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We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on
the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and
reguli in 3-space. Among other things, we prove the following:

• The intersection graph ofn lines inR3 has a clique or independent set of sizeΩ(n1/3).

• Every set ofn lines in R
3 has a subset of

√
n lines that are all stabbed by one line, or a subset of

Ω
(

(n/ log n)1/5
)

such that no6-subset is stabbed by one line.

• Every set ofn lines in general position inR3 has a subset ofΩ(n2/3) lines that all lie on a regulus, or a subset
of Ω(n1/3) lines such that no4-subset is contained in a regulus.

The proofs of these statements all follow from geometric incidence bounds – such as the Guth-Katz bound on point-
line incidences inR3 – combined with Turán-type results on independent sets in sparse graphs and hypergraphs. As
an intermediate step towards the third result, we also show that for a fixed family of plane algebraic curves withs
degrees of freedom, every set ofn points in the plane has a subset ofΩ(n1−1/s) points incident to a single curve, or
a subset ofΩ(n1/s) points such that at mosts of them lie on a curve. Although similar Ramsey-type statements can
be proved using existing generic algebraic frameworks, thelower bounds we get are much larger than what can be
obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed
size.

Keywords: Geometric Ramsey theory, Erdős-Hajnal property, incidence bounds

1 Introduction
Ramsey theory studies the conditions under which particular discrete structures must contain certain sub-
structures. Ramsey’s theorem says that for everyn, every sufficiently large graph has either a clique or
an independent set of sizen. Early geometric Ramsey-type statements include the HappyEnding Prob-
lem on convex quadrilaterals in planar point sets, and the Erdős-Szekeres Theorem on subsets in convex
position [9].

We prove a number of Ramsey-type statements involving linesin R
3. The combinatorics of lines

in space is a widely studied topic which arises in many applications such as computer graphics, motion
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planning, and solid modeling [4]. Our proofs combine two main ingredients: geometric information in the
form of bounds on the number of incidences among the objects,and a Turán-type theorem that converts
this information into a Ramsey-type statement. We establish a general lemma that allows us to streamline
the proofs.

Ramsey’s Theorem for graphs and hypergraphs only guarantees the existence of rather small cliques
or independent sets. However, as discussed below, for the geometric relations we study the bounds are
known to be much larger. Therefore we are interested in finding the correct asymptotics. In particular,
we are interested in theErdős-Hajnal property. A class of graphs has this property if each member with
n vertices has either a clique or an independent set of sizenδ for some constantδ > 0. This comes from
theErdős-Hajnal conjecturewhich states that, for each graphH , the family of graphs excludingH as an
induced subgraph has this property. Our results yield new Erdős-Hajnal exponents for each of the classes
of (hyper)graphs studied.

The results presented here make use of important recent advances in combinatorial geometry. The key
example is the bound on the number of incidences between points and lines inR3 given by Guth and
Katz [12] in their recent solution of the Erdős distinct distances problem. Such results have sparked a lot
of interest in the field, and it can be expected that further progress will yield further Ramsey-type results.

1.1 A general framework

In general we consider two classes of geometric objectsP andQ in R
d and a binary incidence relation

contained inP × Q. For a finite setP ⊆ P and a fixed integert ≥ 2, we say that at-subsetS ∈
(

P
t

)

is degeneratewhenever there existsq ∈ Q such that everyp ∈ S is incident toq. Hence the incidence
relation together with the integert induces at-uniform hypergraphH = (P,E), whereE ⊆

(

P
t

)

is the
set of all degeneratet-subsets ofP . A clique in this hypergraph is a subsetS ⊆ P such that

(

S
t

)

⊆ E.
Similarly, an independent set is a subsetS ⊆ P such that

(

S
t

)

∩E = ∅.
In what follows, the familiesP andQ will mostly consist of lines or points in 3-space. We are interested

in Ramsey-type statements stating that thet-uniform hypergraphH induced by a setP ⊂ P of sizen has
either a clique of sizeω(n) or an independent set of sizeα(n).

1.2 Previous results

We first briefly survey some known results that fit into this framework. In many cases, eitherP orQ is a
set of points. WhenP is a set of points, finding a large independent set amounts to finding a large subset
of points in some kind of general position defined with respect to Q. WhenQ is the set of points, we are
dealing with intersections between the objects inP . In particular, the caset = 2 corresponds to the study
of geometric intersection graphs.

General position subset problems

A set inRd is usually said to be in general position whenever nod + 1 points lie on a hyperplane. For
points and lines in the plane, Payne and Wood proved that the Erdős-Hajnal property essentially holds
with exponent1/2 [19]. Cardinal et al. proved an analogous result inR

d [3].

Theorem 1.1([19, 3]). Fix d ≥ 2. Every set ofn points inRd contains
√
n cohyperplanar points or

Ω((n/ logn)1/d) points in general position.
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In both cases, the proofs rely on incidence bounds, in particular the Szemerédi-Trotter Theorem [24] in
the plane, and the point-hyperplane incidence bounds due toElekes and Tóth [8] inRd. In this paper we
formalise the technique used in those proofs in order to easily apply it to other incidence relations.

Erdős-Hajnal properties for geometric intersection graphs
A survey of Erdős-Hajnal properties for geometric intersection graphs was produced by Fox and Pach [10].
A general Ramsey-type statement for the case whereP is the set of plane convex sets has been known for
a long time. In what follows, avertically convexset is a set whose intersection with any vertical line is a
line segment.

Theorem 1.2(Larman et al. [16]). Any family ofn compact, connected and vertically convex sets in the
plane contains at leastn1/5 members that are either pairwise disjoint or pairwise intersecting.

Larman et al. also showed that there exist arrangements ofk2.3219 line segments with at mostk pairwise
crossing and at mostk pairwise disjoint segments. This lower bound was improved successively by
Károlyi et al. [14], and Kyncl [15].

More recently Fox and Pach studied intersection graphs of a large variety of other geometric ob-
jects [11]. For example they proved the following about families of s-intersecting curves in the plane
– families such that no two curves cross more thans times.

Theorem 1.3(Fox-Pach [11]). For eachǫ > 0 and positive integers, there isδ = δ(ǫ, s) > 0 such that if
G is an intersection graph of as-intersecting family ofn curves in the plane, thenG has a clique of size
at leastnδ or an independent set of size at leastn1−ǫ.

Erdős-Hajnal properties for hypergraphs have been provedby Conlon, Fox, and Sudakov [6].

Semi-algebraic sets and relations
A very general version of the problem for the caset = 2 has been studied by Alon et al. [1]. Here Ramsey-
type results are provided for intersection relations between semialgebraic sets of constant description
complexity inRd. It was shown that intersection graphs of such objects always have the Erdős-Hajnal
property. The proof combines a linearisation technique with a space decomposition theorem due to Yao
and Yao [27]. The following general statement can be extracted from their proof.

Theorem 1.4. Consider a relationR on elements of a familyF of semi-algebraic sets of constant de-
scription complexity. Suppose that each elementf ∈ F can be parameterized by a pointf∗ ∈ R

d,
and that the relationR can be mapped into a semi-algebraic setR∗ in R

2d. For eachg ∈ F , let
Σg = {f∗ ∈ R

d : (f∗, g∗) ∈ R∗}. Let Q be the smallest dimension of a spaceR
Q in which the de-

scription ofΣg becomes linear, and letk be the number of bilinear inequalities in the definition ofR∗ in
R

Q. Then the graph of the relationR satisfies the Erd̋os-Hajnal property with exponent1/(2k(Q+ 1)).

A similar result is given for the so-calledstrongversion of the Erdős-Hajnal property: for every such
intersection relation, there exists a constantǫ and a pair of subfamiliesF1,F2 ⊆ F , each of size at least
ǫ|F|, such that either every element ofF1 intersects every element ofF2, or no element ofF1 intersects
any element ofF2. The exponent for the usual Erdős-Hajnal statement is a function of thisǫ.

As an example, Alon et al. applied their machinery to prove the following result on arrangement of
lines inR3.

Theorem 1.5(Alon et al. [1]). Every family ofn pairwise skew lines inR3 contains at leastk ≥ n1/6

elementsℓ1, ℓ2, . . . , ℓk such thatℓi passes aboveℓj for all i < j.
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For the problems we consider, however, the exponents we obtain are significantly larger than what can
be obtained from Theorem 1.4.

A general version of this problem in which degeneratet-tuples are defined by a finite number of poly-
nomial equations and inequalities of bounded description complexity has recently been studied by Conlon
et al. [5]. They show that the Ramsey numbers in this general setting grow like towers of heightt − 1,
and that this is asymptotically tight. Such a setting is relevant here, since we also consider Erdős-Hajnal
statements for some geometric hypergraphs.

1.3 Summary of our results

In Section 2 we give a simple lemma that allows to convert geometric incidence bounds into bounds on
the number of degenerate subsets, hence on the number of hyperedges of the hypergraphs of interest. We
also recall the statements of the Turán bound for hypergraphs due to Spencer.

Section 3 deals with the case whereP andQ are lines and points inR3. A natural object to consider is
the intersection graph of lines inR3, for which we prove the Erdős-Hajnal property with exponent 1/3.

Theorem 3.7. The intersection graph ofn lines inR3 has a clique or independent set of sizeΩ(n1/3).

This makes use of the Guth-Katz incidence bound between points and lines inR3 [13]. We further show
that this exponent can be raised to1/2 if we consider lines in the projective 3-space. We also show how
to obtain bounds on the size of independent sets fort = 3, in which a subset of lines in general position is
defined as a set of lines with no three intersecting in the samepoint.

Section 4 deals with the setting where bothP andQ are lines inR3. We prove the following theorem.

Theorem 4.1. LetL be a set ofn lines inR3. Then either there is a subset of
√
n lines ofL that are all

stabbed by one line, or there is a subset ofΩ
(

(n/ logn)
1/5
)

lines ofL such that no6-subset is stabbed

by one line.

The proof involves lifting the set of lines to a set of points and hyperplanes inR5, and applying the
Ramsey-type result on points and hyperplanes due to Cardinal et al. [3]. The latter in turn relies on a
point-hyperplane incidence bound due to Elekes and Tóth [8].

Finally, in Section 5 we introduce the notion of a subset of lines in general position inR3 with respect
to reguli, defined as loci of lines intersecting three pairwise skew lines. We use the Pach-Sharir bound on
incidences between points and curves in the plane [18] to obtain the following result.

Theorem 5.5. LetL be a set ofn pairwise skew lines inR3. Then there areΩ(n2/3) lines on a regulus,
or Ω(n1/3) lines, no 4-subset of which lie on a regulus.

We also explain how to use a line-regulus incidence bound dueto Aronov et al. [2] for an alternative
proof of this result.

The large subsets whose existence our results guarantee canbe found in polynomial time. In each case,
a degeneratet-subset is incident to only one element ofQ (for example, three collinear points lie on only
one line). Furthermore, the cliques given by our results areof a particular type: all the elements intersect a
single element ofQ (for example, a collinear set of points). Thus the largest such clique in the hypergraph
H can be found in polynomial time by checking all the elements of Q that determine a degeneratet-
subset (for example, all lines determined by the point set).If the clique size is small, Turán-type theorems
yield an independent set of a guaranteed minimum size. Thesetheorems are constructive, hence the large
independent set can be found efficiently.
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2 Preliminaries
In order to prove the existence of large independent sets in hypergraphs with no large clique, we proceed
in two steps. First, we use incidence bounds to get upper bounds on the density of the (hyper)graph. Then
we apply Turán’s Theorem or its hypergraph analogue to find alower bound on the size of the independent
set. This is an extension of the method used to prove Theorem 1.1 in [19, 3]. The use of incidence bounds
is also reminiscent from the technique used by Pach and Sharir for the repeated angle problem [17].

The following lemma will allow us to quickly convert incidence bounds into density conditions. Recall
that we consider two familiesP andQ with an incidence relation inP ×Q, and that at-subsetS of P is
said to be degenerate whenever there existsq ∈ Q such that everyp ∈ S is incident toq.

Lemma 2.1. LetP be a subset ofP with |P | = n, such that no element ofQ is incident to more thanℓ
elements ofP . Let us denote byP≥k the number of elements ofQ incident to at leastk elements ofP , and
supposeP≥k . g(n)/ka for some functiong and some real numbera. Then the number of degenerate
t-subsets induced byP is at most

m .











g(n) if t < a,

g(n) log ℓ if t = a,

g(n)ℓt−a if t > a.

Proof: Let Pj be the number of elements ofQ incident toexactlyj elements ofP . Then

m =

ℓ
∑

j=t

Pj

(

j

t

)

<

ℓ
∑

j=1

Pjj
t <

ℓ
∑

j=1

Pj

(

t

j
∑

k=1

kt−1

)

≃
ℓ
∑

k=1

kt−1





ℓ
∑

j=k

Pj





=
ℓ
∑

k=1

kt−1P≥k . g(n)
ℓ
∑

k=1

kt−1−a,

where we use that
∑j

k=1 k
t−1 = jt/t + O(jt−1), andt = O(1). The final sum simplifies differently

depending on the relative values oft anda.

We recall the statement of Turán’s Theorem.

Theorem 2.2(Turán [25]). LetG be a graph withn vertices andm edges. Thenα(G) ≥ n
2m
n

+1
. Thus if

m < n/2 thenα(G) > n/2. Otherwiseα(G) ≥ n2/4m.

The hypergraph version of this result was proved by Spencer.

Theorem 2.3(Spencer [23]). LetH be at-uniform hypergraph withn vertices andm edges. Ifm < n/t
thenα(H) > n/2. Otherwise

α(H) ≥ t− 1

tt/(t−1)

n

(m/n)1/(t−1)
.

3 Points and lines in R
3

The recent resolution of Erdős’ distinct distance problemby Guth and Katz involves new bounds on the
number of incidences between points and lines inR

3 [12]. This breakthrough has fostered research on
point-line incidence bounds in space. In this section and the next, we exploit those recent results to obtain
various new Ramsey-type statements on point-line incidence relations in space.
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3.1 General position with respect to lines
Theorem 1.1 ford = 2 states that in a setP of n points in the plane there exist either

√
n collinear

points, orΩ(
√

n/ logn) points with no three collinear. Payne and Wood [19] conjectured that the true
size should beΩ(

√
n), but this small improvement has proven elusive.

Here we consider the same question but withP = R
3, Q defined as the set of lines inR3, andt = 3.

Hence we consider that a setP ⊂ R
3 is in general position when no three points are collinear. Sofar

this is the same question as in the planar case, since a point set in higher dimensional space can always
be projected to the plane in a way that maintains the collinearity relation. However, under a small extra
assumption, namely that among then points inR3, at mostn/ logn are coplanar, we are able to remove
the logn factor in the independent set. This sheds some light on the nature of potential counterexamples
to the conjecture of Payne and Wood.

We will use the following result of Dvir and Gopi [7], which isdeduced from Guth and Katz [13].

Theorem 3.1. Given a setP of n points inR3, such that at mosts points are contained in a plane, the
numberP≥k of lines containing at leastk points is

P≥k .
n2

k4
+

ns

k3
+

n

k
.

Theorem 3.2. Any set ofn points inR3 such that at mostn/ logn of the points lie in a plane contains
either

√
n collinear points orΩ(

√
n) with no three collinear.

Proof: We apply Lemma 2.1 on each term of the bound in Theorem 3.1. We obtain that the number of
degenerate 3-subsets of points is

m . n2 + ns log ℓ+ nℓ2,

whereℓ =
√
n ands = n/ logn. Hence the dominating term isn2. Applying Theorem 2.3 yields an

independent set of sizeΩ(
√
n).

In fact, this theorem holds inRd for d > 3. To see this, we take a generic projection ofR
d ontoR3.

The condition that at mostn/ logn lines are coplanar remains true under a generic projection.

3.2 Line intersection graphs in R
3

We now consider the setting in which the familyP is the set of lines inR3 andQ = R
3. The first subcase

we consider ist = 2, or in other words, intersection graphs of lines. Note that in an intersection graph
of lines inR

3, every clique of sizek ≥ 2 corresponds either to a subset ofk lines having a common
intersection point, or to a subset ofk lines lying in a plane. However,k lines lying in a plane do not form
a clique if some of them are parallel.

We consider a setL of n lines inR
3, such that no more thanℓ lines intersect in a point, and at most

s lines lie in a common plane or aregulus. We recall that a regulus is a degree two algebraic surface,
which is the union of all the lines inR3 that intersect three pairwise-skew lines inR

3. It is adoubly-ruled
surface; each point on a regulus is incident to precisely twolines fully contained in the regulus. Moreover,
there are tworulings for the regulus; every line from one ruling intersects everyline from the other ruling,
and does not intersect any line from the same ruling.

We first recall two important theorems of Guth and Katz [13]. In what follows,P≥k denotes the number
of points incident to at leastk lines inL.
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Theorem 3.3([13, Theorem 4.5]). If L is a set ofn lines, so that no plane contains more thans lines,
then fork ≥ 3 we have

P≥k .
n3/2

k2
+

ns

k3
+

n

k
.

Theorem 3.4([13, Theorem 2.11],[21]). If L is a set ofn lines, so that no plane or regulus contains more
thans lines, thenP≥2 . n3/2 + ns.

Note the difference between the two statements: the assumption that no regulus contains more thans
lines is required for the casek = 2 only.

Applying Lemma 2.1 to the bounds in Theorems 3.3 and 3.4 yields the following.

Proposition 3.5. Given a setL of n lines, so that no plane or regulus contains more thans lines, and no
point is incident to more thanℓ lines ofL, the number of line-line incidences isO(n3/2 log ℓ+ ns+ nℓ).

Lemma 3.6. Consider a setL of n lines inR
3, such that no plane contains more thans lines, and no

point is incident to more thanℓ lines ofL. Let G be the intersection graphL. If s, ℓ . n1/2, then
α(G) &

√
n/ log ℓ. Moreover, ifr := max{s, ℓ} & n

1
2
+ǫ for someǫ > 0, thenα(G) & n/r.

Proof: If there is some regulus containing at leastn1/2 lines, we divide the lines into the two rulings of
the regulus. One ruling contains at least half the lines, andas the lines in one ruling do not intersect one
another, it follows thatα(G) & n1/2. We may therefore assume that the number of lines contained in a
common regulus is at mostn1/2.

If s, ℓ ≤ n1/2, the first term in the bound in Proposition 3.5 dominates, andapplying Theorem 2.2 gives
α(G) &

√
n/ log ℓ. If r ≥ n

1
2
+ǫ, one of the latter terms dominates, and we apply Theorem 2.2 to get

α(G) & n/r.

Theorem 3.7. The intersection graph ofn lines inR3 has a clique or independent set of sizeΩ(n1/3).

Proof: Suppose that such a graphG hasα(G) ≪ n1/3. Then by Lemma 3.6,max{s, ℓ} & n2/3. If
ℓ & n2/3 we are done, sos & n2/3. Therefore, we may assume that there is a plane containingn2/3 lines.
Divide these lines into classes of pairwise parallel lines.If some class contains at leastn1/3 lines, we have
α(G) & n1/3. Otherwise, there are at leastn1/3 different parallel classes. Choosing one line from each
class yields a clique of sizen1/3.

Note that the Erdős-Hajnal property for intersection graphs of lines inR3 can be directly established
from Theorem 1.4 by Alon et al. [1], but with a much smaller exponent. In their setting, we can represent
the intersection relation between lines using Plücker coordinates inR5, and using two inequalities. This
yields k = 2 andQ = 5, and an Erdős-Hajnal exponent of1/24. Although it is likely that it can be
improved by shortcutting steps in the general proof, any exponent we would get would still be far from
1/3.

We now make a connection with intersection graphs of lines inspace and line graphs. Recall that the
line graph of a graphG has the set of edgesE(G) as vertex set, and an edge between two edges ofG
whenever they are incident to the same vertex ofG. Observe that for every graphG, the line graph of
G can be represented as the intersection graph of lines inR

3 by drawingG on a vertex set in general
enough position inR3, and extending the edges of the drawing to lines. By applyingVizing’s Theorem,
which says that the edge chromatic number of every graph is atmost∆ + 1, we may see that the class
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of line graphs has the Erdös–Hajnal property with exponent1/2. The question of the exact Erdös–Hajnal
exponent for intersection graphs of lines inR3 remains open – it lies somewhere between1/3 and1/2.

Finally we note that for sets of lines in projective space, coplanar sets of lines always form a clique.
The following stronger result can be directly obtained.

Theorem 3.8. For every intersection graphG of n lines in P
3, either ω(G) ≥ √

n or α(G) =
Ω(

√
n/ logn).

Hence intersection graphs of lines in the projective plane satisfy the Erdős-Hajnal property with expo-
nent roughly1/2.

3.3 Independent Sets of Lines for t = 3

We now consider the case in whichP is the set of lines inR3, Q = R
3 andt = 3. This can be seen as a

kind of three-dimensional version of the dual of the result of Payne and Wood (Theorem 1.1 withd = 2).

Theorem 3.9. Consider a collectionL of n lines inR
3, such that at mosts lie in a plane, withs ≤

n/ logn. Then there exists a point incident to
√
n lines, or a subset ofΩ(

√
n) lines such that at most two

intersect in one point.

Proof: We letℓ be the largest number of lines intersecting in one point, andsupposeℓ <
√
n. Applying

Lemma 2.1 and Theorem 3.3, we get that the number of triples sharing a point is at most

m . ℓn3/2 + ns log ℓ+ nℓ2 . n2.

Then by Theorem 2.3 we have an independent set of sizeΩ(
√
n).

If the above theorem is stated with dependence onℓ, we getΩ(n3/4/
√
ℓ). If s is allowed to be as large

asn, we are back in the dual of general position subset selection, and we getΩ(
√

n/ logn), the same as
Theorem 1.1.

4 Stabbing lines in R
3

Three lines inR3 are typically intersected by a fourth line, except in certain degenerate cases. Thus it
makes sense to study configurations of lines inR

3, and to consider a set of4 or more lines degenerate if
all its elements are intersected by another line. Here we provide a result for6-tuples of lines.

We define a 6-tuple of lines to be degenerate if all six lines are intersected (or “stabbed”) by a single
line inR

3. We call this line astabbing linefor the6-tuple of lines. So in our framework this is the setting
in which bothP andQ are the set of lines inR3, andt = 6.

We make use of the Plücker coordinates and coefficients for lines inR3, which are a common tool for
dealing with incidences between lines, see e.g. Sharir [20]. Leta = (a0 : a1 : a2 : a3), b = (b0 : b1 : b2 :
b3) be two points on a lineℓ, given in projective coordinates. By definition, the Plücker coordinates ofℓ
are given by

(π01 : π02 : π12 : π03 : π13 : π23) ∈ P
5,

whereπij = aibj − ajbi for 0 ≤ i < j ≤ 3. Similarly, the Plücker coefficients ofℓ are given by

(π23 : −π13 : π03 : π12 : −π02 : π01) ∈ P
5,
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i.e., these are the Plücker coordinates written in reverseorder with two signs flipped. The important
property is that two linesℓ1 andℓ2 are incident if and only if the Plücker coordinates ofℓ1 lie on the
hyperplane defined by the Plücker coefficients ofℓ2 and vice versa. Therefore, we definẽP , andQ̃ to
be the points inP5 defined by the Plücker coordinates of the lines inL, and the hyperplanes defined by
the Plücker coefficients of the lines inR3, respectively. The incidence relation between points inP̃ and
hyperplanes inQ̃ is the standard incidence relation between points and hyperplanes. The integert is set
to 6, and a 6-tuple of points iñP is degenerate whenever there is a hyperplane inQ̃ which is incident to
all six points in the 6-tuple.

We prove the following Ramsey-type result for stabbing lines inR3.

Theorem 4.1. LetL be a set ofn lines inR3. Then either there is a subset of
√
n lines ofL that are all

stabbed by one line, or there is a subset ofΩ
(

(n/ logn)1/5
)

lines ofL such that no6-subset is stabbed

by one line.

Theorem 4.1 is an immediate consequence of the following generalisation of Theorem 1.1. The differ-
ence is that the set of hyperplanesH is arbitrary instead of being the set of all hyperplanes inR

d.

Theorem 4.2. LetH be a set of hyperplanes inRd. Then, every set ofn points inRd with at mostℓ points

on any hyperplane inH, whereℓ = O(n1/2), contains a subset ofΩ
(

(n/ log ℓ)
1/d
)

points so that every

hyperplane inH contains at mostd of these points.

Theorem 4.2, withd = 5, applied to the points and hyperplanes given by the Plückercoordinates and
coefficients, implies Theorem 4.1. Theorem 4.2 follows fromthe following generalized version of Lemma
4.5 of Cardinal et al. [3].

Lemma 4.3. Fix d ≥ 2 and a setH of hyperplanes inRd. LetP be a set ofn points inRd with no more
than l points in a hyperplane inH, for somel = O(n1/2). Then, the number of(d + 1)-tuples inP that
lie in a hyperplane inH isO(nd log l).

The difference between this lemma and the original version in [3] is that the set of hyperplanesH is
arbitrary, rather than being the set of all hyperplanes. Theproof is similar to that of Cardinal et al., and is
given in Appendix A.

The following result provides a simple upper bound.

Theorem 4.4. For every constant integert ≥ 4, there exists an arrangementL of n lines inR3 such that
there is no subset of more thanO(

√
n) lines that are all stabbed by one line, nor any subset of more than

O(
√
n) lines with not stabbed by one line.

Proof: ConstructL as follows: pick
√
n parallel planes, each containing

√
n lines, with no three inter-

secting and no two parallel. Consider a subset stabbed by oneline. Either it has three coplanar lines; then
it must be fully contained in one of the planes and contains atmost

√
n lines; or it has no three coplanar

lines, hence contains at most two lines from each plane, and has at most2
√
n lines. Now consider a subset

such that not lines are stabbed by one. Then it contains at mostt − 1 lines from each plane, and has at
most(t− 1)

√
n lines.
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5 Lines and reguli in R
3

Consider the case in whichP is the class of lines inR3, Q is the class of reguli, andt = 4. Let P be
a set ofn lines, and assume that the lines inP are pairwise skew. Every triple of lines inP therefore
determines a single regulus, and we may consider the set of all reguli determined byP . We consider the
containment relation rather than intersection – we are interested in4-tuples that all lie in the same regulus.
In order to prove our result, we first reformulate previouslyknown incidence bounds between points and
curves in the plane.

5.1 General position with respect to algebraic curves
We first consider the case whereP = R

2 andQ is a family of algebraic curves of bounded degree. We
define the number of degrees of freedom of a family of algebraic curvesC to be the minimum values
such that for anys points inR2 there are at mostc curves passing through all of them, for some constant
c. Moreover,C has multiplicity typer if any two curves inC intersect in at mostr points. We consider a
set of points to be in general position with respect toC when nos+ 1 points lie on a curve inC.

It is possible to extract Ramsey-type statements for this situation directly from Theorem 1.1 via lineari-
sation. For example, let us consider the special case of circles, wheres = 3. Given a set of points in the
plane, we can lift it onto a paraboloid inR3 in such a way that a subset of the original set lies on a circle
(possibly degenerated into a line) if and only if the corresponding lifted points lie on a hyperplane inR3.
By applying Theorem 1.1 on the lifted set, we can show that there exists a subset of

√
n points incident

to a circle, or a subset ofΩ((n/ logn)1/3) points such that at most three of them lie on a circle. We show
how we can improve on this.

In order to apply our technique, we need Szemerédi-Trotter-type bounds on the number of incidences
between points and curves. This has been studied by Pach and Sharir [18].

Theorem 5.1([18]). Let P be a set ofn points in the plane and letC be a set ofm bounded degree
plane algebraic curves withs degrees of freedom and multiplicity typer. Then the number of point-curve
incidences is at most

I(P, C) ≤ C(r, s)
(

ns/(2s−1)m(2s−2)/(2s−1) + n+m
)

whereC(r, s) is a constant depending only onr ands.

Pach and Sharir proved Theorem 5.1 for simple curves withs degrees of freedom and multiplicity
typer. It is well known that one may replace simple curves with bounded degree algebraic curves, since
such curves may be cut into a constant number of simple pieces. Note that a set of bounded degree
algebraic curves has constant multiplicity type if no two curves share a common component. Wang et
al. [26] recently proved another result for incidences between points and algebraic curves, though for our
purposes Theorem 5.1 is stronger.

Theorem 5.2. Consider a familyC of bounded degree algebraic curves inR2 with constant multiplicity
type ands degrees of freedom, for somes > 2. Then in any set ofn points inR2, there exists a subset
of Ω(n1−1/s) points incident to a single curve ofC, or a subset ofΩ(n1/s) points such that at mosts of
them lie on a curve ofC.

Proof: Sett = s + 1 and count the number of degeneratet-subsets. We denote byP≥k the number of
curves ofC containing at leastk points ofP . A direct corollary of Theorem 5.1 is that, for values ofk
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larger than some constant,

P≥k .
ns

k2s−1
+

n

k
.

On the other hand, for smaller values ofk, the trivial boundP≥k . ns holds since for anys points, there
are at most a constant number of curves passing through all ofthem. Suppose now that no curve contains
more thanℓ . n1−1/s points ofP . Sinces > 2, it follows thatt < 2s− 1. Using Lemma 2.1, we deduce
that the number of degeneratet-subsets is

m . ns + nℓs . ns.

Thus by Theorem 2.3 there exists an independent set of size atleast

t− 1

tt/(t−1)

n

(m/n)1/(t−1)
= Ω(n1/s).

As an example, we can instantiate the result as follows for circles in the plane.

Corollary 5.3. In any set ofn points inR2, there exists a subset ofΩ(n2/3) points incident to a circle, or
a subset ofΩ(n1/3) points such that no four of them lie on a circle.

Using the standard point-line duality, Theorem 1.1 states that for every arrangement ofn lines inR2,
either there exists a point contained in

√
n lines, or there exists a set ofΩ((n/ logn)1/2) lines inducing

a simple arrangement, that is, such that no point belongs to more than two lines. We provide a similar
dual version of Theorem 5.2. This corresponds to the case whereP is a family of algebraic curves withs
degrees of freedom,Q = R

2, andt = 3. As mentioned before, the caset = 2, or intersection graphs, has
been studied previously [10, 11]. The proof is very similar to that of Theorem 5.2 and omitted.

Theorem 5.4. Consider a familyC of bounded degree algebraic curves inR2 with constant multiplicity
type ands degrees of freedom, for somes > 2. Then in any arrangementC ofm such curves, there exists
a subset ofΩ(m1−1/s) curves intersecting in one point, or a subset ofΩ(m1/s) curves inducing a simple
subarrangement, that is, such that at most two intersect in one point.

5.2 Ramsey-type results for lines and reguli in R
3

We now come back to our original problem in whichP is the class of lines inR3, Q is the class of
reguli, andt = 4. Here we restrict the finite arrangementP ⊂ P to be pairwise skew, that is, pairwise
nonintersecting and nonparallel. We also consider the containment relation, that is,ℓ ∈ P is incident to
R ∈ Q if it is fully contained in it.

Recall that a regulus can be defined as a quadratic ruled surface which is the locus of all lines that are
incident to three lines in general position. This surface isa doubly ruledsurface, that is, every point on
a regulus is incident to precisely two lines fully containedin it. There are only two kinds of reguli, both
of which are quadrics – hyperbolic paraboloids and hyperboloids of one sheet; see for instance Sharir and
Solomon [22] for more details.

Theorem 5.5. LetL be a set ofn pairwise skew lines inR3. Then there areΩ(n2/3) lines on a regulus,
or Ω(n1/3) lines, no 4-subset of which lie on a regulus.
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Proof: We map the lines inL to a setP of points inR4. This can be done for instance by associating with
each line thex- andy-coordinates of the two points of intersection with the planesz = 0 andz = 1. (We
may assume no line is parallel to these planes). Under this mapping, a ruling of a regulus corresponds
to an algebraic curve inR4. Let C be the finite set of all curves corresponding to a ruling of a regulus
determined by three lines inL. Note thatanytriple of points inR4 is contained in at most one such curve,
because three lines inR3 lie in at most one ruling of one regulus. (A pair of parallel orintersecting lines
are not contained in a ruling of any regulus, even though theyare contained in many reguli).

Apply a generic projectionπ from R
4 to R

2, and consider the arrangement of pointsP ′ = π(P ) to-
gether with the set of projected curvesC′ = π(C). Such a projection preserves the incidences between
points and curves inR4, and only creates new intersections between pairs of curves(i.e. ‘simple’ cross-
ings). Three or more curves inC′ intersect in a point if and only if their preimages inC intersect in a
point.

The set of curvesC′ has three degrees of freedom, since for any three points inR
2 there are at most two

curves passing through all of them. Otherwise, if three curves pass through three points, the corresponding
curves inC also intersect in three points inR4, a contradiction.

Moreover, the curves inC′ are algebraic of bounded degree, do not share common components, and
thus have constant multiplicity type. Applying Theorem 5.2with s = 3, we obtain that there areΩ(n2/3)
points ofπ(P ) on one curve, orΩ(n1/3) points ofπ(P ), no four of which lie on a curve. The result
follows.

The bounds can be shown to be tight in the following sense.

Theorem 5.6. There exists a setP of n pairwise skew lines inR3 such that there is no subset of more
thanO(n2/3) lines on a regulus, and no more thanO(n1/3) lines such that no 4-subset lie on a regulus.

Proof: The setP is constructed as follows: take a set ofn1/3 distinct reguli, and for each regulus take
n2/3 lines in one of its rulings, givingn pairwise skew lines. Consider a subset ofP contained in a
regulus. Either it is one of the chosen reguli, and it contains at mostn2/3 lines, or it contains at most two
lines from each regulus, and has size at most2n1/3. On the other hand, consider a subset of lines with no
four on a regulus. It can contain at most three lines from eachchosen regulus, and therefore has size at
most3n1/3.

Alternative proof. Aronov et al. [2] proved the following bound on the number of incidences between
lines and reguli in 3-space.

Theorem 5.7(Aronov et al.[2]). LetL be a set ofn lines inR3, and letR be a set ofm reguli inR
3. Then

the number of incidences between the lines ofL and the reguli ofR isO(n4/7m17/21+n2/3m2/3+m+n).

From this bound, one may derive an alternative proof of Theorem 5.5, of which we now give a brief
sketch. First boundP≥k, defined as the number of reguli containing at leastk lines. From the above
Theorem, we getP≥k . n3/k21/4 + n2/k3 + n/k. Then from Lemma 2.1 we know that if no regulus
contains more thanℓ lines, then the number of degenerate 4-tuples of lines ism . n3+n2ℓ+nℓ3. Hence
eitherℓ is larger thann2/3, orm . n3 and from Theorem 2.3 there exists an independent set of linesof
sizeΩ(n1/3).
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[3] Jean Cardinal, Csaba D. Tóth, and David R. Wood. GeneralPosition Subsets and Independent
Hyperplanes in d-Space.ArXiv e-prints, 2014, 1410.3637. To appear inJournal of Geometry.

[4] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Jorge Stolfi. Lines
in space: Combinatorics and algorithms.Algorithmica, 15(5):428–447, 1996.

[5] David Conlon, Jacob Fox, János Pach, Benny Sudakov, andAndrew Suk. Ramsey-type results for
semi-algebraic relations. InProc. Symposium on Computational Geometry (SoCG), pages 309–318,
2013.

[6] David Conlon, Jacob Fox, and Benny Sudakov. Erdős-Hajnal-type theorems in hypergraphs.J.
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[9] Paul Erdős and George Szekeres. A combinatorial problem in geometry.Compositio Mathematica,
2:463–470, 1935.
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A Proof of Lemma 4.3
For the proof we need the following observation regarding generic projection maps.

Lemma A.1. LetP be a finite set of points inRd, and letA be a finite set of(d − 2)-flats inRd. Letπ
be a generic projection fromRd to a hyperplane. Then a pointp ∈ P lies on a(d− 2)-flatA ∈ A if and
only if π(p) ∈ π(A).

Proof: The forward implication is clear. For the other direction, supposep /∈ A. Then the affine span of
{p}∪A is a hyperplane, that is, it is(d− 1)-dimensional. By the genericity ofπ, the imageπ(span({p}∪
A)) must also be(d− 1)-dimensional, soπ(p) /∈ π(A).

We also need the following result of Elekes and Tóth [8]. Given a point setP , a hyperplaneh is said to
beγ-degenerateif at mostγ|P ∩ h| points ofP ∩ h lie on a(d− 2)-flat.
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Theorem A.2. For everyd ≥ 3 there exist constantsCd > 0 andγd > 0 such that for every set ofn
points inRd, the numberh≥k of γd-degenerate hyperplanes containing at leastk points ofP is at most

Cd

(

nd

kd+1
+

nd−1

kd−1

)

.

For convenience we restate Lemma 4.3.

Lemma 4.3. Fix d ≥ 2 and a setH of hyperplanes inRd. LetP be a set ofn points inRd with no more
thanℓ points in a hyperplane inH, for someℓ = O(n1/2). Then, the number of(d+ 1)-tuples inP that
lie in a hyperplane inH isO(nd log ℓ).

Proof: The proof is an adaptation of the proof of Lemma 4.5 in Cardinal et al. [3]. It proceeds by induction
ond ≥ 2. The base case isd = 2. We wish to bound the number of triples of points ofP , lying on a line
in H. Let hk (resp.,h≥k) denote the number of lines ofH containing exactly (resp., at least)k points of
P . The number of triples of points lying on a line ofH is

∑ℓ
k=3 hk

(

k
3

)

≤∑ℓ
k=3 k

2h≥k

.
∑ℓ

k=3 k
2
(

n2

k3 + n
k

)

. n2 log ℓ+ ℓ2n . n2 log ℓ,

(1)

whereh≥k . n2

k3 + n
k follows by the Szemerédi-Trotter Theorem [24].

We now consider the general cased ≥ 3. LetP be a set ofn points inRd, with no more thanℓ points in
a hyperplane inH, whereH is a given set of hyperplanes inRd, andℓ = O(n1/2). Letγ := γd > 0 be the
constant specified in Theorem A.2. We distinguish between the following three types of(d+ 1)-tuples:
Type 1: (d + 1)-tuples of P contained in a (d − 2)-flat in a hyperplane in H. Let F be the set of
(d − 2)-flats that are contained in some hyperplane inH and spanned by the pointsP . Let sk denote the
number of flats inF that contain exactlyk points ofP . We projectP onto a(d− 1)-flatK via a generic
projectionπ to obtain a set of pointsP ′ := π(P ) in R

d−1. Let H′ be the set of hyperplanesπ(Γ) for
eachΓ ∈ F . By Lemma A.1,|P ∩ Γ| = |P ′ ∩ π(Γ)| for eachΓ ∈ F . Thussk is also the number of
hyperplanes inH′ containingk points ofP ′. Moreover, the hyperplanes inH′ contain at mostℓ points of
P ′.

Applying the induction hypothesis onP ′ with respect toH′ we deduce that the number ofd-tuples in
P ′ that lie in a hyperplane inH′ is

ℓ
∑

k=d

sk

(

k

d

)

. nd−1 log ℓ.

Therefore, the number of(d+ 1)-tuples ofP lying on a(d− 2)-flat in F is

ℓ
∑

k=d+1

sk

(

k

d+ 1

)

≤
ℓ
∑

k=d+1

ksk

(

k

d

)

. ℓnd−1 log ℓ . nd log ℓ.
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Type 2: (d + 1)-tuples ofP that span aγ-degenerate hyperplane inH. Let hk denote the number of
γ-degenerate hyperplanes inH containing exactlyk points ofP . Using Theorem A.2, we get

∑ℓ
k=d+1 hk

(

k
d+1

)

≤∑ℓ
k=d+1 k

dh≥k

.
∑ℓ

k=d+1 k
d
(

nd

kd+1 + nd−1

kd−1

)

. nd log ℓ+ ℓ2nd−1 . nd log ℓ.

(2)

Type 3: (d + 1)-tuples of P that span a hyperplane inH that is not γ-degenerate.Recall that if a
hyperplaneH spanned byP is not γ-degenerate, then more than aγ fraction of its points lie in some
(d−2)-flat. Consider a(d−2)-flatL containing exactlyk points ofP . A point inP \L can be on at most
one hyperplane containingL. Letnr denote the number of hyperplanes inH containingL and exactlyr
points ofP \ L. Then

∑

r nrr ≤ n, and by assumption on the hyperplanes inH, we haver ≤ ℓ.
We will assign each tuple of Type 3 to a(d − 2)-flat that causes it to be Type 3. Fix a(d − 2)-flat L

with k points and consider a hyperplaneH ∈ H that is notγ-degenerate because it containsL. That is,
supposeH containsr + k points, andk > γ(r + k), sor < O(k). All tuples that span H contain at least
one point not inL. Hence the number of tuples that spanH is O(rkd). Assign these tuples toL. The
total number of tuples of Type 3 that will be assigned toL in this way is therefore at most

O

(

∑

r

nrrk
d

)

. nkd.

Let F be the set of(d − 2)-flats that have at least one Type 3 tuple assigned to them. Thus F is a
finite set. Letsk denote the number of flats inF that contain exactlyk points ofP . We projectP onto a
(d− 1)-flat K via a generic projectionπ to obtain a set of pointsP ′ := π(P ) in R

d−1. LetH′ be the set
of hyperplanesπ(Γ) for eachΓ ∈ F . By Lemma A.1,|P ∩ Γ| = |P ′ ∩ π(Γ)| for eachΓ ∈ F . Thussk is
also the number of hyperplanes inH′ containingk points ofP ′. Moreover, the hyperplanes inH′ contain
at mostℓ points ofP ′. Applying the induction hypothesis onP ′ with respect toH′ we deduce that the
number ofd-tuples inP ′ that lie in a hyperplane inH′ is

ℓ
∑

k=d

sk

(

k

d

)

. nd−1 log ℓ.

Moreover,
∑d−1

k=1 skk
d . nd−1. Therefore, the number of(d+ 1)-tuples of Type 3 is at most

ℓ
∑

k=1

sknk
d ≤ n

ℓ
∑

k=1

skk
d . nd log ℓ.

Summing over all three cases, the proof is complete.


