1, we should add x counts where
L(x) ⩽ 16/(x− 8) ⩽ 1, so x ⩾ 24. Note that we do not include n in the above formula since it is not
known in advance. Therefore, using the Morris Counter, the above survey is at least (L(n+24), 0.00033)-
DP. However, the estimator should be modified as well, i.e., M ′

n = Mn+24, so n̂′ = max{2M ′
n − 26, 0}

(since 2M
′
n may be smaller than 26).

On the other hand, using the MaxGeo Counter for a given ε and δ we get (ε, δ)-DP as long as n ⩾
ln(δ)

ln (1− 2−lε)
, where lε = ⌈log (1 + 1/ε)⌉ (see Theorem 3).

Example 3 Assume that we have at least n = 200 increment requests. From Theorem 1, we have
L(n) ⩽ 16/(n− 8) ⩽ 0.08334. Hence, using the Morris Counter, the above survey is (0.08334, 0.00033)-
DP.

On the other hand, using the MaxGeo Counter for a given ε and δ we get (ε, δ)-DP as long as n ⩾
ln(δ)

ln (1− 2−lε)
, where lε = ⌈log (1 + 1/ε)⌉.

Example 4 Let ε = 0.5 and δ = 1/D2, where D is the number of all the survey participants. After
using our theorem and straightforward calculations, we have n ⩾ 7 ln(D) . Say we will have ⌊exp(20)⌋
participants. Then if we have at least 140 increment requests, we satisfy (0.5, 1/D2)-DP.

Note that from a differential privacy perspective, both the general PCSA algorithm and HyperLogLog
can be seen as arbitrary postprocessing performed on the m MaxGeo counters. Moreover, since each re-
sponse goes to one counter only, they are independent of each other, so we can use the parallel composition
theorem (see Dwork and Roth (2014)).

Observation 1 Assume we have k MaxGeo Counters M [1], . . . ,M [m], which are used either in Hy-
perLogLog or PCSA algorithm. If jth MaxGeo Counter is (εj , δj)-DP then the chosen algorithm is
(max

i
εi,max

i
δi)-DP.

7.2 Comparison of Morris and MaxGeo Counters

In this subsection, we compare the’ privacy and storage properties of data aggregation algorithms based
on one of the investigated counters or the standard Laplace method.

We start with auxiliary remarks for the privacy of MaxGeo Counter. For instance, see that if δ and n



Probabilistic Counters for Privacy Preserving Data Aggregation 17

are fixed, then from Theorem 3 and lε ⩽
⌈
ln
(
1 + ε−1

)⌉
we obtain

ε(n) ⩾

(
2

⌊
− log

(
1−δ

1
n

)⌋
− 1

)−1

=: ε0(n) . (8)

We want to optimise ε(n), so we will consider ε0(n) defined as the right-hand side of (8). In order to limit
it let us consider the following function of x ∈ R+:

ψ(x, δ) :=

((
1− δ 1

x

)−1

− 1

)−1

= − ln(δ)

x
+

ln(δ)2

2x2
− ln(δ)3

6x3
+O(x−4) . (9)

Naturally, then ε0(n) ⩾ ψ(n, δ) = −ln(δ)/n+O(n−2). Since ψ is decreasing with respect to x, we will
consider when ε0(n) changes. More precisely, consider a minimal k such that ε0(n) < ψ(n − k, δ) ⩽
ε0(n−k), which appears to be the neat upper bound for ε(n). However, since ε0(n) is the non-ascending
step function, we realise that

ε0(n− k) ⩾
(
2

⌊
− log

(
1−δ

1
n

)⌋
−1 − 1

)−1

= −2 ln(δ)

n
+

3 ln(δ)2

n2
− 13 ln(δ)2

3n3
+O(n−4) .

If we denote ϕ(n, δ) :=
(
2

⌊
− log

(
1−δ

1
n

)⌋
−1 − 1

)−1

, then we can summarise our recent considerations

in a short way by ψ(n, δ) ⩽ ε(n) < ϕ(n, δ). Thence, in the case where we fix the parameter δ = 0.00033,
we obtain

8.0164 . . .

n
+

32.13147 . . .

n2
+O(n−3) ⩽ ε(n) ⩽

16.0328 . . .

n
+

192.789 . . .

n2
+O(n−3) .

On the other hand, from Theorem 1, we know that when δ = 0.00033, then for Morris Counter (with ε(n)
defined by (10)) the quite similar relation holds:

ε(n) ⩽ − ln

(
1− 16

n

)
=

16

n
+

128

n2
+O(n−3) .

Therefore, Morris and MaxGeo Counters behave quite similarly under comparable conditions, and Figure
3 confirms this observation. Indeed, in Figure 3 we can see that the difference between the values of the
parameters ε(n) for both counters decreases as n increases.

Realise that the previous conclusions remain true if δ(n) is not constant. This short observation enables
us to obtain a more general result:

Fact 3 Let δ(n) = n−c for some constant c > 0. Then

ε(n) ⩽ ϕ(n, δ(n)) =
2c ln(n)

n
+

3c2 ln(n)2

n2
+O

(
c3 ln(n)3

n3

)
and MaxGeo Counter is (ϕ(n, δ(n)), δ(n))-DP for any n ∈ N.
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Fig. 3: Values of ε(n) parameters for Morris and MaxGeo Counters compared with boundaries for ε(n)
for MaxGeo Counter: the lower one — ψ(n, δ) and the upper one — ϕ(n, δ) (n ⩽ 160 and δ = 0.00033).

Notice that in this case, both sequences of parameters tend to 0, which may be used as an advantage
in applications, especially when we expect that the total number of increment requests will be very large.
However, we emphasise that this requires that δ(n) be negligible.

In Figure 4, we may briefly see that probabilistic counters can be used for data aggregation to decrease
memory usage in exchange for a slight increase of the parameter δ of differential privacy and wider
confidence intervals (lower accuracy). In recent years Big Data related problems became very popular.
Note that this kind of application makes major use of memory. When the server aggregates many different
data, standard solutions may cause a serious problem with data storage, which can be encountered by using
the idea based on a probabilistic counter instead.

Example 5 Imagine that 100 million people participate in a general health survey with 100 yes/no
sensitive questions.For every question, we would like to estimate the number of people who answered
yes, but we want to guarantee the differential privacy property at a reasonable level. Realise that if the
number of yes answers is very small for some questions (e.g., when the question is about a very rare
disease), then the number of no answers may be counted instead. Obviously, this method gains privacy,
but loses precision.

According to Figure 4, if we use the Laplace method, then we may need approximately 100 log(108) =
2657.54 . . . bits to store the counters. Let us note however, if we use the Morris Counter instead, about
100 log(log(108)) = 473.20 . . . bits are needed. Note that all terms O(1) in the ”Average memory” row



Probabilistic Counters for Privacy Preserving Data Aggregation 19

Method Laplace noise Morris counter LogLog(2) counter
L(n/16) Mn (Mn[1],Mn[2])

(ε, δ)-DP (16/n, 0)-DP ( 16
n−8 , δ)-DP (∼ 32.066

n , δ)-DP

Estimator n̂ n+ L(n/16) 2Mn − 2 ∼ 0.89 · 2 1
2

∑2
i=1 Mn[i]

Var(n̂) n2

128
n2+n

2 ∼ 0.845 · n2

Avg. memory log(n) +O(1) log(log(n)) +O(1) 2 log(log(n2 )) +O(1)

Fig. 4: A summary of data aggregation techniques. The standard one is based on the Laplace method, and
the rest are based on probabilistic counters. Recall that δ = 0.00033.

of Figure 4 are bounded by 1. Hence, its impact is negligible from a practical point of view.
One may also complain about the heavy use of the pseudo random number generator (PRNG) that prob-

abilistic counters make. However, this problem may be resolved by generating the number of increment
requests which have to be forgotten until the next update of the counter by using appropriate geomet-
ric distributions (see, for example, Li (1994) for a similar approach applied to the reservoir sampling
algorithm). This way, the use of PRNG can be substantially reduced.

8 Proofs
8.1 Main Theorem for Morris Counter (Theorem 1)
The proof is complicated and very technical. In order to better understand it, we are going to provide a
presentation of a plan and main ideas beneath the parts of the proof. Let nk := 2k + 1 for k ∈ N.

We introduce P(c)
k as the probability that the Morris Counter Mn being k + c after nk increment

requests, i.e., pnk,k+c. The ”special” sequences (P(c)
k )k play a crucial role in the proof.

Roadmap of the proof: We can divide the proof of Theorem 1 into five phases (the main results of the
phases are given in brackets):

1. δ phase (Theorem 5),

2. relations between ”special” sequences (P(c)
k )k with respect to c (Claim 1),

3. dependencies between consecutive distributions (of Mn and Mn+1) (Claim 2),

4. extrapolation of P(c)
k ≤ 2c+3P(c+1)

k property to N > nk (Lemma 3),

5. ε phase (Theorem 6).

During the first phase, we consider a concentration of Morris Counter in the vicinity of its mean value.
More precisely, we show that the Morris Counter after n increment requests takes values in relatively
small intervals In with probability 1 − δ (note that then Mn satisfies condition (2) for Sn = In), where
In is defined as in (4) and δ is some small constant, which arises from the proof. Note that In can be
interpreted as confidence intervals at level 1 − δ (see, e.g. Neyman (1937)). This phase is divided into
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lemmas 1 and 2. The first one uniformly bounds the formula for probabilities given by the Theorem below,
due to Flajolet:

Theorem 4 (Proposition 1 from Flajolet (1985)) The probability pn,l that the Morris Counter has value
l after n increment requests is

pn,l =

l−1∑
j=0

(−1)j 2−j(j−1)/2
(
1− 2−(l−j)

)n j∏
i=1

(
1− 2−i

)−1
l−1−j∏
i=1

(
1− 2−i

)−1
.

We sum up the bounds on pn,l to obtain a small upper bound for δ1 := P (Mn ⩽ ⌈log(n)⌉ − 5) (Lemma
1). The same bounds cannot be utilised efficiently in the proof of Lemma 2. Instead, it couples Mn with
a process Xn, which increases during the first ⌈log(n)⌉+ 1 steps, and then follows the same update rule,
so Mn ⩽ Xn almost surely.

Therefore δ2 := P (Mn ⩾ ⌈log(n)⌉+ 5) ⩽ P (Xn ⩾ ⌈log(n)⌉+ 5), which is much easier to bound
from definition. Note that such a coupling cannot be used in the proof of Lemma 1. The first phase is
summarised by Theorem 5, i.e., establishes δ = δ1 + δ2.

In the second phase, we show that (P(4)
k )k is descending for large enough k and (P(5)

k )k is ascending for
big enough k (Lemma 6). A change of monotonicity is the first obstacle in the proof of the main theorem.
The main idea beneath the proof of this fact is to calculate the differences between consecutive elements of
the considered ”special” sequences by representing them as the sums via application of Flajolet’s Theorem
4 and realising that usually at most first ten terms of the sums are crucial (on the other hand, taking less
than eight terms is rarely sufficient). This is the second issue, which makes the proof so complicated. Let
us note that Theorem 4 presents an explicit formula for P (Mn = l), which (as we may experience in A)
is not convenient to analyse. However, it is simple enough to find the values numerically (also note that
recursive Definition 3 provides those probabilities easily as well, However, this approach is inefficient in
terms of memory and time for a large number of requests n). Therefore, by precise analysis, we can finally
check some sums numerically and obtain the thesis of Lemma 6 for k ⩾ 15. However, numerically, one
can extrapolate it to some smaller k as well (remark that this proof does not work for small values of k,
since not only ten terms of the aforementioned sums are important). The lemma 6 can be used directly to
show that P(4)

k ⩽ 27P(5)
k for k ⩾ 7 (Claim 1). Let us note that, in fact, this result is not true for k < 7.

The third phase is based on the foregoing intuition: If the ratios of consecutive probabilities of distribu-
tion of Mn increase almost exponentially, then the ratios of distribution of Mn+1 increase similarly (but
slightly slower). The proofs mainly use the definition of the Morris counter.

The fourth phase (i.e. Lemma 3) shows that if pnk,k+c ⩽ 2c+3pnk,k+c+1, for c ∈ [−k : 4], then the
same is true if we substitute nk with a bigger number (i.e., this property is increasing with respect to the n
parameter). In order to apply this result, we have to satisfy some starting conditions. We have numerically
checked the appropriate condition for k = 7 (presented later, in Table 1). Therefore, the second phase of
the proof of Theorem 1 justifies the assumptions of Lemma 3 with respect to the parameter k, as long as
k ⩾ 7 and the third phase let us obtain the appropriate assumptions with respect to c. One can check that
for k < 7, an analogous assumption is not true.

The latter phase begins with the application of the result from the previous part. We obtain ε is at most
L(n) (provided in the formulation of Theorem 1), for k ⩾ 7. The last piece of this puzzle is justified by
a numerical evaluation for k < 7 (presented later, in Figure 5), which ends the ε phase and so the whole
proof.
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Proof In the following, we present the proof of the main contribution. Nevertheless, some technical
lemmas are given in the A.

δ phase Let us begin with a reminder. First, Mn ∈ N0 and, moreover,

In ⊆ [⌈log(n)⌉ − 4 : ⌈log(n)⌉+ 4] .

We provide few facts about the concentration of the distribution of the random variable Mn, or more
precisely about the probability that Mn will be outside the interval In.

Lemma 1 Let Mn be the state of the Morris counter after the n increment requests. Then

δ1 := P (Mn ⩽ ⌈log(n)⌉ − 5) ⩽ 0.000006515315 . . . .

An increasing sequence
k∏

i=1

(
1− 2−i

)−1
that emerged in Theorem 4 will be indicated by rk (with

r0 = 1) and we denote its limit
∞∏
i=1

(
1− 2−i

)−1
= 3.46274 . . . by R.

Let us mention this with the notions qk and Q from Flajolet (1985), rk = 1
qk

and R = 1
Q .

Proof: At first, we want to bound a lower tail of the distribution δ1.
Here we would like to find a sufficient upper limit for the above probability. Assume that l ⩽ ⌈log(n)⌉−

5.
Realise that rk ⩽ R and that y = −x + 1 is a tangent line to the plot of y = −x(x − 1) in the point

(x, y) = (1, 0). Therefore:

pn,l
Thm 4
⩽

l−1∑
j=0

2−
j(j−1)

2

(
1− 2−(l−j)

)n
rjrl−1−j ⩽ R2

(
1− 2−l

)n l−1∑
j=0

√
2
−j+1

⩽ R2 2√
2− 1

exp(−n2−l) = R2(2
√
2 + 2) exp(−n2−l).

The above formula will help us limit the left tail of the distribution of Mn:

δ1 =

⌈log(n)⌉−5∑
l=1

P (Mn = l) ⩽ R2(2
√
2 + 2)

⌈log(n)⌉−5∑
l=1

exp(−n2−l)

⩽ R2(2
√
2 + 2)

∞∑
k=4

exp(−2k) ⩽ R2(2
√
2 + 2)

∞∑
k=1

exp(−16k)

= R2(2
√
2 + 2)

exp(−16)
1− exp(−16)

= 0.000006515315 . . . .

2
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Remark The bound for pn,l obtained above is useless when l ⩾ log(n)− 2, so it cannot be used in the
next lemma for a symmetric upper tail.

Lemma 2 Let Mn be the state of the Morris Counter after the n increment requests. Then

δ2 := P (Mn ⩾ ⌈log(n)⌉+ 5) ⩽ 0.000325521 . . . .

Proof:
Consider a processX = (Xk∈[0:n]). LetX initially follow the incrementation rule P (Xk = k + 1) = 1

for k ∈ [0 : ⌈log n⌉+ 1]. Afterwards, let this Markov chain imitate the transition rule of Morris Counter,
that is

P (Xk+1 = m+ 1|Xk = m) =
1

2m
= 1− P (Xk+1 = m|Xk = m)

for k ⩾ ⌈log(n)⌉+1. Naturally, for k ⩽ ⌈log(n)⌉+1, we have Xk ⩾Mk, so we may couple realisations
of these two processes in such a way that whenever X increases, so is M and if M does not change, then
X does not increase as well (note that X has at most the same probability of a positive increase as M at
any point in time).

To abbreviate the expressions, let us denote m = n− ⌈log(n)⌉ − 1 and

µι = P (Xk+1 = ⌈log(n)⌉+ ι+ 1|Xk = ⌈log(n)⌉+ ι) =
1

2⌈log(n)⌉+ι
= 1− νι ,

for any ι ∈ Z. Moreover, let us define a three-dimensional discrete simplex:

S
(3)
k = {l̄ = (l1, l2, l3) ∈ N3

0 : l1 + l2 + l3 ⩽ k} .

Thus,

δ2 ⩽ P (Xn ⩾ ⌈log(n)⌉+ 5) =
∑

l̄∈S
(3)
m−3

νl12 µ2ν
l2
3 µ3ν

l3
4 µ4 ⩽

∑
l̄∈S

(3)
m−3

1

23⌈log(n)⌉+9

=

m−3∑
k=0

(
k + 3

2

)
1

23⌈log(n)⌉+9
⩽

1

210n3

m∑
k=3

k2 − k .

Realise that
m∑

k=3

k = (m− 2)(m+ 3)/2 and
m∑

k=3

k2 = (m− 2)(2m2 + 7m+ 15)/6, so

δ2 ⩽
1

210n3
1

6
(m− 2)(2m2 + 4m+ 6) =

1

3 · 210n3
(m3 −m− 6)

⩽
m3

3 · 210n3
⩽

1

3 · 210
= 0.000325521 . . . .

Note that when m < 3 (that is, when n < 7), then the above sums are empty, but on the other hand
⌈log(n)⌉+ 5 > n+ 1, so the inequality is trivially true. 2
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Theorem 5 The state of the Morris Counter after n increment requests is not in the set

In = [⌈log(n)⌉ − 4 : ⌈log(n)⌉+ 4] ∩ [n+ 1]

with probability δ < 0.00033.

Proof: Realise that P (Mn ∈ [1 : n+ 1]) = 1. This observation, together with the lemmas 1 and 2 yields

δ := P (Mn /∈ In) = δ1 + δ2 < 0.00033 .

2

The second phase In this part of the investigation, we try to establish the ε(n) parameter of DP of Mn.
In fact, it remains to examine the property (1) in the interval In, as Theorem 5 entails (2) for Sn = In.
Therefore, we are interested in finding the upper bound for maximal privacy loss for any n ∈ N and
k ∈ In, namely:

ε(n) = max

{∣∣∣∣ln(pn±1,k

pn,k

)∣∣∣∣ : k ∈ In} . (10)

Actually, we may consider the sign ′+′ instead of ′±′ in (10), because | ln(x)| = | ln(1/x)|. However,
when In ̸= In±1, we have to behave carefully, so in particular, an additional cheque of privacy loss with
the sign ′−′ is needed when n is of a form 2l + 1 for some l ∈ N.

Claim 1 For k ⩾ 7, we have p2k+1,k+4 ⩽ 27p2k+1,k+5.

The above claim is the result of a simple application of Lemma 6 from A.

The third phase

Claim 2 If for any given n, there exists an ascending and positive sequence (αi)
n
i=1 such that

(∀ i ∈ [1 : n]) pn,i = 2iαipn,i+1,

then there also exists an ascending and positive sequence (α′
i)

n+1
i=1 such that

(∀ i ∈ [1 : n+ 1]) (pn+1,i = 2iα′
ipn+1,i+1) ∧ (∀ i ∈ [1 : n]) (α′

i < αi) .

This claim arises from lemmas 7 and 8 from A.

The fourth phase We use Claim 2 to guarantee starting conditions for the next Lemma 3. However,
in order to apply Lemma 3, we will also use Claim 1, which assumes that n ⩾ 27 + 1. Hence, we
would like to gather some information about the distribution of M27+1. More precisely, we are interested
in the behaviour of θi = p129,i/p129,i+1 for i ⩽ 11, which we present in Table 1. We briefly see a
superexponential trend of proportions θi, so the possibility of using Claim 2 for n ⩾ 27 + 1 is justified. It
might seem that the choice of n is arbitrary, but it occurs that the distribution of M26+1 does not satisfy
the necessary assumptions for privacy loss, although M26+1 can still fulfil the property of (ε(n), δ)-DP
with the parameters given in Theorem 1.
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i θi 2i−4 24−iθi

1 9.6205 . . . · 10−24 0.125 7.6964 . . . · 10−23

2 1.73351 . . . · 10−9 0.25 6.93402 . . . · 10−9

3 0.000119359 . . . 0.5 0.000238718 . . .
4 0.0140238 . . . 1 0.0140238 . . .
5 0.158163 . . . 2 0.0790814 . . .
6 0.771817 . . . 4 0.192954 . . .
7 2.67702 . . . 8 0.334628 . . .
8 7.83367 . . . 16 0.489604 . . .
9 20.8095 . . . 32 0.650297 . . .

10 52.0472 . . . 64 0.813238 . . .
11 125.065 . . . 128 0.977073 . . .

Tab. 1: Ratios of adjacent probabilities of the distribution of M27+1, compared with the exponential
function of base 2.

Lemma 3 Let k ∈ N \ {0} and nk = 2k + 1. If pnk,k+c ⩽ 2c+3pnk,k+c+1 for every c in the interval
[−k : 4], then

(∀ N ⩾ nk)(∀ c ∈ [−k : 4]) pN,k+c < 2c+3pN,k+c+1 .

Proof: Realise that for c = −k, the required inequality is trivial. Therefore, we can safely consider only
c ∈ [−k + 1 : 4]. We would like to prove this inductively with respect to c and N . Assume that for some
N ⩾ nk and any d ∈ {c− 1, c} we have pN,k+d < 2d+3pN,k+d+1.

Then also

pN+1,k+c
(3)
= pN,k+c(1− 2−k−c) + pN,k+c−12

−k−c+1

⩽ 23+cpN,k+c+1(1− 2−k−c) + 23+(c−1)pN,k+c2
−k−c+1

< 23+c(pN,k+c+1(1− 2−k−c−1) + 2−k−cpN,k+c) = 23+cpN+1,k+c+1 .

If we start with c = −k + 1, then let us prove inductively the appropriate condition for all N ⩾ nk. In
addition, the thesis is followed by the induction with respect to c. 2

ε phase Claims 1 and 2, together with Table 1 enable us to apply Lemma 3 for n = 2k + 1 for any
k ⩾ 7.

Theorem 6 Let n > 27 = 128 and k ∈ In. Then

1− 16

n
⩽
pn±1,k

pn,k
⩽ 1 +

16

n
.

Proof: According to the previous discussion on formula (10), we examine

pn+1,k

pn,k

(3)
=
pn,k(1− 2−k) + 2−k+1pn,k−1

pn,k
= 1 + 2−k

(
−1 + 2

pn,k−1

pn,k

)
.
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Let us denote l = ⌈log(n)⌉ and c = k − l ∈ [−4 : 4]. Then Lemma 3 bears pn,k−1 ⩽ 2c+3pn,k, so

pn+1,k

pn,k
⩽ 1 + 2−l−c(−1 + 2c+4) < 1 + 2−l+4 = 1 +

16

2⌈log(n)⌉
< 1 +

16

n
.

Realise that if n = 2l−1 + 1 for some l ∈ N, then a little adjustment is necessary. Indeed, let now
c− 1 = k − l ∈ [−4 : 4], and once again, Lemma 3 provides pn−1,k−1 < 2c+2pn−1,k. However, it still
holds that:

pn,k
pn−1,k

= 1 + 2−k

(
−1 + 2

pn−1,k−1

pn−1,k

)
⩽ 1 + 2−l−c+1

(
−1 + 2c+3

)
< 1 +

16

n
.

On the other hand, we have inequalities pn+1,k >
(
1− 2−l−c

)
pn,k and pn,k >

(
1− 2−l−c

)
pn−1,k for

any c ∈ [−4 : 4], so both fractions exceed 1− 16/n. 2

Theorem 6 only provides ε(n) ⩽ − ln (1− 16/n) for n > 128 (compare with (10)). However, in
Figure 5 we may briefly see that the above inequality is true for smaller numbers of requests n as well.

Having all the technical lemmas, we are now ready to prove Theorem 1.

Proof: (of Theorem 1) Suppose that Sn = In in Fact 1. Then from theorems 5 and 6 we can easily see
that P (Mn /∈ Sn) < 0.00033 and

(∀ m ∈ {n− 1, n+ 1}) (∀ l ∈ Sn) P (Mn = l) ⩽

(
1− 16

n

)−1

· P (Mm = l) ,

hence, from Fact 1 we obtain the main result. 2

In the Figure 5 one can see that values of ε(n) are strictly between sequences − ln(1 − 8/n) and
− ln(1 − 16/n) for n ∈ [17 : 160]. We can also observe that ε(n) ≈ 24−⌈log(n)⌉ in this interval. Note
that ⌈log(n)⌉ ⩽ 4 for n ⩽ 16, so ⌈log(n)⌉ − 4 < 1, but M is always positive. This can justify the
chaotic behaviour of the process for n ⩽ 16. Nevertheless, Figure 5 affirms the quality of ε(n) parameter
established in Theorem 1.

Moreover, let us mention that for the strategy used in the proof, we cannot pick smaller ε of the same
form:

Observation 2 Assume that for In, defined in (4), δ = PrMn /∈ In and ε(n), defined via (10), is of the
form | − ln(1− c

n )|. Then c = 16 is optimal constant in Theorem 1 (it cannot be improved). Indeed, see
that the bound is reached for n = 32:

p33,1
p32,1

=
1

2
= 1− 16

32
.

As can be seen in Figure 5, the minimal c for ε(n), where n is of the form 2k, for k > 5, is also very close
to 16.
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Fig. 5: Exact values of ε(n) parameter for n ⩽ 160 compared with plots of sequences − ln(1 − 16/n)
and − ln(1− 8/n).

8.2 General result on Morris’ Counter privacy (Theorem 2)
Remark that ⌈c log(ln(n))⌉ ⩾ 1 can always be guaranteed, when n is large enough.

Proof: For our convenience, let us denote ρ := ⌈c log(ln(n))⌉. We assume that ρ ⩾ 1. First, we show that
δ∗1 := P (Mn ⩽ ⌈log(n)⌉ − ρ− 1) = O

(
n−(ln(n))c−1

)
. The proof is analogous to the one of Lemma 1

(we omit similar parts). Indeed,

δ∗1 =

⌈log(n)⌉−ρ−1∑
l=1

P (Mn = l) ⩽ R2(2
√
2 + 2)

∞∑
k=ρ

exp(−2k)

⩽ R2(2
√
2 + 2)

∞∑
k=1

exp(−2ρk)

⩽ R2(2
√
2 + 2)

exp(−(ln(n))c)
1− exp(−(ln(n))c)

= O
(
n−(ln(n))c−1

)
.

Now, we are going to prove δ∗2 := P (Mn ⩾ ⌈lg(n)⌉+ ρ+ 1) = O
(
n−1 (ln(n))

−c
)

. We use a similar
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notation and technique as in the proof of Lemma 2, but this time we utilise a discrete discrete two-
dimensional simplex (ρ− 1):

S
(ρ−1)
k =

{
l̄ = (l1, l2, . . . , lρ−1) ∈ Nρ−1

0 :

ρ−1∑
i=1

li ⩽ k

}
.

We couple (Mn)n with the same process (Xn)n as in Lemma 2. Roughly speaking, X0 = 1 and Xn

almost always increments by 1 until n = ⌈log(n)⌉+1 and it further follows the same incrementation rule
as the Morris counter. Then

δ∗2 ⩽ P (Xn ⩾ ⌈log(n)⌉+ ρ+ 1) =
∑

l̄∈S
(ρ−1)
m−ρ+1

ρ−1∏
i=1

νlii+1µi ⩽
∑

l̄∈S
(ρ−1)
m−ρ+1

ρ−1∏
i=1

µi

=
∑

l̄∈S
(ρ−1)
m−ρ+1

2−[(ρ−1)⌈log(n)⌉+
∑ρ

i=2 i]

=

m−ρ+1∑
k=0

(
k + ρ− 1

ρ− 2

)
2−[(ρ−1)⌈log(n)⌉+ (ρ+2)(ρ−1)

2 ]

⩽ mρ−2n1−ρ2−
ρ2+ρ−2

2 ⩽ n−12−ρ+1 = O
(
n−1 (ln(n))

−c
)
.

Therefore P (Mn /∈ Jn(c)) = δ∗1 + δ∗2 = O
(
n−(ln(n))c−1

+ n−1 (ln(n))
−c
)

In addition, we would like to consider fractions pn+1,k

pn,k
for k ∈ Jn(c) as in the proof of Theorem 6.

Indeed
1− 2−k ⩽

pn+1,k

pn,k
= 1− 2−k + 2−k+1 pn,k−1

pn,k
.

We are going to use another formula from Flajolet (1985). For any n ∈ N and k ∈ [1 : n+ 1],

pn,k = 2−
k(k−1)

2

∑
l̄∈S

(k)
n−k+1

k∏
i=1

(
1− 2−i

)li
.

Let us denote the above sum by ςk(n− k + 1). We note that

2−k+1 pn,k−1

pn,k
= 2−k+1 2

− (k−2)(k−1)
2 ςk−1(n− k + 2)

2−
k(k−1)

2 ςk(n− k + 1)
=
ςk−1(n− k + 2)

ςk(n− k + 1)
.

Realise that ςk−1(n − k + 2) ⩽ ςk−1(n − k + 1)
∑k−1

i=1

(
1− 2−i

)
= ςk−1(n − k + 1)

(
k − 2 + 2k−1

)
.

This follows from the fact that each summand of ςk−1(n− k + 2) can be obtained from some summands
of ςk−1(n − k + 1) by multiplication by one of the terms

(
1− 2−i

)
. Moreover, note that ςk(n − k + 1)

has
(
n−k+1+(k−1)

k−1

)
=
(

n
k−1

)
summands and, similarly, ςk−1(n − k + 1) has

(
n−1
k−2

)
summands. One can
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briefly see that a function f(i) =
(
1− 2−i

)
is increasing, hence

ςk(n− k + 1) ⩾
∑

l̄∈S
(k)
n−k+1

(
1− 2−k+1

)lk−1+lk
k−2∏
i=1

(
1− 2−i

)li
=

∑
l̄∈S

(k−1)
n−k+1

(lk−1 + 1)

k−1∏
i=1

(
1− 2−i

)li
.

Due to the monotonicity of f , one can use cascading substitutions: some of f(k) by f(k−1), then some of
f(k− 1) by f(k− 2) etc., in order to balance the numbers of all the occurring summands, what provides:

ςk(n− k + 1) ⩾
∑

l̄∈S
(k−1)
n−k+1

(
n

k−1

)(
n−1
k−2

) k−1∏
i=1

(
1− 2−i

)li
=

n

k − 1
ςk−1(n− k + 1) .

Therefore ςk−1(n− k + 2) ⩽
(k−2+2k−1)(k−1)

n ςk(n− k + 1) and finally we obtain

pn+1,k

pn,k
⩽ 1− 2−k +

(
k − 2 + 2k−1

)
(k − 1)

n
< 1 +

(k − 1)2

n
.

When k ∈ Jn(c), then

exp

(
−O

(
log(n)

n

))
= 1− 2−⌈log(n)⌉+⌈log ln(n)⌉

<
pn+1,k

pn,k
<

1 +
(⌈log(n)⌉+ log ln(n))2

n
= exp

(
O

(
(log(n))2

n

))
.

This shows that ε(n) = O
(

(log(n))2

n

)
. 2

8.3 Main result for MaxGeo Counter (Theorem 3)

Proof: We have n increment requests, which influence the value of MaxGeo Counter M . Then the result
of the mechanism is X = max(X1, . . . , Xn), where Xi ∼ Geo(1/2) are pairwise independent. First, we
observe that if n = m, the counter trivially satisfies differential privacy, as the probability distribution of
X does not change. From now on, we assume that |n−m| = 1. See that

P (X ⩽ l) =

n∏
i=1

P (Xi ⩽ l) = (P (X1 ⩽ l))
n
=

(
1− 1

2l

)n

=

(
2l − 1

2l

)n

.



Probabilistic Counters for Privacy Preserving Data Aggregation 29

Furthermore

P (max(X1, . . . , Xn) = l) = P (X = l) = P (X ⩽ l)− P (X ⩽ (l − 1))

=

(
2l − 1

2l

)n

−
(
2l−1 − 1

2l−1

)n

=

(
2l − 1

)n − (2l − 2
)n

2l·n
.

Now we need to calculate the following expression

P (max(X1, ...Xn) = l)

P (max(X1, ...Xn, Xn+1) = l)
=

(
2l − 1

)n − (2l − 2
)n

2l·n(
2l − 1

)n+1 −
(
2l − 2

)n+1

2l·(n+1)

=

((
2l − 1

)n − (2l − 2)n
)
· 2l

(2l − 1)
n+1 − (2l − 2)n+1

=
2l

2l − 1
·
((
2l − 1

)n − (2l − 2)n
)(

(2l − 1)
n − (2l−2)n+1

2l−1

)
⩽

2l

2l − 1
·
((
2l − 1

)n − (2l − 2)n
)(

(2l − 1)
n − (2l−2)n+1

2l−2

)
=

2l

2l − 1
= 1 +

1

2l − 1
.

For fixed ε we need to satisfy the following inequality∣∣∣∣ln( P (max(X1, ...Xn) = l)

P (max(X1, ...Xn, Xn+1) = l)

)∣∣∣∣ ⩽ ε ,

which gives

ln

(
1 +

1

2l − 1

)
⩽ ε . (11)

We can see from (11) that the greater l is, the smaller ε can be. Moreover, inequality (11) is true for l ⩾ lε.
Therefore, we must ensure P (X ⩽ lε) ⩽ δ. See that

P (X ⩽ lε) =
(
1− 2−lε

)n
.

It is easy to see that the above decreases as n increases. Then

(
1− 2−lε

)n
⩽ δ ⇐⇒ n ⩾

ln(δ)

ln(1− 2−lε)
≈ − ln(δ)

ε
,

where the approximation is the result of the substitution of lε without ceiling. 2
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9 Conclusions and Future Work
In this paper, we have investigated probabilistic counters from a privacy-protection perspective. We have
shown that Morris Counter and MaxGeo Counter inherently guarantee differential privacy from the mech-
anism itself, provided that there is at least a small fixed number of increment requests. Otherwise, the
counter has too low a value and, intuitively, the result is not randomised enough. We have also shown that
the constant in our Morris Counter result cannot be improved further.

We have shown how to perform data aggregation, namely a distributed survey, in a privacy-preserving
manner using probabilistic counters. We clarified that this type of solution is especially efficient when
one cares about memory resources, like in many Big Data related problems. Note that the security model
in this paper was somewhat optimistic. Unfortunately, in such a setting, there is little incentive to use
them other than when we already have them deployed and working as aggregators due to e.g., memory-
efficiency requirements. However, this would change tremendously if we weakened these assumptions.
This seems a very promising way to continue our research from this paper. Namely, we focused on
privacy and can still not weaken the security assumptions and allow the Adversary to extract information
from channels between users and the aggregator. That would put us in the so-called Local Model, where
each user is responsible for the data randomisation. However, such an approach requires us to be able
to perform probabilistic counter in an oblivious manner, which, to the best of our knowledge, was not
explored before.

In Subsection 4.1, we have mentioned the generalisation of the Morris Counter (for bases a > 1).
Analysis of privacy properties of such variants of Morris Counters and various probabilistic counters
presented, for example, in Csűrös (2010), Fuchs et al. (2012) may also be promising directions of further
research.

In this paper, we focus on the standard definition of differential privacy. However, there is also an issue
of preservation of differential privacy for requests given by a group of k users or one individual sending
up to k dependent requests over time. This can be described in the language of the so-called (ε, δ)−k-DP
(see the ”group privacy scenario” in Dwork and Roth (2014)) . A group of people may tend to behave in
the same manner, so they may send k requests in a row. Especially this ”group” may be represented by a
single person colluding with the Adversary. It is worth mentioning that this type of generalisation creates
an opportunity to modify probabilistic counters so that each incrementation request executes the update
request multiple times to reduce the variance of the rescaled estimator. Intuitively, this extension should
be especially efficient in preserving the standard differential privacy property when ε(n) = c

n + o(n−1)
(as a parameter of standard differential privacy), because both c and n should scale with k linearly. Hence,
the next challenging problem is to show that Morris and MaxGeo Counters satisfy the k-DP property with
similar privacy parameters.

The Morris Counter and the MaxGeo Counter are considered the most popular probabilistic counters.
However, the results of this paper shed new light on the properties of the probabilistic counter, in general.
There is a possibility to provide analogous differential privacy properties for other probabilistic counters.
Moreover, this paper enables the provision of differentially private algorithms for other applications, es-
pecially those based on Morris or MaxGeo Counter. For example, in Section 4 we mentioned PCSA and
HyperLogLog Counters together with their variances, which can be manually adjusted to the applications.
The proper choice of the m parameter implies an exchange of memory usage to improve the accuracy of
the estimation. We have mentioned that these counters’ differential privacy parameters can be obtained
via Observation 1. However, such a direct result may not be satisfying. Hence a more precise calculation
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is needed. For example, Observation 1 may be used again with some concentration inequalities.
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A Technical Lemmas and Proofs Related to Differential Privacy
of Morris Counter

For the sake of completeness, we present here proofs of all technical lemmas that are not directly con-
nected to Theorem 1. Some of computations are supported by Wolfram Mathematica ver.11.3 (Wolfram
Research, Inc.). Whenever we obtain a result in this manner, we indicate it by W

= sign. Usually results are
precise, however in some cases, final forms are attained numerically.

We often struggle with expressions of a pattern 1 − 1/y, so let us denote this function as a(y) to
abbreviate formulas.

Next two lemmas will be useful in a proof of Lemma 6.

Lemma 4 Let c > 1/x. Then

a(2cx)2y ⩾ a(cx)y−1
(
a(cx) +

y

4c2x2

)
and

a(cx)y ⩾ a(2cx)2y−2
(
a(2cx)2 − y

4c2x2

)
.

Proof:

a(2cx)2y − a(cx)y

a(2cx)2 − a(cx)
=

y−1∑
i=0

a(2cx)2ia(cx)y−i−1 .

Realize that the above denominator is
(
1− 1

cx + 1
4c2x2 − 1 + 1

cx

)
= 1

4c2x2 . Hence, we obtained two

inequalities: a(2cx)2y − a(cx)y ⩾
y

4c2x2
a(cx)y−1

and a(2cx)2y − a(cx)y ⩽
y

4c2x2
a(2cx)2(y−1), which imply the thesis of this Lemma. 2

Lemma 5 Let s ⩽ log(x/4). Then a(2−sx)2x+1 < exp(−2s+1) and

a(2−sx)x−1 > exp(−2s)
(
1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2

)
.

Proof: Let f1(x; s) := a(2−sx)2x+1. For any s ⩽ log(x/4), we have f1(x; s) =
(
1− 22+1

2x

)2x=1

=

exp(−2s+1)
(
1−O

(
x−1

))
. Realize a fact, that z ln(z) ⩾ z − 1, for 0 < z ⩽ 1. Hence

https://www.wolfram.com
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(
1− 2s

x

)−2x
∂f1(x; s)

∂x
=

2s(2x+ 1)

x2
+ 2

(
1− 2s

x

)
ln

(
1− 2s

x

)
>

2s

x2
> 0

and in a consequence a(2−sx)2x+1 < exp(−2s+1) for any reasonable s.
Moreover, let us introduce

D(x; s) := 1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2
.

It is defined in such the way that a(2−sx)x−1 = D(x; s) +O(x−2). Therefore we can attain:

f2(x; s) :=
a(2−sx)x−1

D(x; s)
= exp(−2s)

(
1 +O

(
x−2

))
.

Then, in a similar way

D(x; s)2
(
1− 2s

x

)−x+1
∂f2(x; s)

∂x
=

D(x; s)

(
2s(x− 1)

x2
(
1− 2s

x

) + ln

(
1− 2s

x

))
−
(
22s−6 + 24s−2

x3
+

22s−1 − 2s

x2

)

<

(
22s−1 − 2s

x2
+

23s − 22s

x3
(
1− 2s

x

) − 23s

3x3

)
−
(
22s−6 + 24s−2

x3
+

22s−1 − 2s

x2

)
=

23s − 22s

x3
(
1− 2s

x

) − 23s

3x3
− 22s−6 + 24s−2

x3
.

Let d := 1− 2s/x and realize that d ∈ [3/4, 1) and 2s − 1 + d
(
−2s/3− 2−6 − 22s−2

)
> 0. Indeed, if

we put z = 2s, then we attain a quadratic inequality in z variable, with determinant ∆ = 1− 5d
3 + 55d2

576 ,
that is negative for d ∈ [3/4, 1).

Hence
∂f2(x; s)

∂x
< 0 and consequently

a(2−sx)x−1 > exp(−2s)
(
1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2

)
for any reasonable s. 2

Lemma 6 a) The sequence (p2k+1,k+4)
∞
k=2 is descending.

b) The sequence (p2k+1,k+5)
∞
k=3 is ascending.

Proof: Let x = 2k and t ∈ {0, 1}. In advance we define

κ(k, t) := (−1)k+4+t2−
(k+4+t)(k+3+t)

2 rk+4+t2
−2x−1
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and

τ(k, t) := [[2̸ |(k + t)]](−1)k+t+32−
(k+t+3)(k+t+2)

2 2rk+t+3

((
3

4

)2x+1

−
(
1

2

)x+2
)
,

where [[cond]] is the Iverson bracket of the condition cond.
Realize that for t ∈ {0, 1} and k ⩾ 5, |τ(k, t) + κ(k, t)| < 2−50 < 10−15. Now, consider the

differences between the consecutive elements of sequences:

p2k+1+1,k+5+t − p2k+1,k+4+t
Thm 4
= κ(k, t)+

+

k+3+t∑
i=0

(−1)i2−
i(i−1)

2 rirk+t+4−i

[(
1− 2−5−t+i

x

)2x+1

−
(
1− 2−4−t+i

x

)x+2
]

=

⌊ k+2+t
2 ⌋∑

i=0

{
2−i(2i−1)r2irk+t+4−2i

[
a(25+t−2ix)2x+1 − a(24+t−2ix)x+2

]
− 2−(2i+1)ir2i+1rk+t+3−2i

[
a(24+t−2ix)2x+1 − a(23+t−2ix)x+2

]}
+ (τ + κ)(k, t)

=

⌊ k+t+2
2 ⌋∑

i=0

2−i(2i−1)r2i+1rk+t+4−2i

[
a(22i+1)

(
a(25+t−2ix)2x+1 − a(24+t−2ix)x+2

)
− 2−2ia(24+t−2ix)

(
a(24+t−2ix)2x+1 − a(23+t−2ix)x+2

)]
+ τ(k, t) + κ(k, t) .

Let us define ut := 25+t−2i (note that ut depends on i, but we abbreviate the notation for conciseness)
and

Wt(i) := a(22i+1)

(
a(utx)

2x+1 − a
(ut
2
x
)x+2

)
− 2−2ia

(ut
2
x
)(

a
(ut
2
x
)2x+1

− a
(ut
4
x
)x+2

)
and consider an upper bound of the last term:

Wt(i)
Lem.4
⩽ a(22i+1)

(
a(utx)

2x+1 − a(utx)2x+2

(
a(utx)

2 − x+ 2

u2tx
2

))
− 2−2i

(
a
(ut
4
x
)x(

a
(ut
4
x
)
+
x+ 1
u2
t

4 x
2

)
− a

(ut
2
x
)
a
(ut
4
x
)x+2

)
W
= a(22i+1)a(utx)

2x+1 1

x

(
3ut + 1

u2t
− ut + 1

u3tx
− 1

u3tx
2

)
− 2−2ia

(ut
4
x
)x 1

x

(
6ut + 4

u2t
− 28

xu2t
+

32

x2u3t

)
.

Note that 2i ⩽ k + 2 + t, so 8/x ⩽ ut and in consequence:
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6ut − 28/x > 20/x > 0,

ut · (3ut + 1)− ut + 1

x
− 1

x2
⩾ ut ·

(
24

x
+ 1

)
− ut + 1

x
− 1

x2

⩾
8

x
− 1

x
+

23ut
x
− 1

x2
⩾

7

x
+

183

x2
> 0 .

Hence

Wt(i)
Lem.5
< a(22i+1) exp

(
− 2

ut

)
1

x

(
3ut + 1

u2t
− ut + 1

xu3t
− 1

x2u3t

)
− 2−2ia

(ut
4
x
)
exp

(
− 4

ut

)
D(x; 2i− 3− t) 1

x

(
6ut + 4

u2t
− 28

xu2t
+

32

x2u3t

)
W
= a(22i+1) exp

(
− 2

ut

)
1

x

(
3ut + 1

u2t
− ut + 1

xu3t
− 1

x2u3t

)
(12)

− 2−2i

x
exp

(
− 4

ut

)(
6ut + 4

u2t
− 32 + 48ut + 28u2t

u4tx
−

128 + 64ut − 703
2 u2t +

259
4 u3t

u6tx
2

+
512 + 128ut − 1150u2t +

909
2 u3t

u7tx
3

− 4608− 1024ut + 530u2t
u7tx

4
+

4096 + 16u2t
u8tx

5

)
We denote the upper bound (12) by Ut(x;ut(i)).

Analogically we would like to establish a lower bound of Wt(i):

Wt(i)
Lem.4
⩾ a(22i+1)

(
a(utx)a

(ut
2
x
)x−1

(
a
(ut
2
x
)
+

1

u2tx

)
− a

(ut
2
x
)x+2

)
−2−2ia

(ut
2
x
)(

a
(ut
2
x
)2x+1

− a
(ut
2
x
)2x+2

(
a
(ut
2
x
)2
− x+ 2

u2
t

4 x
2

))
W
=a(22i+1)a

(ut
2
x
)x−1 1

x

(
3ut + 1

u2t
− 10ut + 1

u3tx
+

8

u3tx
2

)
(13)

−2−2ia
(ut
2
x
)2x+2 1

x

(
6ut + 4

u2t
− 4ut + 8

u3tx
− 8

u3tx
2

)
Now from 8/x ⩽ ut we attain

ut · (3ut + 1)− 10ut + 1

x
= ut ·

(
7ut
4

+
7

8

)
+ (10ut + 1)

(
ut
8
− 1

x

)
⩾ ut ·

(
7ut
4

+
7

8

)
> 0 (14)

and
ut · (6ut + 4)− 4ut + 8

x
− 8

x2
⩾

48ut
x

+
32

x
− 4ut + 8

x
− 8

x2
⩾

24

x
+

344

x2
> 0 .



38 Dominik Bojko et al.

Hence

Wt(i)
Lem.5
> a(22i+1) exp

(
− 2

ut

)
D(x; 2i− 4− t)

x

(
3ut + 1

u2t
− 10ut + 1

u3tx
+

8

u3tx
2

)
− 2−2i exp

(
− 4

ut

)
a
(ut
2
x
) 1

x

(
6ut + 4

u2t
− 4ut + 8

u3tx
− 8

u3tx
2

)
W
=
a(22i+1)

x
exp

(
− 2

ut

)(
3ut + 1

u2t
− 2 + 5ut + 4u2t

u4tx
−

2 + 4ut − 575
32 u

2
t +

387
32 u

3
t

u6tx
2

+
2 + 20ut − 511

32 u
2
t +

261
16 u

3
t

u7tx
3

−
16 + 1

4u
2
t

u7tx
4

)
(15)

− 2−2i exp

(
− 4

ut

)
1

x

(
6ut + 4

u2t
− 16ut + 16

u3tx
+

16

u4tx
2
+

16

u4tx
3

)
.

Denote the lower bound (15) by Lt(x;ut(i)).
Now we show that Wt(i) > 0 for i ⩾ 1. Indeed, after reducing the redundant terms from inequality

(13), together with inequality (14), we can obtain

Wt(i) >
a
(
ut

2 x
)x

xu2t

(
a(22i+1)

14ut + 7

8
− 2−2i(6ut + 4)

)
(16)

Let us denote C(t, x) :=
a(ut

2 x)
x

xu2
t

. In case i ⩾ 2, we may attain

(16) ⩾
C(t, x)

256
(31(14ut + 7)− 96ut − 64) > 0.

When i = 1, then ut ⩾ 8, so (16) ⩾ C(t,x)
64 (7(14ut + 7)− 96ut − 64) = 2ut−15

64 ⩾ 1
64 .

Thanks to the property Wt(i) > 0 for i ⩾ 1, we may subtly neutralize the influence of rk+5−i in the
considered sum:

⌊ k+2
2 ⌋∑

i=0

2−i(2i−1)r2i+1rk+5−iW0(i) < rk+5

⌊ k+2
2 ⌋∑

i=0

2−i(2i−1)r2i+1W0(i) .

Naturally we may consider U0(x;u0(i)) instead of W0(i) numerically for i ⩽ 4:

4∑
i=0

2−i(2i−1)r2i+1U0(x;u0(i))
W
= −8.294491525704523 . . . · 10−6 +

0.15588 . . .

x

+
0.00407163 . . .

x2
− 0.0298032 . . .

x3
+

0.0198815 . . .

x4
− 0.00785419 . . .

x5
,

so for x ⩾ 215 (k ⩾ 15),
4∑

i=0

2−i(2i−1)r2i+1W0(i) ⩽ −3.53741 · 10−6. Moreover we may bound W0(i)

by a(25−2ix)2x+1 for the rest of the sum:

⌊ k+2
2 ⌋∑

i=5

2−i(2i−1)r2i+1a(2
5−2ix)2x+1 ⩽

R 2−45 exp(−64)
1− 2−21 exp(−192)

= 1.5784 . . . · 10−41 ,
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so p2k+1+1,k+5 − p2k+1,k+4 < 0 for k ⩾ 15.
However, according to Theorem 4, we also present the numerical values of the sequence (p2k+1,k+4)

14
k=2

in the Table 2. We can now easily see that for any k ⩾ 2 we attained p2k+1+1,k+5 − p2k+1,k+4 < 0 .

k p2k+1,k+4 k p2k+1,k+4 k p2k+1,k+4

2 0.0000305176 . . . 7 0.0000189841 . . . 12 0.0000185484 . . .
3 0.0000256707 . . . 8 0.0000187590 . . . 13 0.0000185413 . . .
4 0.0000221583 . . . 9 0.0000186466 . . . 14 0.0000185378 . . .
5 0.0000203424 . . . 10 0.0000185904 . . .
6 0.0000194356 . . . 11 0.0000185624 . . .

Tab. 2: Numerical values of the sequence (p2k+1,k+4)
14
k=2.

Moreover, realize that rk+5/rk+3 < 1.1 for any k ⩾ 3, so

1∑
i=0

2−i(2i−1)r2i+11.1
1−iL1(x;u1(i))

W
= 0.00128843 . . .+

0.00212699 . . .

x

−0.00326251 . . .

x2
+

0.000219133

x3
− 3.50924875 . . . · 10−7

x4

For any possible x ⩾ 8 (k ⩾ 3),
∑1

i=0 2
−i(2i−1)r2i+11.1

1−iL1(x;ut(i)) > 0.0015. We already know
that W1(i) are positive for i > 1, so p2k+1+1,k+6 − p2k+1,k+5 > 0 for all k ⩾ 3. 2

We may use Theorem 4 once again to see that

p26+1,10

p26+1,11
= 129.454 . . . > 27and,

p27+1,11

p27+1,12
= 125.065 . . . < 27.

Together with Lemma 6 we may easily attain Claim 1 and we instantly see that this Claim cannot be
extended continuously for k < 7.

Lemma 7 Let 2 ⩽ l ⩽ n and assume that αi = 2i−2 pn,l−i

pn,l−i+1
for i ∈ [0 : 2] and α′

j = 2j−2 pn+1,l−j

pn+1,l−j+1

for j ∈ [0 : 1].
If 0 ⩽ α2 < α1 < α0, then 0 < α′

1 < α′
0.

Proof: Realize that pn+1,l−i+1 = pn,l−i+1(1− 2−l+i−1 + 2−l+2αi) for i ∈ [0 : 2], so for j ∈ [0 : 1],

α′
j =

pn+1,l−j

22−jpn+1,l−j+1
=

pn,l−j(1− 2−l+j + 2−l+2αj+1)

22−jpn,l−j+1(1− 2−l+j−1 + 2−l+2αj)

=
αj(1− 2−l+j + 2−l+2αj+1)

1− 2−l+j−1 + 2−l+2αj
.
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Assume that α′
1 ⩾ α′

0. Then

A := α1(1− 2−l+1 + 2−l+2α2)(1− 2−l−1 + 2−l+2α0) ⩾ α0(1− 2−l + 2−l+2α1)
2 =: B.

However, contrary to the assumption,

A = α1(1− 2−l+1 + 2−2l − 2−l−1 + 2−l+2(α0 + α2)− 2−2l+3α0

− 2−2l+1α2 + 2−2l+4α0α2)

< α0(1− 2−l+1 + 2−2l) + α1(2
−l+2(2α0) + 2−2l+4α0α1)

< α0(1− 2−l+1 + 2−2l + α1(2
−l+3 + 2−2l+3 + 2−2l+4α1)) = B .

2

Lemma 8 If for some n ∈ N, ηn = 2−n pn,n

pn,n+1
and

ηn+1 = 2−n−1 pn+1,n+1

pn+1,n+2
, then ηn < ηn+1.

Proof:

0 = pn+1,n+1 − 2n+1ηn+1pn+1,n+2 = pn,n+1(1− 2−n−1) + pn,n2
−n

− ηn+1pn,n+1 = pn,n+1(1− 2−n−1 + ηn − ηn+1) ,

but 1− 2−n−1 > 0, so ηn < ηn+1. 2
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