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In 2000 Klazar introduced a new notion of pattern avoidance in the context of set partitions of[n] = {1, . . . , n}.
The purpose of the present paper is to undertake a study of theconcept of Wilf-equivalence based on Klazar’s notion.
We determine all Wilf-equivalences for partitions with exactly two blocks, one of which is a singleton block, and we
conjecture that, forn ≥ 4, these are all the Wilf-equivalences except for those arising from complementation. Ifτ
is a partition of[k] andΠn(τ ) denotes the set of all partitions of[n] that avoidτ , we establish inequalities between
|Πn(τ1)| and|Πn(τ2)| for several choices ofτ1 andτ2, and we prove that ifτ2 is the partition of[k] with only one
block, then|Πn(τ1)| < |Πn(τ2)| for all n > k and all partitionsτ1 of [k] with exactly two blocks. We conjecture
that this result holds for all partitionsτ1 of [k]. Finally, we enumerateΠn(τ ) for all partitionsτ of [4].
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1 Introduction
A set partitionof a setS is a collection of disjoint nonempty subsetsB1, . . . , Bm of S whose union isS.
We call the subsetsBi blocks, and we write

σ = B1/ · · · /Bm ⊢ S.

If S is a set of positive integers andσ ⊢ S, then thestandardizationof σ is the set partition of{1, 2, . . . , |S|}
obtained by replacing the smallest element ofS by 1, the second smallest element ofS by 2, and so on.

If n is a positive integer we let[n] = {1, 2, . . . , n} and define

Πn = {σ : σ ⊢ [n]}.

The concept of pattern avoidance for set partitions was introduced by Klazar in Klazar (2000). Ifk ≤ n
and we haveσ ⊢ [n] andτ ⊢ [k], then we sayσ containsτ as a patternif there is a subsetS of [n] such
that the standardization of the restriction ofσ to S is τ . If σ does not containτ , we say thatσ avoidsτ .
We let

Πn(τ) = {σ ∈ Πn : σ avoidsτ}.
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The present paper is a contribution to the study of Klazar’s definition of pattern avoidance, but we
should mention right away that there are other definitions. One of these arises from the well-known
correspondence between set partitions and restricted growth functions. Recall that arestricted growth
function (RGF)is a worda1a2 · · · aℓ of positive integers such thata1 = 1 and, for i ≥ 2, we have
ai ≤ 1 + max{a1, . . . , ai−1}. The integerℓ is called thelengthof the RGF. Ifσ ∈ Πn, we define a
correspondingRGF of lengthn, denoted byRGF(σ), as follows. First writeσ = B1/B2/ · · · /Bm,
where

minB1 < minB2 < · · · < minBm.

(This is called thestandard form ofσ.) Then letRGF(σ) = a1 · · ·an, wherei ∈ Bai
. We can obtain

an alternative notion of pattern avoidance for set partitions by using a natural notion of avoidance for
RGF’s. If k ≤ n anda = a1 · · ·an andb = b1 · · · bk are RGFs, we say thata containsb if a has a
subsequence whose standardization isb, otherwise we say thata avoidsb. This notion of RGF avoidance
has been studied extensively (see Mansour’s comprehensivebook Mansour (2013)). It does not coincide
with Klazar’s notion. For ifσ avoidsτ in Klazar’s sense, thenRGF (σ) avoidsRGF (τ); but the converse
may fail. For example145/23 contains12/34, yetRGF(145/23) = 12211 avoidsRGF(12/34) = 1122.

There is yet a third notion of pattern avoidance for set partitions that involves arc-diagrams (See Bloom
and Elizalde (2013); Chen et al. (2007); Riordan (1975); Touchard (1952)). A well studied notion in this
context is that of non-nesting and non-crossing set partitions which arise from the avoidance of certain
arc-configurations. We wish to point out that under Klazar’sdefinition non-crossing set partitions are
those that omit13/24. Interestingly, there is no single patternσ such that the non-nesting partitions
are precisely those that omitσ, in Klazar’s sense. To see this, observe that the only candidate forσ is
14/23 since the non-nesting set partitions of length4 areΠ4 \ {14/23}. Yet, the set partition135/24 is
non-nesting but contains14/23.

Klazar’s definition has not been as well studied as the RGF definition. The earliest paper is of course
Klazar’s Klazar (2000), and the most recent paper of which weare aware is the paper Dahlberg et al.
(2016) by Dahlberg, et al. We also mention Sagan’s paper Sagan (2010), which contains, along with
many other results, an enumeration ofΠn(τ) for all τ ⊢ [3]. In Section 4 of our paper we enumerate
Πn(τ) for all τ ⊢ [4], although our main purpose is to undertake a study of Wilf-equivalence in the
context of Klazar’s definition of avoidance. Ifτ, π ⊢ [k], we say thatτ andπ areWilf-equivalent, and we
write τ ∼ π, if |Πn(τ)| = |Πn(π)| for all n > k. The fact that1/2/3 ∼ 13/2 is established in Sagan
(2010). In Section 2 of our paper we establish the new Wilf-equivalences

12 · · ·a− 1, a+ 1 · · · k/a ∼ 12 · · · b− 1, b+ 1 · · · k/b

for all k ≥ 4 and1 < a, b < k, and based on computer evidence, we conjecture (Conjecture2.1) that
these,1/2/3 ∼ 13/2, andτ ∼ τc are the only Wilf-equivalences, whereτc is called thecomplement
of τ and is obtained fromτ by subtracting each number fromk + 1. (There are similar conjectures for
Wilf-equivalences in other contexts, all of which seem quite difficult to prove. See Albert and Bouvel
(2014); Kitaev et al. (2009).) We also show that

|Πn(2 · · · k/1)| < |Πn(13 · · · k/2)| and|Πn(1 · · · k − 1/k)| < |Πn(13 · · · k/2)|

for all n ≥ 2k − 2 but that these inequalities may become equalities whenn < 2k − 2. For example, this
occurs whenk = 5 andn = 6, 7.
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Motivated by the results indicated in the last sentence, we introduce a partial ordering≺ of Πk, as
follows. Forτ, π ∈ Πk we writeτ ≺ π if |Πn(τ)| ≤ |Πn(π)| for all n > k, and there exists somem ≥ k
such that|Πn(τ)| < |Πn(π)| for all n > m.

If βk denotes the partition of[k] that has only one block, then computer evidence suggests that, for every
k ≥ 4 and everyτ 6= βk in Πk we haveτ ≺ βk, and in fact|Πn(τ)| < |Πn(βk)| for all n > k. In Section 3
of our paper we prove this result for allτ with exactly two blocks, and we conjecture (Conjecture 3.1)
that the result holds for allτ 6= βk. We also consider partitionsπ such that there is exactly one doubleton
block and all other blocks are singletons. We prove that for every suchπ, if σk denotes the partition all of
whose blocks are singletons, then

|Πn(π)| < |Πn(σk)| < |Πn(βk)|

for all n > k. This result should be compared with Klazar’s result in Klazar (2000) that for all suchπ and
σk the generating function of|Πn(π)| is rational (whereas the generating function for|Πn(βk)| is not).

2 Wilf-equivalence
For a fixedk, we first determine all Wilf-equivalences among the patterns

βk,a = 1 · · · (a− 1)(a+ 1) · · · k/a,

where1 ≤ a ≤ k.

Theorem 2.1. We haveβk,1 ∼ βk,k. For n > k and2 ≤ a ≤ k − 1 we have

|Πn(βk,a+1)| ≤ |Πn(βk,a)|,

with equality ifa < k − 1, and thereforeβk,a ∼ βk,b when2 ≤ a, b ≤ k − 1. Finally, we have

|Πn(βk,k)| < |Πn(βk,k−1)|

whenn ≥ 2k − 2, soβk,k ≺ βk,a for 2 ≤ a ≤ k − 1.

This theorem together with computational evidence for all patterns of length≤ 9 suggests the following
conjecture.

Conjecture 2.1. The only Wilf-equivalences are1/2/3 ∼ 13/2, the equivalences established by Theo-
rem 2.1, and the equivalences resulting from complementation.

The first assertion of Theorem 2.1 is a simple consequence of complementation. To prove the second
assertion, we construct an injection

φa : Πn(βk,a+1) → Πn(βk,a),

for each2 ≤ a ≤ k − 1, and show thatφa is a bijection ifa < k − 1. Before we can write down this
mapping we need a few lemmas and observations. We start with these immediately and delay the proof
of Theorem 2.1 to the end of this section.

To begin, fixk and2 ≤ a ≤ k− 1. Observe thatπ ⊢ [n] containsβk,a if and only if π contains a block
B such that

a− 1 ≤ |{x ∈ B : x < c}| and k − a ≤ |{x ∈ B : x > c}| (2.1)
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for somec /∈ B.
Consequently, we say a finite setB of integerscontainsβk,a if it satisfies (2.1), otherwise we sayB

avoidsβk,a. Consequently, a set partitionπ avoidsβk,a if and only if all of its blocks avoidβk,a.
Now, consider the anatomy of a blockB that avoidsβk,a+1 but containsβk,a. SinceB containsβk,a,

there exists somec /∈ B so that

a− 1 ≤ |{x ∈ B : x < c}| and k − a ≤ |{x ∈ B : x > c}|.

Furthermore, sinceB avoidsβk,a+1, the set on the left must have size exactlya− 1. For the same reason,
the set on the right must be of the form

y1 − ℓ, . . . , y1 − 2, y1 − 1, y1 < · · · < yk−a−1,

for someℓ ≥ 1. Therefore the blockB looks like

< c

a− 1 ℓ k − (a+ 1)

,
(2.2)

where the elements in the shaded block are consecutive in value and the rightmost block’s smallest element
is y1. By decrementing the values in the shaded region, we effectively slide the gray rectangle as far left
as possible, obtaining the new blockB′:

< c

a− 1 ℓ k − (a+ 1)

.
(2.3)

Remark 2.1. We remark that inB′, the elements in the gray block are consecutive in value and the largest
element in the leftmost block is one less than the smallest element in the gray block. Consequently,B′

avoidsβk,a while containingβk,a+1.

The new blockB′ gives rise to a new set partition as summarized in our next definition.

Definition. Let π ⊢ [n] and assume theith blockB of π avoidsβk,a+1 and containsβk,a. SoB is as
depicted in (2.2). Now letB′ be the block depicted in (2.3). We defineslidei(π) ⊢ [n] to be the set
partitionπ′ = B′/σ whereσ is the set partition of[n] \ B′ that is order-isomorphic to the set partition
obtained by deletingB from π.

We illustrate this definition with the following short example.

Example 2.2. Let k = 5, a = 2 so thatβ5,3 = 1245/3 andβ5,2 = 1345/2. If

π = 1 3 /2 5 6 7 8 9/4 10 ∈ Π10,

then, since its second block avoidsβ5,3 and containsβ5,2, we have

slide2(π) = 1 6 /2 3 4 58 9/7 10,

where the elements affected by our sliding operation are highlighted.
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Lemma 2.1. If π,B, andB′ are as in the above definition andB is theith block (in standard form) ofπ,
thenB′ is theith block inslidei(π).

Proof: First observe that asa ≥ 2, thenmin(B) = min(B′). Now set

[n] \B = {w1 < w2 < · · · } and [n] \B′ = {w′
1 < w′

2 < · · · }.

It follows from our construction ofB′ that

ws < min(B) =⇒ ws = w′
s,

soB′ is no earlier than theith block inslidei(π) and

ws > min(B) =⇒ ws ≤ w′
s,

soB′ is no later than theith block inslidei(π).

As the definition of our mappingφa involves repeated “slide” operations, we require a lemma guaran-
teeing that blocks not involved in the slide operation do notchange “too much”. Our next lemma spells
out exactly what is meant by this.

Lemma 2.2. Letπ = B1/B2/ · · · /Bm ⊢ [n]. Assume that for some fixedi, the blockBi avoidsβk,a+1

and containsβk,a and set
slidei(π) = B′

1/B
′
2/ · · · /B′

m.

Then for any1 ≤ c ≤ k andj 6= i, the blockB′
j avoidsβk,c if and only ifBj avoidsβk,c.

Proof: Fix j 6= i, 1 ≤ c ≤ k and set

[n] \Bi = {w1 < w2 < · · · } and [n] \B′
i = {w′

1 < w′
2 < · · · }.

First, we claim thatwt + 1 = wt+1 if and only if w′
t + 1 = w′

t+1. For the moment, let us assume this
claim. Next we make the following general observation: Any blockBj avoidsβk,c if and only if whenever
x ∈ Bj is such that

c− 1 ≤ |{y ∈ Bj : y ≤ x}| and k − c ≤ |{y ∈ Bj : y ≥ x}|,

thenx+ 1 ∈ Bj .
As π − Bi is order-isomorphic toslidei(π) − B′

i, it now follows thatBj avoidsβk,c if and only ifB′
j

does too.
It only remains to prove our claim. SinceBi avoidsβk,a+1 and containsβk,a it is depicted in (2.2) and

B′
i is depicted in (2.3). Observe that ifI is the set of values in[n] \Bi that fall in the gap to the left of the

gray block in (2.2) andJ is the set of values in[n] \ B′
i that fall in the gap to the right of the gray block

in (2.3), thenI andJ are both intervals and|I| = |J |. If in (2.2) ℓ is the maximum of the values in the
leftmost block and (fora < k − 1) r is the minimum of the values in the rightmost block, then it follows
that

{ws : ws < ℓ} = {w′
s : w′

s < ℓ} (2.4)
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and
{ws : ws > r} = {w′

s : w′
s > r}. (2.5)

Assumingwt andwt+1 are consecutive in value it follows that they both lie in either the set (2.4), the
set (2.5), or in the intervalI. In the first two cases, it easily follows from our above equalities that
w′

t + 1 = w′
t+1. In the third case, the set equality in (2.4) along with the fact that|I| = |J | implies that

w′
t, w

′
t+1 ∈ J . SinceJ is an interval, we conclude thatw′

t, w
′
t+1 are consecutive in value.

The proof that ifw′
t andw′

t+1 are consecutive in value, thenwt andwt+1 are too, is analogous. Its
details are omitted.

Finally, we are in a position to defineφa. For anyπ ∈ Πn(βk,a+1) first setπ0 = π and letm be
the number of blocks inπ. Having definedπi we obtainπi+1 by considering the(i + 1)st block ofπi.
If this block containsβk,a, then setπi+1 = slidei+1(πi), otherwise we setπi+1 = πi. Lastly we set
φa(π) = πm.

We pause to point out that our mappingφa is well defined. First, we note that Lemma 2.2 guarantees
that the(i + 1)st block inπi avoidsβk,a+1. (This is crucial since if this block containedβk,a+1 and
also containedβk,a our sliding operation would not be defined.) Additionally, Lemma 2.2 together with
Remark 2.1 guarantees thatφa(π) avoidβk,a.

Before proving thatφa is a bijection we demonstrate this mapping.

Example 2.3. Considerβ5,3 = 1245/3 andβ5,2 = 1345/2 and fix

π = 1 10 11 12/2 4 5 8/3 6 7 9 ∈ Π12(β5,3).

The above algorithm forφ3 yields the following steps, where the elements affected by each slide are
highlighted.

π0 =1 10 11 12/2 4 5 8/3 6 7 9

π1 =1 2 11 12/3 5 6 9/4 7 8 10

π2 =1 2 11 12/3 4 6 9/5 7 8 10

π3 =1 2 11 12/3 4 7 9/5 6 8 10

Proof Proof of Theorem 2.1:
As each slide in the definition ofφa is certainly reversible, it follows that the mapping

φa : Πn(βk,a+1) → Πn(βk,a),

is injective, provided2 ≤ a ≤ k − 1. Under this restriction we therefore have

|Πn(βk,a+1)| ≤ |Πn(βk,a)|.

If a < k − 1, thenk − a ≥ 2, so the composition of injective maps

Πn(βk,a)
Comp−−−−→ Πn(βk,k+1−a)

φk−a−−−→ Πn(βk,k−a)
Comp−−−−→ Πn(βk,a+1),

implies that
|Πn(βk,a)| ≤ |Πn(βk,a+1)|
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and proves thatφa is bijective. This completes the proof of the second assertion of Theorem 2.1.
To prove the third assertion, we show that the injectionφk−1 : Πn(βk,k) → Πn(βk,k−1) is not surjec-

tive whenn ≥ 2k − 2. To see this, it will be helpful to observe that ifπ ∈ Πn(βk,k) then at most one
block ofπ hask− 1 or more elements. For if one block has elementsx1 < · · · < xk−1 and another block
has elementsy1 < · · · < yk−1, then eitherxk−1 < yk−1 or yk−1 < xk−1, soπ contains the partition
βk,k, a contradiction. It now follows from the definition ofφk−1 that for everyπ ∈ Πn(βk,k) there is at
most one block of size greater than or equal tok − 1 in φk−1(π). But if n ≥ 2k − 2 then the element
1, 2, . . . , k − 1/k, . . . , 2k − 2/(2k − 1), . . . , n of Πn(βk,k−1) has at least two blocks of sizek − 1.

3 Partial Ordering by ≺
3.1 The pattern βk

We recall thatβk denotes the element ofΠk that has only one block. Ifτ is any element ofΠk other than
βk itself, computer evidence suggests thatτ ≺ βk and|Πn(τ)| < |Πn(βk)| for all n > k.

Conjecture 3.1. Letk ≥ 4. If τ ∈ Πk andτ 6= βk, thenτ ≺ βk and|Πn(τ)| < |Πn(βk)| for all n > k.

It follows from Theorems 3.1, 3.2, and 3.3 that Conjecture 3.1 is true fork = 4.

Theorem 3.1. Let k ≥ 4. If σ ∈ Πk andσ has exactly two blocks, thenσ ≺ βk. In fact, |Πn(σ)| <
|Πn(βk)| for all n > k.

Proof: Supposeσ ∈ Πk andσ has exactly two blocks, soσ = A/B,with 1 ∈ A.Supposea1, b1, a2, b2, . . . , aj , bj
are positive integers andaj+1 is a nonnegative integer such that the firsta1 elements of[k] are inA, the
nextb1 elements of[k] are inB, the nexta2 elements of[k] are inA, and so on, so thataj+1 = 0 if k ∈ B
andaj+1 > 0 if k ∈ A.

To prove the theorem we establish, for any givenn > k, a nonsurjective injection

ϕ : Πn −Πn(βk) → Πn −Πn(σ).

To defineϕ, take anyπ ∈ Πn −Πn(βk). If π ∈ Πn −Πn(σ), letϕ(π) = π.
Now supposeπ ∈ Πn(σ). Sinceπ ∈ Πn − Πn(βk), π has at least one block with at leastk elements.

We obtainϕ(π) from π by partitioning each such blockC in the following way.
Recalling thatσ = A/B, let |B| = m, so thatm = b1 + · · ·+ bj . Write

|C| − |A| = qm+ r,

whereq ≥ 1 and0 ≤ r < m are integers. Then we have

|C| = |A|+ r + q(b1 + · · ·+ bj).

We order the elements ofC from smallest to largest and define a subsetA∗ of C of cardinality|A|+ r, as
follows. Let the firsta1 elements ofA∗ be the firsta1 elements ofC. Skip over the nextqb1 elements of
C, and let the nexta2 elements ofC be the nexta2 elements ofA∗. Then skip over the nextqb2 elements
of C and let the nexta3 elements ofC be the nexta3 elements ofA∗. Continuing in this way, define the
first a1+· · ·+aj+1 = |A| elements ofA∗. Then add the lastr elements ofC toA∗, so that|A∗| = |A|+r.
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Next we define subsetsB1, . . . , Bq of C such that|Bi| = m for 1 ≤ i ≤ q. Take the firstqb1 elements
of C that were skipped over in the construction ofA∗, and put the firstb1 of these elements inB1, the
nextb1 of these elements inB2, and so on. Then take the nextqb2 elements ofC that were skipped over
in the construction ofA∗ and put the firstb2 of these elements inB1, the nextb2 of these elements inB2,
and so on. Continuing in this way, complete the constructionof B1, . . . , Bq.

We partitionC into blocksA∗, B1, . . . , Bq. By construction, we see that for eachBi, the partition
A∗/Bi contains the partitionσ. We have|Bi| = m < k and|A∗| = |A|+ r < |A|+m = k.

Whenπ ∈ Πn(σ), we obtainϕ(π) from π by partitioning each blockC of size at leastk in the way
just indicated. Clearly,ϕ(π) ∈ Πn − Πn(σ). We also haveϕ(π) ∈ Πn(βk), by the last sentence of the
preceding paragraph. Forπ ∈ Πn −Πn(σ) we hadϕ(π) = π /∈ Πn(βk), so to show thatϕ is one-to-one
it suffices to show that, forπ ∈ Πn(σ), we can recoverπ fromϕ(π).

To show this, observe that each block ofϕ(π) is a subset of a block ofπ, and that ifD,E are blocks
of ϕ(π) such that the partitionD/E containsσ, then sinceπ ∈ Πn(σ), D andE must be subsets of the
same block ofπ. Thus we obtainπ from ϕ(π) by coalescing into one block the elements of any blocks
D,E of ϕ(π) such thatD/E containsσ.

Finally, to show thatϕ is not surjective, first suppose thatm + 1 < k and consider the partitionγ of
[n] whose blocks areA,B ∪ {k + 1} andn− k − 1 singleton blocks. Thenγ ∈ Πn − Πn(σ). Suppose
π ∈ Πn−Πn(βk) andϕ(π) = γ. Sincem+1 < k, we haveγ ∈ Πn(βk), soγ 6= π and thusπ ∈ Πn(σ).
Sinceϕ(π) = γ, it follows from the definition ofϕ thatA ∪ B ∪ {k + 1} is contained in some blockF
of π, and|F | > k. In definingϕ(π), the blockA∗ derived fromF contains the smallest element ofF ,
namely 1, soA∗ = A (sinceA is the block ofγ that contains 1). The other blocks derived fromF have
m elements each. This is impossible, since the blockB ∪ {k + 1} is derived fromF .

Now consider the casem + 1 = k. In this caseσ = βk,1. Sinceβk,1 ∼ βk,k by Theorem 2.1 and
ϕ is not surjective whenσ = βk,k by the preceding paragraph, it follows thatϕ is not surjective when
σ = βk,1.

3.2 The pattern σk

We recall thatσk = 1/2/3/ · · ·/k. In this subsection we prove that for allδ ∈ Πk, whose blocks consist
of all singletons except for one doubleton block,

δ ≺ σk ≺ βk.

We begin with a lemma.

Lemma 3.1. Letα ⊢ [k − 1]. If
|Πn(α)| < |Πn(σk−1)|

for all n > k − 1, then

|Πn(1/α
′)| < |Πn(σk)| and |Πn(α/k)| < |Πn(σk)|,

for all n > k, whereα′ is obtained by incrementing all the values inα by1.

Proof: Proving the inequality on the left is sufficient, since the inequality on the right then follows by
complementation.
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To do this, fixn > k and assume there exists nonsurjective injectionsφm : Πm(α) → Πm(σk−1) for
all m > k − 1. Observe that for anyB1/B2/ · · · /Bm ∈ Πn(1/α

′), in standard form, the set partition
B2/ · · · /Bm avoidsα as1 ∈ B1. Therefore we obtain a nonsurjective injectionψ from Πn(1/α

′) to
Πn(σk) as follows: Ifn− |B1| > k − 1 we let

ψ(B1/B2/ · · · /Bm) = B1/φn−|B1|(B2/ · · · /Bm).

(To be preciseφn−|B1|(B2/ · · · /Bm) is obtained by first standardizing the partitionB2/ · · · /Bm, then
applyingφn−|B1|, and then incrementing the values.) Ifn− |B1| ≤ k − 1 we let

ψ(B1/B2/ · · · /Bm) = B1/B2/ · · · /Bm,

unlessB2/ · · · /Bm consists of exactlyk−1 singleton blocks whose union is[n]\B1. In this exceptional
case we setψ(B1/B2/ · · · /Bm) to be the partitionB1/A whereA is the partition of[n] \ B1 whose
standardization isα.

The existence of this injection proves our claim.

To prove our next theorem, we first recall the bijection between restricted growth functions and set
partitions as described in the Introduction. Next, defineRGF<k

n to be the set of allw ∈ RGF in the
letters{1, . . . , k− 1} with lengthn. It immediately follows that the standard bijection betweenRGF and
set partitions restricts to a bijection betweenRGF<k

n andΠn(σk).

Theorem 3.2. Let δ be a pattern of lengthk ≥ 4 that consists of all singletons except for exactly one
doubleton. Then

|Πn(δ)| < |Πn(σk)|
for all n > k ≥ 3. Consequently,δ ≺ σk.

Proof: If a andb are the elements of the doubleton block ofδ, we consider cases depending on the value
of |a− b|.

If |a − b| = 1, then sincek ≥ 4 we see by using Lemma 3.1 that it suffices to show that|Πn(α)| <
|Πn(σ4)| wheren > 4 andα is one of12/3/4, 1/23/4, or 1/2/34. By Lemma 3.1 again, it then suffices
to show that|Πn(β)| < |Πn(σ3)| wheren > 3 andβ is one of12/3 or 1/23. For either choice ofβ we
have|Πn(β)| = 1+

(
n
2

)
and|Πn(σ3)| = 2n−1 by Theorem 2.5 of (Sagan (2010)), and this concludes the

proof when|a− b| = 1.
If |a− b| = 2, then we see by using Lemma 3.1 that it suffices to show that|Πn(α)| < |Πn(σ4)| when

n > 4 andα is one of13/2/4 or 1/3/24. Since13/2/4 is obtained from1/3/24 by complementation it
suffices to deal with1/3/24. We do so in Lemma 4.3, following the enumeration of|Πn(1/3/24)|.

To deal with the case|a−b| ≥ 3, it suffices, by Lemma 3.1, to prove the result forδ = 1k/2/3/ · · ·/k−
1. For such aδ, we see that every set partition inΠn(δ) is obtained from a unique set partitionB1/ · · · /Bm ∈
Πn−1(δ) by insertingn into one of thek − 2 rightmost blocksBm−(k−3), . . . , Bm or by insertingn into
a new singleton block. We encode these insertion choices as follows:

1 ↔ into a new singleton block
2 ↔ intoBm

3 ↔ intoBm−1

...
k − 1 ↔ intoBm−(k−3).
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Now define the setR<k
n to be the set of all wordsw in the letters1, 2, . . . , k − 1 such thatw1 = 1 and

ws ≤ 1 + # of 1’s in the subwordw1 · · ·ws−1.

Using the above encoding, it is clear that we have an injective mapping fromΠn(δ) into the setR<k
n . This

mapping is not surjective forn > k ≥ 4 since then the set partition

1(k − 1)/2(k + 1)/3/ · · ·/k − 2/k/k + 2/ · · ·/n /∈ Πn(δ)

is mapped, under the above encoding, to the word

11 · · · 1
︸ ︷︷ ︸

k−2

(k − 1)1(k − 1) 11 · · ·1
︸ ︷︷ ︸

n−k−1

∈ R<k
k+1.

It now suffices to prove that|RGF<k
n | = |R<k

n | since|RGF<k
n | = |Πn(σk)| as mentioned above. To

see this consider a wordw ∈ RGF<k
n and decompose it according to the first occurrence, from leftto

right, of each letter. Doing sow decomposes into the subwords

1 1’s 2 1,2’s 3 1,2,3’s · · · m 1, 2, . . . ,m′s

u1 u2 u3 um.

Asw ∈ RGF<k
n we know thatm ≤ k− 1. In the case thatm < k− 1 we definew′ to be the new word

given by incrementing each of the subwordsui by 1 and replacing each letter’s first occurrence by a 1. So
w′ decomposes, according to its occurrences of 1’s, as

1 u1 + 1 1 u2 + 1 1 u3 + 1 · · · 1 um + 1

.

It easily follows thatw′ ∈ R<k
n since the letters inui + 1 are at mosti+ 1 and are preceded by exactlyi

occurrences of the letter 1.
In the case thatm = k − 1, we modify this mapping only slightly. Here we definew′ to be the word

1 u1 + 1 1 u2 + 1 · · · 1 uk−2 + 1 1 uk−1 ,

so that all subwords, except the last one,uk−1, are incremented by 1. Note this second case is needed
since the letterk−1 might occur inuk−1 and the letterk is not available. Again it is clear thatw′ ∈ R<k

n .
In this way we obtain an injective mapping fromRGF<k

n to R<k
n . Furthermore, this mapping is easily

seen to be surjective as we can decompose any wordv in R<k
n according to its firstk − 1 ones and then

reverse the above mapping. It only remains to prove that applying the reverse mapping to anyv ∈ R<k
n

results in a wordw ∈ RGF<k
n . This easily follows from the observation that ifvs is a letter inv with j

ones to its left, then
vs ≤ j + 1 = max(w1, . . . , ws−1) + 1.

First assumej < k − 1. In this case, ifvs 6= 1, thenws = vs − 1 and ifvs = 1, thenws = j + 1. Either
way, such letters satisfy the condition of a restricted growth function. The case whenj ≥ k− 1 is similar.
Its details are left to the reader.
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Theorem 3.3. For all k ≥ 2 andn ≥ 1

|Πn(σk)| ≤ |Πn(βk)|.

Moreover, this inequality is strict providedn > k > 2.

Proof: First, we show, by induction onk, that there exists a family of injections

ψk,n : Πn(σk) → Πn(βk),

for all k ≥ 2 andn ≥ 1. To streamline this notation we drop the subscriptn and writeψk instead ofψk,n.
To begin our induction argument note that|Πn(σ2)| = 1 = |Πn(β2)|. Now, considerπ = B1/ · · · /Bm ∈

Πn(σk+1) and observe thatB2/ · · · /Bm can be considered a set partition of[n − |B1|] that avoidsσk.
Thereforeψk(B2/ · · · /Bm) is well defined, avoidsβk, and has blocks of size< k. (If B2/ · · · /Bm = ∅
we setψk(∅) = ∅.) With this in mind, the division algorithm yields

|B1| = q · k + r,

where0 ≤ r ≤ k−1. Providedr > 0 letC0/C1/C2/ · · · /Cq be the set partition ofB1 whereC0 consists
of the firstr numbers ofB1 andC1 consists of the nextk numbers, etc. Note that in the caser = 0 we
simply ignoreC0. Finally, we define

ψk+1(π) = C0/C1/ · · · /Cq/ψk(B2/ · · · /Bm),

so thatC1, . . . , Cq are the only blocks of sizek in this partition. Note that ifr > 0, then1 ∈ C0,
otherwise1 ∈ C1. Consequently,ψk+1 is injective sinceψk is injective andB1 may be recovered by
taking the union of all blocks of sizek in ψk+1(π) along with the block containing 1.

It only remains to show that our mappingsψn,k are not surjective whenn > k > 2. To see this observe
that in the construction ofψn,k(π) the first block ofπ (in standard form) is partitioned into consecutive
segments as described above. As a result, no partition in theimage ofψn,k could contain the blocks:

1 3/2 4 5 · · · (k + 1),

because both blocks would have to come fromB1, but this violates consecutiveness. Hence these map-
pings cannot be surjective.

Corollary 3.1. Let δ be any pattern of lengthk consisting of all singletons except for one doubleton.
Then,

|Πn(δ)| < |Πn(σk)| < |Πn(βk)|,

for all n > k ≥ 4.

The proof of this corollary is a direct consequence of the previous two theorems.
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4 Enumeration
In this section we concentrate on the enumeration of|Πn(τ)| for patternsτ ⊢ [4]. As enumerations for
the patterns1/2/3/ · · ·/k andβk = 12 · · · k are well known using exponential generating functions and
Sagan in Sagan (2010) enumerated the general pattern12/3/4/ · · ·/k, we concentrate on all others with
one exception. As the enumeration for the pattern1/23/4 devolves into numerous (uninteresting) cases
and Klazar in Klazar (2000) showed that the resulting generating function is rational, we choose to omit
this pattern from our discussion.

To summarize the enumerations established in the followingsubsections (as well as those mentioned

above) we include the following table of results whereexpm =

m∑

i=0

xi

i!
andS(n, k) denotes the Stirling

numbers of the second kind andG(z) =
z − 2z2(1 + z)− z

√
1− 4z2

−2 + 2z(1 + z)2
. Aside from the omitted pattern

1/23/4, every pattern of length 4 is, up to complementation, included in the table.

Pattern Enumeration Reference

1234 exp(exp3(z)− 1) -

1/2/3/4 exp3(e
z − 1) -

12/3/4 1 +

n−1∑

k=1

m−2∑

j=1

S(n− k, j)

j
∑

i=1

(
j − 1

i− 1

)

(k)i Sagan (2010)

12/34

⌊n/2⌋
∑

k=0

k!

(
n

2k

)

+
n−2k∑

ℓ=3

(
n

2k + ℓ

)

k!(k + 1)2 (4.3)

1/234

n∑

ℓ=1

M(n− ℓ) +

n−2∑

ℓ=1

(n− ℓ− 1)M(n− ℓ− 1) +

n−3∑

ℓ=1

(
n− ℓ− 1

2

)

M(n− ℓ− 2) (4.5)

134/2 1 +

⌊n/2⌋
∑

k=1

n−2k∑

f=0

(
n− f − k − 1

k − 1

)(
2k + f

f

)

(2k)!! (4.6)

14/23 G

(
z

1− z

)
1

1− z
+

1

1− z
(4.4)

13/24
1−

√
1− 4z

2z
-

14/2/3
z − 3z2 + 3z3

1− 5z + 8z2 − 5z3
(4.1)

1/24/3
z − 4z2 + 6z3 − 2z4

(1 − 3z + 2z2)2
(4.2)
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4.1 The pattern 14/2/3

Let us begin by recalling the standard recursive construction for building set partitions. That is, every
set partition inΠn is obtained by taking a set partition inΠn−1 and either addingn to an existing block
or appendingn as a singleton. To enumerateΠn(14/2/3) we consider a refinement of this recursive
construction. First, observe that ifπ ∈ Πn(14/2/3), where in standard formπ = B1/ · · · /Bm, we have
eithern ∈ Bm−1 orn ∈ Bm, as any other choice would force an occurrence of the pattern14/2/3. From
this observation we may immediately restrict our attentionto set partitions which are built by recursively
placing the next largest element into either a singleton block, the last block, or the second to last block.
To formalize this refinement let us defineWn to be the subset of all words in the lettersa, b, c, that start
with ana and have the property that any occurrence of the letterc must be preceded by at least twoa’s.
Using this we obtain an injection

ϕ :Wn → Πn

which is defined recursively as follows. First, setϕ(a) = 1. Then, for anyw ∈ Wn, defineϕ(w) to be
the set partition obtained fromπ′ = ϕ(w1 · · ·wn−1) by appendingn as a singleton ifwn = a, inserting
n into the (existing) rightmost block ofπ′ if wn = b, or insertingn into the second to last block ofπ′ if
wn = c. Note that our insistence that words inWn have the property that anyc is preceded by at least
two a’s guarantees that ifwn = c, thenπ′ contains at least two blocks.

It is clear for our definition thatϕ is injective. Additionally, it follows from our first observation in this
subsection that

Πn(14/2/3) ⊆ ϕ(Wn).

Before continuing we next provide an example of this construction in Example 4.1.

Example 4.1. If w = aaccba, then
ϕ(w) = 134/25/6,

and ifv = aacabc, then
ϕ(v) = 13/26/45

which is not14/2/3-avoiding.

An immediate consequence of Example 4.1, is thatΠn(14/2/3) ( ϕ(Wn). Consequently, we seek
a subset ofWn whose image underϕ is preciselyΠn(14/2/3). To this end consider the subsetW ∗

n

consisting of allw ∈Wn with the property that the letters between any twoc’s do not contain exactly one
a. Observe that in Example 4.1w ∈W ∗

n butv is not.

Lemma 4.1. The restricted mappingϕ :W ∗
n → Πn(14/2/3) is a bijection.

Proof: We first show thatΠn(14/2/3) ⊆ ϕ(W ∗
n ). To this end considerw ∈ Wn \W ∗

n and leti < j < k
be such thatwi = wk = c andwj = a is the only occurrence of the lettera between these twoc’s. Next,
set

ϕ(w) = B1/ · · · /Bm

so thati ∈ Bt, for somet. Aswi = c that means thatℓ := min(Bt+1) < i. As there is noa betweenwi

andwj we see thatj ∈ Bt+2. Moreover, as there is noa betweenwj andwk we see thatk ∈ Bt+1. This
provides our desired contradiction since the integersℓ < i < j < k in the blocksBt, Bt+1, andBt+2

create an occurrence of the forbidden pattern14/2/3.
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To establish the other inclusion, considerw ∈ W ∗
n and assume for a contradiction thatϕ(w) /∈

Πn(14/2/3). Again set
ϕ(w) = B1/ · · · /Bm.

By definition of the mapϕ, we see thatmin(Bi) > max(Bj) for all j + 1 < i. From this it follows
that any occurrence of14/2/3 in ϕ(w) must occur among three consecutive blocksBt, Bt+1, Bt+2 and
involve integersℓ < i < j < k such thatℓ, k ∈ Bt+1, i ∈ Bt, andj ∈ Bt+2. This immediately implies
thatwi = wk = c and thatwj = a is the onlya between these twoc’s. This contradiction permits us to
conclude thatϕ(W ∗

n) = Πn(14/2/3) as claimed.

Theorem 4.2. We have

F14/2/3(z) =
∑

n≥1

|Πn(14/2/3)|zn =
z − 3z2 + 3z3

1− 5z + 8z2 − 5z3
.

Proof: By our previous lemma it suffices to find
∑

n≥1 |W ∗
n |zn. To this end we consider three cases

depending on how manyc’s our word contains.
The words inW ∗

n with noc’s are easily counted by the expressionz1−2z . On the other hand, the words
with exactly onec’s are counted by

z2
(

1

1− 2z
− 1

1− z

)
1

1− 2z

where the second term follows since any occurrence of ac must be preceeded by at least twoa’s. Lastly,
we consider words containing at least twoc’s. It is clear from the definitions that such words decompose
as

a b′s anda′s
︸ ︷︷ ︸

at least onea

c · · · c · · · c · · · c b′s anda′s ,

so that between any two consecutivec’s we do not have exactly onea. Counting the words between any
two consecutivec’s we have

G(z) =
1

1− 2z
−
∑

i≥1

izi =
1

1− 2z
− z

(1− z)2

since such words are in the lettersa andb but cannot have exactly onea. In terms ofG(z) we see that

z

(
1

1− 2z
− 1

1− z

)(
z2G(z)

1− zG(z)

)(
1

1− 2z

)

counts the case where our words have at least twoc’s. Summing these three cases yields the desired
result.
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4.2 The pattern 1/24/3

The enumeration of the pattern1/24/3 closely resembles that of the enumeration of14/2/3 found in the
previous section. As a result, we begin similarly by observing that ifπ = B1/ · · · /Bm ∈ Πn(1/24/3)
then we can only haven ∈ B1 or n ∈ Bm, as any other choice creates our forbidden pattern. Recalling
the setWn defined in the previous subsection, we define (recursively) the function

φ :Wn → Πn.

First setφ(a) = 1. Next, for anyw ∈Wn, defineφ(w) to be the set partition obtained fromφ(w1 · · ·wn−1) =
B1/ · · · /Bm by insertingn into a singleton block ifwn = a, insertingn into the blockBm if wn = b,
and lastly, insertingn into the blockB1 providedwn = c. It now follows, since the words inWn have
the property that anyc must be preceded by at least twoa’s, thatφ is injective. It also follows, from our
initial observation, thatΠn(1/24/3) ⊆ φ(Wn).

Example 4.3. If w = abbacb, then
φ(w) = 1235/46,

and ifv = aacac, then
φ(v) = 135/2/4.

Note thatφ(v) /∈ Π5(1/24/3).

We see from this example thatΠn(1/24/3) ( φ(Wn). As in the previous section, we seek a subset of
Wn whose image underφ is preciselyΠn(1/24/3). To this end, defineW ∗∗

n to be the set of allw ∈ Wn

such that

1) noa falls between any twoc’s in w, and

2) anyc in w which is preceded by at least threea’s cannot be immediately followed by ab.

In the next lemma we prove thatW ∗∗
n is this desired set. To facilitate the reading of its proof wepause

to highlight a couple key observations. Settingw ∈ Wn with φ(w) = B1/ · · · /Bm, we first see that
max(Bs) < min(Bs+1) for all s > 1. Our second observation is thatwi = a is thetth a in our word
(from left to right) if and only ifmin(Bt) = i. With these observations in mind we now state and prove
our lemma.

Lemma 4.2. The restricted mapφ :W ∗∗
n → Πn(1/24/3) is a bijection.

Proof: We first show thatΠn(1/24/3) ⊆ φ(W ∗∗
n ). To do so, it suffices to show that ifw ∈ Wn \W ∗∗

n ,
thenφ(w) /∈ Πn(1/24/3). Begin by settingφ(w) = B1/ · · · /Bm. We address the two ways in whichw
can fail to be a member ofW ∗∗

n separately. First, assume condition 1) fails, and leti < j < k be such
thatwi = wk = c andwj = a. In particular,i, k ∈ B1. Moreover, as anyc must be preceded by at least
two a’s, then it follows thatmin(B2) < i < k. It also follows that ifwj is thetth a in w, thent ≥ 3.
Consequently, the blocksB1, B2, andBt contain an occurrence of1/24/3.

Next, let us assume condition 2) fails. Here we assume that there exists some indexi so thatwiwi+1 =
cb andwi is preceded by at least threea’s. It immediately follows thatφ(w1 · · ·wi−1) hast ≥ 3 blocks
and that inφ(w), i ∈ B1, i + 1 ∈ Bt andmin(B2) < min(Bt) < i < i + 1. Consequently, the
blocksB1, B2, andBt, contain an occurrence of our forbidden pattern. We conclude thatΠn(1/24/3) ⊆
φ(W ∗∗

n ).
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Next, we demonstrate the other inclusion. Fixw ∈ W ∗∗
n and, for a contradiction, assume thatφ(w) /∈

Πn(1/24/3). Setφ(w) = B1/ · · · /Bm. Asφ(w) contains an occurrence of1/24/3we must havem ≥ 3.
Asmax(Bs) < min(Bs+1) for all s > 1 we see that any occurrence of1/24/3 in φ(w) must involveB1

and two other blocksBr andBs with r < s. If the integers that form this pattern arei < j < k < ℓ then
we have exactly two cases.

Case 1: j, ℓ ∈ B1, i ∈ Br, andk ∈ Bs

In this case, we see that asi ∈ Br, thenwj = wℓ = c. As the letters betweenwj andwℓ cannot contain
ana we conclude thatwk = b. It now follows thatwj · · ·wℓ must contains acb. Additionally, the facts
that the letters betweenwj andwℓ do not contain ana, and thatj < k < ℓ, and thatwmin(Bs) = a, imply
thatmin(Bs) < j. Furthermore, asmin(Br) ≤ i < j we see that

w1 = wmin(Br) = wmin(Bs) = a,

and1 < min(Br) < min(Bs) < j. This contradicts the fact thatw satisfies condition 2) in the definition
of W ∗∗

n .

Case 2: i ∈ Br, j, ℓ ∈ Bs andk ∈ B1

From the definition ofφ, we clearly have

w1 = wmin(Br) = wmin(Bs) = a.

Moreover, asi ∈ Br andi < k, thenwk = c. Further asℓ 6= min(Bs), thenwℓ = b. Lastly, it is clear that
the subwordwk+1 · · ·wℓ−1 cannot contain the lettera. (If it did, thenℓ could not be inBs.) This means
w contains acb preceded by at least threea. Again this contradicts the fact thatw satisfies condition 2) in
the definition ofW ∗∗

n . This completes our proof.

Theorem 4.4. We have

F1/24/3(z) =
∑

n≥1

|Πn(1/24/3)|zn =
z − 4z2 + 6z3 − 2z4

(1− 3z + 2z2)2
.

Proof: By our previous lemma it suffices to enumerateW ∗∗
n . To do so we consider three cases depending

on the number ofc’s. Clearly, the words inW ∗∗
n with no c’s are counted by the expressionz1−2z . Next

consider words that contain at least onec and have the additional property that the firstc appears after the
seconda but before the thirda (if it exists). Such words must be of the form

ab · · ·ba b′s andc′s
︸ ︷︷ ︸

at least 1c

or ab · · ·ba b′s andc′s
︸ ︷︷ ︸

at least 1c

a a′s andb′s .

These two forms are counted by

z2

1− z

(
1

1− 2z
− 1

1− z

)(

1 +
z

1− 2z

)

.
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Lastly, we consider the case that our firstc is preceded by at least threea’s. In this case such words must
be of the form

ab · · ·bab · · · ba a′s andb′s c · · · c or ab · · · bab · · ·ba a′s andb′s c · · · c a a′s andb′s .

Together such words are counted by the expression

z3

(1− z)2
z

(1− 2z)(1− z)

(

1 +
z

1− 2z

)

.

Adding these three terms together and simplifying yields the desired expression.

With the recursive structure of1/24/3-avoiding set partitions established, we now conclude the proof
the case|a− b| = 2 in the proof of Theorem 3.2, by establishing the following lemma.

Lemma 4.3. For n ≥ 5, we have|Πn(1/24/3)| < |Πn(1/2/3/4)|.

Proof: Let An be the set of all partitions of[n] with exactly 2 blocks and letA∗
n be the set of all par-

titions with exactly 3 blocks in whichn is a singleton. (NoteA∗
n is a subset of bothΠn(1/24/3) and

Πn(1/2/3/4).) Now letCn be the set of all partitions inΠn(1/24/3) with the property that removingn
gives a partition with at least 3 blocks. Similarly, letDn be the set of all partitions inΠn(1/2/3/4) with
the property that removingn results in a set partition with exactly 3 blocks. By our abovenote and the
fact that the patterns involved have at least 3 blocks, it follows that

Πn(1/24/3) = {βn} ·∪ An ·∪ A∗
n ·∪ Cn and Πn(1/2/3/4) = {βn} ·∪ An ·∪ A∗

n ·∪Dn.

It now suffices to show that|Cn| < |Dn| for n ≥ 5. We proceed by induction onn. As |Π5(1/24/3)| =
39 and |Π5(1/2/3/4)| = 41, we must have|C5| < |D5|. From the description of1/24/3-avoiding
permutations given in the first paragraph of this section, itfollows that|Cn+1| ≤ 3|Cn|. Additionally, it
is clear that|Dn+1| = 3|Dn|. Together we get

|Cn+1| ≤ 3|Cn| < 3|Dn| = |Dn+1|

where the second inequality follows by our inductive hypothesis. (Note the first inequality may not be an
equality as in Example 4.3.)

4.3 The pattern 12/34

Theorem 4.5. We have

|Πn(12/34)| =
⌊n/2⌋
∑

k=0

k!

(
n

2k

)

+

n−2k∑

ℓ=3

(
n

2k + ℓ

)

k!(k + 1)2.

Before proving this result it will be helpful to state and prove a couple of lemmas.

Lemma 4.4. Any set partition which avoids12/34 has at most one block of size greater than2.
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Proof: For a contradiction assumeπ ∈ Πn(12/34) contains two blocksB = {x1, . . . , xa} andC =
{y1, . . . , yb} wherea, b ≥ 3. Without loss of generality we may further assume thatx2 < y2. On the other
hand, this implies that the blocksB andC must contain an occurrence of12/34 which is impossible.

The proof of the next lemma is straightforward. The details are left to the reader.

Lemma 4.5. Let B = {z1 < · · · < za}, C = {x1 < y1}, andD = {x2 < y2} be blocks inπ ∈
Πn(12/34) so that3 ≤ a. Then

a) max(x1, x2) < min(y1, y2).

b) x1 < z2 andza−1 < y1.

Remark 4.1. It immediately follows from the previous lemma that ifx1 < · · · < xk are the minimum
entries among all the blocks of size 2 andy1, . . . , yk are the maximum entries among all the blocks of
size 2 then we must have

xi < min(y1, . . . , yk),

for 1 ≤ i ≤ k.

Proof Proof of Theorem 4.5: To start, let us first count those set partitions inΠn(12/34) whose block
sizes do not exceed 2. To count such set partitions with exactly k blocks of size 2, we first choose a subset
x1 < · · · < xk < y1 < · · · yk of size2k from [n]. (Then − 2k integers not chosen become singletons.)
We then may choose to match up each of thexi’s with exactly one of theyi’s in any of thek! ways. It
follows from the above remark that all set partitions inΠn(12/34) whose block sizes do not exceed 2 are
of this form. A simple argument further shows that any set partition built in this manner must also avoid
12/34. Consequently, the number of such set partitions is given by

⌊n/2⌋
∑

k=0

k!

(
n

2k

)

.

Now let us consider the set partitions inΠn(12/34) that containk blocks of size 2 and exactly one
block of sizeℓ ≥ 3. To build such a partition, we first choose a subset of size2k + ℓ from [n]. Let us
denote the members of this subset by

x1 < · · · < xk+1 < z1 < · · · < zℓ−2 < y1 < · · · < yk+1.

(Again, then − 2k − ℓ integers not chosen become singletons in our final set partition.) Next, choose
exactly one element from thexi’s and one element from theyi’s along with all thezi’s to form our block
of sizeℓ. Next, as in the preceding case we are free to match each of theremainingxi’s to each of the
remainingyi’s in all k! possible ways to form ourk blocks of size 2. Lemma 4.5 guarantees that any such
set partition is built in this manner. Furthermore, it is straightforward to show that any set partition built
in this manner avoids12/34. Consequently, the number of such set partitions is given by

⌊n/2⌋
∑

k=0

n−2k∑

ℓ=3

(
n

2k + ℓ

)

k!(k + 1)2.

Adding these two terms gives our final result.
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4.4 The pattern 14/23

To begin, let us concentrate on the subsetΠ∗
n(14/23) consisting of all set partitions inΠn(14/23) that do

not contain singletons. We first show that the set partitionsin this subset can be constructed via a simple
recursive procedure. To do this we first need the following definition.

Definition. For anyπ ∈ Π∗
n(14/23) we sayk is acapprovided eachi ≥ k is the maximum element in

its block. Letι(π) be the number of caps inπ.

Next, we define the setsΠ∗
n as follows. First, setΠ∗

2 = {{1, 2}}. Forn ≥ 3, defineΠ∗
n to be the set of

all partitions obtained by either of the following two operations.

n-insertion

For anyπ ∈ Π∗
n−1 insertn into the block containingn− 1.

n-augmentation

For σ ∈ Π∗
n−2 wheren ≥ 4 doing the following. Fixk to be either one of theι(π) caps inσ or set

k = n−1. Then, increment all the values inσ which are≥ k. Finally, append the doubleton block{k, n}.
We note that no partition inΠ∗

n contains a singleton.

Lemma 4.6. We haveΠ∗
n = Π∗

n(14/23).

Proof: We leave it to the reader to convince themselves thatΠ∗
n ⊆ Π∗

n(14/23). We show the other inclu-
sion by induction onn. First note thatΠ∗

2 = {{1, 2}} = Π∗
2(14/23). Now take anyπ ∈ Π∗

n+1(14/23)
and letB be the block whose cap isn+ 1. If |B| ≥ 3, then we claim thatn ∈ B as well. It then follows
(inductively) thatπ ∈ Π∗

n+1. To prove this claim, letB = {x1 < x2 < · · · < xk} so thatk ≥ 3 and
xk = n+1. For a contradiction assumexk−1 < n. So there exists a blockC, distinct fromB, whose cap
is n. SetC = {y1 < · · · < yℓ} so thatyℓ = n andℓ ≥ 2, asπ does not contain singletons. We must have

yℓ−1 < xk−2 < xk−1 < n = yℓ or xk−2 < yℓ−1 < yℓ = n < n+ 1 = xk.

But either choice results in an occurrence of the forbidden pattern14/23. Hencen ∈ B as claimed.
The other possibility is forB = {k, n+ 1}. As π avoids14/23 it follows that everyi strictly between

k andn+1 must be a cap. Consequently,π was constructed from some set partition inΠ∗
n(14/23) = Π∗

n

via n+ 1-augmentation. With this lemma established, we are now ready to enumerate this pattern.

Theorem 4.6. We have

F14/23(z) =
∑

n≥0

|Πn(14/23)| zn = G

(
z

1− z

)
1

1− z
+

1

1− z
,

where

G(z) =
z − 2z2(1 + z)− z

√
1− 4z2

−2 + 2z(1 + z)2
.

Proof: In light of the previous lemma we know that

G(z) =
∑

n≥2

|Π∗
n(14/23)| zn =

∑

n≥2

|Π∗
n| zn.
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It is straightforward to see that an arbitrary set partitionin Πn(14/23) is obtained by insertingk singleton
blocks into some set partition inΠn−k(14/23). In terms of generating functions this corresponds to

F14/23(z) = G

(
z

1− z

)
1

1− z
+

1

1− z
.

It only remains to prove thatG is given by the desired generating function. To do this, firstdefine

H(z, t) =
∑

n≥2

∑

π∈Π∗

n

zntι(π).

The recursive description ofΠ∗
n translates into the functional equation

H(z, t) = z2t+ ztH(z, 1) +
z2t

1− t
(H(z, 1)− tH(z, t)) ,

where the second term corresponds ton-insertion and the third term corresponds ton-augmentation.
Solving forG(z) = H(z, 1) using the kernel method results in the desired expression.

4.5 The pattern 1/234

Theorem 4.7. We have

|Πn(1/234)| =
n∑

ℓ=1

M(n− ℓ) +

n−2∑

ℓ=1

(n− ℓ− 1)M(n− ℓ − 1) +

n−3∑

ℓ=1

(
n− ℓ− 1

2

)

M(n− ℓ− 2),

where

M(n) =

⌊n/2⌋
∑

k=0

(
n

2k

)

(2k)!! .

Proof: Let π = B1/ · · · /Bm ∈ Πn(1/234). First observe that|Bi| ≤ 2 for all i ≥ 2 since1 ∈ B1 and
π avoids1/234. This means that the set partitionB2/ · · · /Bm is a matching with fixed points of the set
[n] \B1 which has sizen0 = n− |B1|. It is a well known result that such objects are counted by

M(n0) =

⌊n0/2⌋∑

k=0

(
n0

2k

)

(2k)!! .

Next, observe thatB1 is not free to be any subset of[n]. In factB1 must be of either the form

1) {1, . . . , ℓ}, or

2) {1, . . . , ℓ, k} for somek > ℓ+ 1, or

3) {1, . . . , ℓ, k,m} for somem > k > ℓ+ 1,

as any other possibility would result in an occurrence of1/234.
Combining these two observations we see that the first term inour formula counts the set partitions in

Πn(1/234) whose first block is of the form in 1). Likewise, the second andthird terms count those set
partitions whose first block is of the form in 2) and 3) respectively.
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4.6 The pattern 134/2

To enumerate this pattern we require the well studied notionof weak integer compositions. In particular,
we denote byCn,k the set of all weak integer compositions ofn with k parts. Additionally we denote
by Mk,f the set of all set partitions of[2k + f ] with f singletons andk doubletons. (Observe these are
just matchings withf fixed points.) Lastly, we define the refined setΠn,k,f (134/2) to be the set of all set
partitions inΠn(134/2) with exactlyk + f blocks where exactlyf of them are singletons.

Lemma 4.7. Provided,k ≥ 1 and2k + f ≤ n, there exists an explicit bijection

φ : Πn,k,f (134/2) → Cn−f−2k,k ×Mk,f .

Deferring the proof of this lemma to the end of this section, we continue with our enumeration.
As it is well known that|Cn−f−2k,k| =

(
n−f−k−1

k−1

)
and|Mk,f | =

(
2k+f

f

)
(2k)!! it now follows from

Lemma 4.7, that

|Πn(134/2)| = 1 +

⌊n/2⌋
∑

k=1

n−2k∑

f=0

|Πn,k,f (134/2)|

= 1 +

⌊n/2⌋
∑

k=1

n−2k∑

f=0

(
n− f − k − 1

k − 1

)(
2k + f

f

)

(2k)!!.

We record this result in our last theorem.

Theorem 4.8. We have the following formula

|Πn(134/2)| = 1 +

⌊n/2⌋
∑

k=1

n−2k∑

f=0

(
n− f − k − 1

k − 1

)(
2k + f

f

)

(2k)!!.

We now turn our attention to the proof of Lemma 4.7. We begin with a simple characterization of
134/2-avoiding set partitions. Its straightforward proof is omitted.

Lemma 4.8. For any set partitionπ = B1/ · · · /Bm, we have thatπ is 134/2-avoiding if and only if any
non-singleton block is of the form

{a, a+ 1, . . . , a+ ℓ, b},
whereℓ ≥ 0 andb ≥ a+ ℓ+ 1.

Proof Proof of Lemma 4.7: Consider a set partitionπ = B1/ . . . /Bm ∈ Πn(134/2) so thatf of the
blocks are singletons and the remainingk = m− f blocksBi1 , . . . , Bik are not singletons. Now let

λ = (|Bi1 | − 2, |Bi2 | − 2, . . . , |Bik | − 2)

be the resulting weak composition ofn−f−2k with k parts. (As each of the blocksBij are of the form in
Lemma 4.8, the parts of our composition are just their corresponding values forℓ in this decomposition.)
Furthermore, by throwing out all but the min and max of each block, and applying standardization map,
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we obtain a set partitionσ of [f + 2k] with exactlyf singletons andk doubletons. Finally, we define
φ(π) = (λ, σ). (We illustrate this construction in Example 4.9.) As this map is easily seen to be bijective,
the proof is complete.

Example 4.9. Consider the set partition127/3/4568/9/10 11 12 wheref = 2 andk = 3. Then

φ(127/3/4568/9/10 11 12) = (λ, σ)

whereλ = (1, 2, 1) ∈ C4,3 andσ = 14/2/35/6/78 ∈M3,2.
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