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We prove geometric Ramsey-type statements on collectibiitses in 3-space. These statements give guarantees on
the size of a clique or an independent set in (hyper)graphsced by incidence relations between lines, points, and
reguli in 3-space. Among other things, we prove the follayvin

¢ The intersection graph of lines inR* has a clique or independent set of siz@!/?).

e Every set ofn lines in R® has a subset of/n lines that are all stabbed by one line, or a subset of
Q ((n/ log n)1/5) such that n@-subset is stabbed by one line.

e Every set ofn lines in general position iR? has a subset (ﬂZ(n2/3) lines that all lie on a regulus, or a subset
of Q(n'/3) lines such that nd-subset is contained in a regulus.

The proofs of these statements all follow from geometriddence bounds — such as the Guth-Katz bound on point-
line incidences iR* — combined with Turan-type results on independent setpanse graphs and hypergraphs. As
an intermediate step towards the third result, we also shevfor a fixed family of plane algebraic curves with
degrees of freedom, every setropoints in the plane has a subseﬂ(fnl’l/s) points incident to a single curve, or

a subset oﬂ(nl/s) points such that at mostof them lie on a curve. Although similar Ramsey-type stateimean

be proved using existing generic algebraic frameworks)diver bounds we get are much larger than what can be
obtained with these methods. The proofs directly yield poiyial-time algorithms for finding subsets of the claimed
size.

Keywords: Geometric Ramsey theory, Erdés-Hajnal property, inaiédmounds

1 Introduction

Ramsey theory studies the conditions under which particlisgrete structures must contain certain sub-
structures. Ramsey'’s theorem says that for evergvery sufficiently large graph has either a clique or
an independent set of size Early geometric Ramsey-type statements include the H&pplng Prob-
lem on convex quadrilaterals in planar point sets, and tldé&6zekeres Theorem on subsets in convex
position [$].

We prove a number of Ramsey-type statements involving liné&*. The combinatorics of lines
in space is a widely studied topic which arises in many apfibnis such as computer graphics, motion
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planning, and solid modelin@[4]. Our proofs combine twomagredients: geometric information in the
form of bounds on the number of incidences among the objantsa Turan-type theorem that converts
this information into a Ramsey-type statement. We establigeneral lemma that allows us to streamline
the proofs.

Ramsey’s Theorem for graphs and hypergraphs only guasatiteeexistence of rather small cliques
or independent sets. However, as discussed below, for thmefeic relations we study the bounds are
known to be much larger. Therefore we are interested in fqthe correct asymptotics. In particular,
we are interested in therd6s-Hajnal property A class of graphs has this property if each member with
n vertices has either a clique or an independent set ofiiZer some constant > 0. This comes from
the Erd6s-Hajnal conjecturavhich states that, for each graph the family of graphs excludingl as an
induced subgraph has this property. Our results yield nelé&Hajnal exponents for each of the classes
of (hyper)graphs studied.

The results presented here make use of important recemeel/an combinatorial geometry. The key
example is the bound on the number of incidences betweerspai lines inR® given by Guth and
Katz @] in their recent solution of the Erd®s distincttdisces problem. Such results have sparked a lot
of interest in the field, and it can be expected that furthegpess will yield further Ramsey-type results.

1.1 A general framework

In general we consider two classes of geometric objectsd Q in R¢ and a binary incidence relation
contained inP x Q. For a finite setP C P and a fixed integer > 2, we say that a-subsetS € (f)
is degeneratavhenever there existg € Q such that every € S is incident tog. Hence the incidence

relation together with the integerinduces a-uniform hypergraphf = (P, E), whereE C (f) is the
set of all degeneratesubsets of?. A clique in this hypergraph is a subsgtC P such that(f) C E.
Similarly, an independent set is a subSet P such that(f) NE=1{.

In what follows, the familieg? andQ will mostly consist of lines or points in 3-space. We areliagted

in Ramsey-type statements stating thatithwmiform hypergraptif induced by a seP C P of sizen has
either a clique of size/(n) or an independent set of sizén).

1.2 Previous results

We first briefly survey some known results that fit into thisxiework. In many cases, eith@ror Q is a
set of points. WherP is a set of points, finding a large independent set amountsdinfi a large subset
of points in some kind of general position defined with respe®. WhenQ is the set of points, we are
dealing with intersections between the object®irin particular, the case= 2 corresponds to the study
of geometric intersection graphs.

General position subset problems

A set inR? is usually said to be in general position wheneverine 1 points lie on a hyperplane. For
points and lines in the plane, Payne and Wood proved that ttiésEHajnal property essentially holds
with exponentl /2 [E]. Cardinal et al. proved an analogous resu[Ri’h[E].

Theorem 1.1([@, B]). Fix d > 2. Every set of: points inR¢ contains./n cohyperplanar points or
Q((n/logn)/) points in general position.
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In both cases, the proofs rely on incidence bounds, in péatithe Szemerédi-Trotter Theoreﬁ][24] in
the plane, and the point-hyperplane incidence bounds daket@s and Tétr’[[8] ifR?. In this paper we
formalise the technique used in those proofs in order tdyeagply it to other incidence relations.

Erdés-Hajnal properties for geometric intersection graphs

A survey of Erdds-Hajnal properties for geometric intets® graphs was produced by Fox and P [10].
A general Ramsey-type statement for the case wRedgethe set of plane convex sets has been known for
a long time. In what follows, &ertically convexset is a set whose intersection with any vertical line is a
line segment.

Theorem 1.2(Larman et al.6].) Any family ofn compact, connected and vertically convex sets in the
plane contains at least'/> members that are either pairwise disjoint or pairwise iststing.

Larman et al. also showed that there exist arrangemekts®t? line segments with at mostpairwise
crossing and at most pairwise disjoint segments. This lower bound was improvactessively by
Karolyi et al. [14], and Kyncl[[15].

More recently Fox and Pach studied intersection graphs afrgelvariety of other geometric ob-
jects ]. For example they proved the following about figasi of s-intersecting curves in the plane
— families such that no two curves cross more théimes.

Theorem 1.3(Fox-Pach ].) For eache > 0 and positive integes, there isd = d(e, s) > 0 such that if
G is an intersection graph of a-intersecting family of curves in the plane, the@@ has a clique of size
at leastn? or an independent set of size at leadt .

Erdés-Hajnal properties for hypergraphs have been prbyegbnlon, Fox, and Sudakoﬂ [6].

Semi-algebraic sets and relations

A very general version of the problem for the case 2 has been studied by Alon et aﬂl [1]. Here Ramsey-
type results are provided for intersection relations betwsemialgebraic sets of constant description
complexity inR%. It was shown that intersection graphs of such objects aviye the Erdés-Hajnal
property. The proof combines a linearisation techniquéaispace decomposition theorem due to Yao
and Yao ]. The following general statement can be ex¢chfrom their proof.

Theorem 1.4. Consider a relationk on elements of a familfF of semi-algebraic sets of constant de-
scription complexity. Suppose that each element F can be parameterized by a poifit € R?,
and that the relationk can be mapped into a semi-algebraic et in R*?. For eachg € F, let
¥, = {f* € R : (f*,¢*) € R*}. LetQ be the smallest dimension of a spa&® in which the de-
scription ofX, becomes linear, and lét be the number of bilinear inequalities in the definition/ofin
R“. Then the graph of the relatioR satisfies the Erfis-Hajnal property with exponey (2k(Q + 1)).

A similar result is given for the so-callestrongversion of the Erdés-Hajnal property: for every such
intersection relation, there exists a constaand a pair of subfamilieg;, 7> C F, each of size at least
€|F|, such that either every element8&f intersects every element @, or no element ofF; intersects
any element ofF;. The exponent for the usual Erd6s-Hajnal statement is etifomof thise.

As an example, Alon et al. applied their machinery to proweftillowing result on arrangement of
lines inR3,

Theorem 1.5(Alon et al. |ﬂ]). Every family ofn pairwise skew lines iiR® contains at least: > n'/¢
elementd, {o, . . ., £ such that/; passes abovg; for all ¢ < j.
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For the problems we consider, however, the exponents wénadota significantly larger than what can
be obtained from Theorem }.4.

A general version of this problem in which degenerateples are defined by a finite number of poly-
nomial equations and inequalities of bounded descriptionaiexity has recently been studied by Conlon
et al. ES]. They show that the Ramsey numbers in this genetthg grow like towers of height — 1,
and that this is asymptotically tight. Such a setting isvah here, since we also consider Erdés-Hajnal
statements for some geometric hypergraphs.

1.3 Summary of our results

In Section[lz we give a simple lemma that allows to convert getamincidence bounds into bounds on
the number of degenerate subsets, hence on the number a€bgps of the hypergraphs of interest. We
also recall the statements of the Turan bound for hypehgrdpe to Spencer.

Sectiorﬂ3 deals with the case whétendQ are lines and points iR®. A natural object to consider is
the intersection graph of lines ik®, for which we prove the Erd6s-Hajnal property with exparnifs.

Theorem. The intersection graph of lines inR? has a clique or independent set of sf2g!/3).

This makes use of the Guth-Katz incidence bound betweertgai lines irR? [E]. We further show
that this exponent can be raisedli@® if we consider lines in the projective 3-space. We also show h
to obtain bounds on the size of independent sets fo13, in which a subset of lines in general position is
defined as a set of lines with no three intersecting in the gavie.

Sectiorﬂ4 deals with the setting where b@ttandQ are lines inR>. We prove the following theorem.

Theorem[4.]. Let L be a set of: lines inR®. Then either there is a subset gf lines of L that are all
stabbed by one line, or there is a subseﬂo@(n/ log n)1/5) lines of L such that nd-subset is stabbed
by one line.

The proof involves lifting the set of lines to a set of pointslehyperplanes ifR®, and applying the
Ramsey-type result on points and hyperplanes due to Cérelirzd. [E]. The latter in turn relies on a
point-hyperplane incidence bound due to Elekes and 'mth [8

Finally, in Sectiorﬂs we introduce the notion of a subsetmésiin general position iR® with respect
to reguli, defined as loci of lines intersecting three pasengkew lines. We use the Pach-Sharir bound on
incidences between points and curves in the pIEe [18] mimbte following result.

Theorem[5.}. Let L be a set of: pairwise skew lines iiR%. Then there aré(n2/3) lines on a regulus,
or Q(n'/3) lines, no 4-subset of which lie on a regulus.

We also explain how to use a line-regulus incidence boundauégonov et al. |[12] for an alternative
proof of this result.

The large subsets whose existence our results guarant®ée éannd in polynomial time. In each case,
a degeneratesubset is incident to only one element@ffor example, three collinear points lie on only
one line). Furthermore, the cliques given by our result®&eeparticular type: all the elements intersect a
single element 0 (for example, a collinear set of points). Thus the largeshslique in the hypergraph
H can be found in polynomial time by checking all the elemerit®ahat determine a degenerdte
subset (for example, all lines determined by the point $&tf)e clique size is small, Turan-type theorems
yield an independent set of a guaranteed minimum size. Ttheseems are constructive, hence the large
independent set can be found efficiently.
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2 Preliminaries

In order to prove the existence of large independent setgpergraphs with no large clique, we proceed
in two steps. First, we use incidence bounds to get upperdsomthe density of the (hyper)graph. Then
we apply Turan’s Theorem or its hypergraph analogue to fiodiar bound on the size of the independent
set. This is an extension of the method used to prove Theorgin [fL9,[3]. The use of incidence bounds
is also reminiscent from the technique used by Pach andrShathe repeated angle probleE][l?].

The following lemma will allow us to quickly convert incidea bounds into density conditions. Recall
that we consider two familie® andQ with an incidence relation i® x Q, and that a-subsetS of P is
said to be degenerate whenever there exisgtQ such that every € S is incident tog.

Lemma 2.1. Let P be a subset P with | P| = n, such that no element @ is incident to more tha#
elements oP. Let us denote by the number of elements gfincident to at leask elements of, and
supposePs; < g(n)/k for some functiory and some real number. Then the number of degenerate
t-subsets induced b¥ is at most

g(n) ift <a,
mS Sgn)logl ift=a,
g(n)tt=* ift > a.

Proof: Let P; be the number of elements gfincident toexactly; elements ofP. Then

14 . 14 4 J £ 14
mo= Sr(])<Xri<¥Xr (tzkt-l) ~ Yok (zpj)
j=t Jj=1 J=1 k=1 k=1

Jj=k

4 4
= Y ETPop Sgn) Y KT
k=1

k=1
where we use thaf]_, k*~! = j*/t + O(j*~1), andt = O(1). The final sum simplifies differently
depending on the relative valuesiainda. O

We recall the statement of Turan’s Theorem.
Theorem 2.2(Turan ]) Let G be a graph withn vertices andn edges. Then(G) > %JLH. Thus if
m < n/2thena(G) > n/2. Otherwisen(G) > n?/4m.

The hypergraph version of this result was proved by Spencer.

Theorem 2.3(Spencer|E31) Let H be at-uniform hypergraph wit vertices andn edges. lfn < n/t
thena(H) > n/2. Otherwise

t—1 n
a(H) = /=) (m/n) /D

3 Points and lines in R?

The recent resolution of Erdds’ distinct distance problanGuth and Katz involves new bounds on the

number of incidences between points and IineR?n[E]. This breakthrough has fostered research on
point-line incidence bounds in space. In this section aad#xt, we exploit those recent results to obtain
various new Ramsey-type statements on point-line incidealations in space.
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3.1 General position with respect to lines

Theoreml ford = 2 states that in a se® of n points in the plane there exist eithgfn collinear
points, orQ(y/n/logn) points with no three collinear. Payne and Wo@ [19] conjexduthat the true
size should b&(,/n), but this small improvement has proven elusive.

Here we consider the same question but with= R®, Q defined as the set of lines &°, andt = 3.
Hence we consider that a sBt ¢ R? is in general position when no three points are collinearfaBo
this is the same question as in the planar case, since a poimt igher dimensional space can always
be projected to the plane in a way that maintains the coltiteeelation. However, under a small extra
assumption, namely that among theoints inR*, at mostn/ logn are coplanar, we are able to remove
thelogn factor in the independent set. This sheds some light on theenaf potential counterexamples
to the conjecture of Payne and Wood.

We will use the following result of Dvir and Gopj][7], which @éeduced from Guth and Katz [13].

Theorem 3.1. Given a setP of n points inR?, such that at most points are contained in a plane, the
numberP>;, of lines containing at least points is

TL2 ns n

Pop < — + — + —.
>k S A + 3 + A
Theorem 3.2. Any set of points inR? such that at most,/ logn of the points lie in a plane contains
either/n collinear points orQ2(,/n) with no three collinear.

Proof: We apply Lemmé 2]1 on each term of the bound in Thedrefn 3.1. brothat the number of
degenerate 3-subsets of points is
m < n? + nslogl + nf?,

where/ = \/n ands = n/logn. Hence the dominating term is®. Applying Theore3 yields an
independent set of siZ&(y/n). O

In fact, this theorem holds iR? for d > 3. To see this, we take a generic projectioriRff onto R?,
The condition that at most/ log n lines are coplanar remains true under a generic projection.

3.2 Line intersection graphs in R?

We now consider the setting in which the famyis the set of lines ilR® andQ = R*. The first subcase
we consider i = 2, or in other words, intersection graphs of lines. Note than intersection graph
of lines inR?, every clique of sizé: > 2 corresponds either to a subsetiofines having a common
intersection point, or to a subset/fines lying in a plane. Howevek, lines lying in a plane do not form
a clique if some of them are parallel.

We consider a sek of n lines inR?, such that no more thahlines intersect in a point, and at most
s lines lie in a common plane or@gulus We recall that a regulus is a degree two algebraic surface,
which is the union of all the lines iR that intersect three pairwise-skew linesiih. It is adoubly-ruled
surface; each point on a regulus is incident to preciselitves fully contained in the regulus. Moreover,
there are twaulingsfor the regulus; every line from one ruling intersects eviry from the other ruling,
and does not intersect any line from the same ruling.

We first recall two important theorems of Guth and K@ [18]what follows,P-; denotes the number
of points incident to at leagtlines in L.
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Theorem 3.3([@, Theorem 4.5)) If L is a set ofn lines, so that no plane contains more thatines,
then fork > 3 we have
n3/2 ns n
Pev STz Tty
Theorem 3.4([@, Theorem 2.11]@1])” L is a set o lines, so that no plane or regulus contains more
thans lines, thenPsy < n%/2 + ns.

Note the difference between the two statements: the asgumtpat no regulus contains more than
lines is required for the case= 2 only.
Applying Lemmg 21 to the bounds in Theorefng 3.3 pnd 3.4 yitkid following.

Proposition 3.5. Given a setl. of n lines, so that no plane or regulus contains more thdimes, and no
point is incident to more thaflines of L, the number of line-line incidences@n*/2 log £ + ns + nf).

Lemma 3.6. Consider a sef of n lines inR?, such that no plane contains more thatines, and no

point is incident to more thau lines of L. Let G be the intersection grapl. If s,¢ < n'/2, then
. 1

a(G) Z +/n/logt. Moreover, ifr := max{s, ¢} = nz*¢ for somees > 0, thena(G) = n/r.

Proof: If there is some regulus containing at least? lines, we divide the lines into the two rulings of
the regulus. One ruling contains at least half the lines,antthe lines in one ruling do not intersect one
another, it follows that(G) > n'/2. We may therefore assume that the number of lines containad i
common regulus is at most/2.

If 5,4 < n'/2, the first term in the bound in Propositi3.5 dominates,apulying Theore 2 gives
o(G) = /n/logl. If r > nz*<, one of the latter terms dominates, and we apply Thedremo2g2tt
a(G) Z n/r. O

Theorem 3.7. The intersection graph of lines inR? has a clique or independent set of sfzg:'/3).

Proof: Suppose that such a graghhasa(G) < n'/3. Then by Lemmé 3|6max{s, ¢} > n2/3. If

¢ > n?/3 we are done, se > n?/3. Therefore, we may assume that there is a plane contairfifigines.
Divide these lines into classes of pairwise parallel linesome class contains at least'® lines, we have
a(G) > n'/3. Otherwise, there are at least/> different parallel classes. Choosing one line from each
class yields a clique of size'/3. O

Note that the Erd6s-Hajnal property for intersection disapf lines inR? can be directly established
from Theore4 by Alon et al[|[1], but with a much smaller empnt. In their setting, we can represent
the intersection relation between lines using Pliickerdioates inR®, and using two inequalities. This
yieldsk = 2 and@ = 5, and an Erd6s-Hajnal exponent bf24. Although it is likely that it can be
improved by shortcutting steps in the general proof, anyoaept we would get would still be far from
1/3.

We now make a connection with intersection graphs of linespice and line graphs. Recall that the
line graph of a grapld’ has the set of edges(G) as vertex set, and an edge between two edgés of
whenever they are incident to the same vertexzofObserve that for every graph, the line graph of
G can be represented as the intersection graph of lin&iby drawingG on a vertex set in general
enough position iR?, and extending the edges of the drawing to lines. By applyiaing’s Theorem,
which says that the edge chromatic number of every graphrizoat A + 1, we may see that the class
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of line graphs has the Erdds—Hajnal property with expohgat The question of the exact Erdds—Hajnal
exponent for intersection graphs of linesRA remains open — it lies somewhere betweégs and1/2.

Finally we note that for sets of lines in projective spaceylanar sets of lines always form a clique.
The following stronger result can be directly obtained.

Theorem 3.8. For every intersection graplt: of n lines in P3, either w(G) > /n or a(G) =
Q(y/n/ logn).

Hence intersection graphs of lines in the projective platisfy the Erdés-Hajnal property with expo-
nent roughlyl /2.

3.3 Independent Sets of Lines for t = 3

We now consider the case in whihis the set of lines ifR*, @ = R? andt¢ = 3. This can be seen as a
kind of three-dimensional version of the dual of the restiRayne and Wood (Theorem 1.1 with= 2).

Theorem 3.9. Consider a collectionl. of n lines in R?, such that at most lie in a plane, withs <
n/logn. Then there exists a point incidentyd: lines, or a subset d?(/n) lines such that at most two
intersect in one point.

Proof: We let/ be the largest number of lines intersecting in one point,saumpose < /n. Applying
Lemma[2]L and Theorem B.3, we get that the number of tripessraha point is at most

m < n®? + nslogl + nt? < n?.

Then by Theorerf 4.3 we have an independent set of&izén). O

If the above theorem is stated with dependencé, ave getQ(n?/*/+/¢). If s is allowed to be as large
asn, we are back in the dual of general position subset seleaimhwe gef)(,/n/logn), the same as

Theoren{ 1]1.
4  Stabbing lines in R?

Three lines inR? are typically intersected by a fourth line, except in cerdégenerate cases. Thus it
makes sense to study configurations of lineR and to consider a set dfor more lines degenerate if
all its elements are intersected by another line. Here weighea result fol6-tuples of lines.

We define a 6-tuple of lines to be degenerate if all six linesiatersected (or “stabbed”) by a single
line in R®. We call this line astabbing linefor the6-tuple of lines. So in our framework this is the setting
in which both? andQ are the set of lines ii®*, andt = 6.

We make use of the Pliicker coordinates and coefficientsrfes inR*, which are a common tool for
dealing with incidences between lines, see e.g. S@ir [28]a = (ag : a1 : az :a3), b= (bg: by : by :
bs) be two points on a liné, given in projective coordinates. By definition, the Pléckoordinates of
are given by

(o1 t To2 & Mg : Moz t M1z ¢ Ma3) € PO,

wherer;; = a;b; — a;b; for 0 < i < j < 3. Similarly, the Pliicker coefficients dfare given by

. . . . . 5
(71'23 I —T13 M3 M2 —To2 : 7T01) cP ,
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i.e., these are the Plucker coordinates written in reverder with two signs flipped. The important
property is that two lineg; and/s are incident if and only if the Pliicker coordinates/gflie on the
hyperplane defined by the Pliicker coefficientdpand vice versa. Therefore, we defiffe and Q to
be the points ifP® defined by the Pliicker coordinates of the lined.inand the hyperplanes defined by
the Pliicker coefficients of the lines &, respectively. The incidence relation between point® iand
hyperplanes irQ is the standard incidence relation between points and piaees. The integeris set
to 6, and a 6-tuple of points iR is degenerate whenever there is a hyperplan@ imhich is incident to
all six points in the 6-tuple.

We prove the following Ramsey-type result for stabbingdimeR>.

Theorem 4.1. Let L be a set of lines inR*. Then either there is a subset g% lines of L that are all
stabbed by one line, or there is a subseﬂo{(n/ log n)1/5) lines of L such that nd&-subset is stabbed
by one line.

Theoren{ 4]1 is an immediate consequence of the followingmgdisation of Theoreth 1.1. The differ-
ence is that the set of hyperplariss arbitrary instead of being the set of all hyperplane&in

Theorem 4.2. Let be a set of hyperplanes &. Then, every set of points inR? with at most points
on any hyperplane ift{, where/ = O(n'/?), contains a subset 61 ((n/ 1og€)1/d) points so that every
hyperplane irn{ contains at most of these points.

Theore2, withl = 5, applied to the points and hyperplanes given by the Plickerdinates and
coefficients, implies Theorefn #.1. Theorfn} 4.2 follows ftbmfollowing generalized version of Lemma
4.5 of Cardinal et al[]3].

Lemma 4.3. Fix d > 2 and a set{ of hyperplanes iiR?. Let P be a set of: points inR? with no more
than! points in a hyperplane ift{, for somel = O(n'/?). Then, the number dfl + 1)-tuples inP that
lie in a hyperplane ir# is O(n?log1).

The difference between this lemma and the original versrio[ﬂ]i is that the set of hyperplanés is
arbitrary, rather than being the set of all hyperplanes.frbef is similar to that of Cardinal et al., and is
given in Appendi{A.

The following result provides a simple upper bound.

Theorem 4.4. For every constant integer> 4, there exists an arrangemehtof  lines inR* such that
there is no subset of more thaih(/n) lines that are all stabbed by one line, nor any subset of nfoaea t
O(y/n) lines with not stabbed by one line.

Proof: ConstructL as follows: pick,/n parallel planes, each containiRg: lines, with no three inter-
secting and no two parallel. Consider a subset stabbed brendEither it has three coplanar lines; then
it must be fully contained in one of the planes and contaims@gt./n lines; or it has no three coplanar
lines, hence contains at most two lines from each plane, asdtmos2./n lines. Now consider a subset
such that na lines are stabbed by one. Then it contains at mestl lines from each plane, and has at
most(t — 1)y/n lines. O
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5 Lines and reguli in R?

Consider the case in which is the class of lines iR®, Q is the class of reguli, and = 4. Let P be

a set ofn lines, and assume that the linesfhare pairwise skew. Every triple of lines iR therefore
determines a single regulus, and we may consider the sdtrefyalli determined byP. We consider the
containment relation rather than intersection — we aredsted ind-tuples that all lie in the same regulus.
In order to prove our result, we first reformulate previodgtpwn incidence bounds between points and
curves in the plane.

5.1 General position with respect to algebraic curves

We first consider the case whee= R? and Q is a family of algebraic curves of bounded degree. We
define the number of degrees of freedom of a family of algelraivesC to be the minimum valus
such that for any points inR? there are at mostcurves passing through all of them, for some constant
c. MoreoverC has multiplicity typer if any two curves irC intersect in at most points. We consider a
set of points to be in general position with resped twhen nos + 1 points lie on a curve ig.

Itis possible to extract Ramsey-type statements for thision directly from Theorevm.l via lineari-
sation. For example, let us consider the special case désjrvheres = 3. Given a set of points in the
plane, we can lift it onto a paraboloid &’ in such a way that a subset of the original set lies on a circle
(possibly degenerated into a line) if and only if the corresging lifted points lie on a hyperplanel?.

By applying Theorel on the lifted set, we can show thaetleaists a subset gfn points incident
to a circle, or a subset 61((n/ logn)'/3) points such that at most three of them lie on a circle. We show
how we can improve on this.

In order to apply our technique, we need Szemerédi-Trogee bounds on the number of incidences
between points and curves. This has been studied by Pacthanid ].

Theorem 5.1([@]). Let P be a set ofr points in the plane and lef be a set ofn bounded degree
plane algebraic curves with degrees of freedom and multiplicity typeThen the number of point-curve
incidences is at most

I(P,C) < C(r,s) (ns/(2s—1)m(2s—2)/(25_1) nt m)

whereC(r, s) is a constant depending only erands.

Pach and Sharir proved Theor 5.1 for simple curves witlegrees of freedom and multiplicity
typer. It is well known that one may replace simple curves with lethdegree algebraic curves, since
such curves may be cut into a constant number of simple pielese that a set of bounded degree
algebraic curves has constant multiplicity type if no twovas share a common component. Wang et
al. [@] recently proved another result for incidences leetvpoints and algebraic curves, though for our
purposes Theore@.l is stronger.

Theorem 5.2. Consider a familyC of bounded degree algebraic curvesRA with constant multiplicity
type ands degrees of freedom, for sorae> 2. Then in any set of points inR?, there exists a subset
of Q(n'~1/#) points incident to a single curve 6f or a subset of2(n!/*) points such that at mostof
them lie on a curve df.

Proof: Sett = s + 1 and count the number of degeneratubsets. We denote b, the number of
curves ofC containing at least points of P. A direct corollary of Theorer@.l is that, for valuesiof
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larger than some constant,
nS

n
Psi S 721 +

v
On the other hand, for smaller valueskotthe trivial boundPs;, < n® holds since for any points, there
are at most a constant number of curves passing throughthkkof. Suppose now that no curve contains
more thar? < n'~1/¢ points of P. Sinces > 2, it follows thatt < 2s — 1. Using Lemml, we deduce
that the number of degenerdtsubsets is

m Sn® 4+ nl® < n’.
Thus by Theorerh 2.3 there exists an independent set of sieasit

t—1 n _
$t/(t—=1) (m/n)l/(t—l) -

Q(nl/®).

O

As an example, we can instantiate the result as follows fotes in the plane.

Corollary 5.3. In any set of: points inR?, there exists a subset 8{n2/3) points incident to a circle, or
a subset of)(n'/?) points such that no four of them lie on a circle.

Using the standard point-line duality, Theor@ 1.1 states for every arrangement aflines inR?,
either there exists a point contained,jfu lines, or there exists a set 6 (n/ logn)'/?) lines inducing
a simple arrangement, that is, such that no point belongsore than two lines. We provide a similar
dual version of Theorer@.z This corresponds to the caseaghis a family of algebraic curves with
degrees of freedon@ = R?, andt = 3. As mentioned before, the case- 2, or intersection graphs, has
been studied previouslj [1p,]11]. The proofis very simitatttat of Theorerfi 512 and omitted.

Theorem 5.4. Consider a familyC of bounded degree algebraic curvesRA with constant multiplicity
type ands degrees of freedom, for some> 2. Then in any arrangement of m such curves, there exists
a subset of)(m!~1/#) curves intersecting in one point, or a subsefX§fn'/*) curves inducing a simple
subarrangement, that is, such that at most two intersecheoint.

5.2 Ramsey-type results for lines and reguli in R?

We now come back to our original problem in whighis the class of lines iiR®, Q is the class of
reguli, andt = 4. Here we restrict the finite arrangementc P to be pairwise skew, that is, pairwise
nonintersecting and nonparallel. We also consider theagomient relation, that ig, € P is incident to
R e Qifitis fully contained in it.

Recall that a regulus can be defined as a quadratic ruledcsunfaich is the locus of all lines that are
incident to three lines in general position. This surfaca @ubly ruledsurface, that is, every point on
a regulus is incident to precisely two lines fully contairnedt. There are only two kinds of reguli, both
of which are quadrics — hyperbolic paraboloids and hypeaidslof one sheet; see for instance Sharir and
Solomon [2P] for more details.

Theorem 5.5. Let L be a set of pairwise skew lines il®. Then there aré)(n?/3) lines on a regulus,
or Q(n'/3) lines, no 4-subset of which lie on a regulus.
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Proof: We map the lines itL to a setP of points inR*. This can be done for instance by associating with
each line thex- andy-coordinates of the two points of intersection with the pen= 0 andz = 1. (We
may assume no line is parallel to these planes). Under thippmg, a ruling of a regulus corresponds
to an algebraic curve iR*. Let C be the finite set of all curves corresponding to a ruling ofguhes
determined by three lines ih. Note thatnytriple of points inR* is contained in at most one such curve,
because three lines I®? lie in at most one ruling of one regulus. (A pair of paralleimersecting lines
are not contained in a ruling of any regulus, even though #ineycontained in many reguli).

Apply a generic projectiom from R* to R?, and consider the arrangement of poiffs= = (P) to-
gether with the set of projected curv€$ = 7(C'). Such a projection preserves the incidences between
points and curves ii?, and only creates new intersections between pairs of cifireessimple’ cross-
ings). Three or more curves {fi’ intersect in a point if and only if their preimagesdhintersect in a
point.

The set of curve§” has three degrees of freedom, since for any three poiiité there are at most two
curves passing through all of them. Otherwise, if threeesipass through three points, the corresponding
curves inC also intersect in three points &, a contradiction.

Moreover, the curves i’ are algebraic of bounded degree, do not share common comisoaead
thus have constant multiplicity type. Applying Theor@ With s = 3, we obtain that there ate(n?/3)
points of 7(P) on one curve, of)(n'/?) points ofw(P), no four of which lie on a curve. The result
follows. O

The bounds can be shown to be tight in the following sense.

Theorem 5.6. There exists a se® of n pairwise skew lines iR such that there is no subset of more
thanO(n?/?) lines on a regulus, and no more thar(n'/?) lines such that no 4-subset lie on a regulus.

Proof: The setP is constructed as follows: take a setrdf? distinct reguli, and for each regulus take
n?/3 lines in one of its rulings, giving: pairwise skew lines. Consider a subsetPfontained in a
regulus. Either it is one of the chosen reguli, and it corstainmost:?/? lines, or it contains at most two
lines from each regulus, and has size at 2est>. On the other hand, consider a subset of lines with no
four on a regulus. It can contain at most three lines from efdsen regulus, and therefore has size at
most3n'/3. O

Alternative proof. Aronov et al. [IZ] proved the following bound on the numbermfidences between
lines and reguli in 3-space.

Theorem 5.7(Aronov et al.[2]) LetL be a set of: lines inR?, and letR be a set ofn reguli in R*. Then
the number of incidences between the line ahd the reguli ofR is O (n*/"m! /21 +-n2/3m2/3 L m+n).

From this bound, one may derive an alternative proof of Te, of which we now give a brief
sketch. First bounds, defined as the number of reguli containing at Iga$ihes. From the above
Theorem, we gePs; < n?/k?Y/* + n?/k* + n/k. Then from Lemmd 2|1 we know that if no regulus
contains more thaflines, then the number of degenerate 4-tuples of lines 1§ n3 + n2¢ +n¢3. Hence
either? is larger tham?/3, orm < n? and from Theorer@S there exists an independent set ofdihes
sizeQ(n'/3).
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A Proof of Lemma

For the proof we need the following observation regardinuegie projection maps.

Lemma A.1. Let P be a finite set of points iR?, and letA be a finite set ofd — 2)-flats inR?. Letr
be a generic projection frof¢ to a hyperplane. Then a poipte P lies on a(d —2)-flat A € Aifand
only ifw(p) € m(A).

Proof: The forward implication is clear. For the other directionpposep ¢ A. Then the affine span of
{p} U Ais a hyperplane, that is, it (gl — 1)-dimensional. By the genericity af, the imager(spar{{p} U
A)) must also béd — 1)-dimensional, sar(p) ¢ 7(A). O

We also need the following result of Elekes and T@h [8].&Biwa point seP, a hyperplané is said to
be~-degeneratéf at mosty|P N k| points of P N & lie on a(d — 2)-flat.
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Theorem A.2. For everyd > 3 there exist constant§,; > 0 and~,; > 0 such that for every set of
points inR?, the number.>;, of v4-degenerate hyperplanes containing at lefagints of P is at most

d d—1
n n
Ca (kd+1 T kdl) :
For convenience we restate Lemng 4.3.

Lemma@. Fix d > 2 and a set{ of hyperplanes ifR?. Let P be a set of points inR¢ with no more
than/ points in a hyperplane ifi, for somef = O(n'/?). Then, the number dfl + 1)-tuples inP that
lie in a hyperplane iri{ is O(n?log £).

Proof: The proofis an adaptation of the proof of Lemma 4.5 in Cardihal. [B]. It proceeds by induction
ond > 2. The base case is= 2. We wish to bound the number of triples of pointsiflying on a line
in H. Let hy (resp.,h>;) denote the number of lines & containing exactly (resp., at leagtpoints of
P. The number of triples of points lying on a line &f is

l ¥/
S e (5) < Xpmg Kok
2 1)
S ik (5 + ) Sntlogl+ o S n?logl,

wherehs;, < % + 2 follows by the Szemerédi-Trotter Theorefn|[24].

We now consider the general case 3. Let P be a set ofi points inR¢, with no more tharf points in
a hyperplane ifi{, whereH is a given set of hyperplanesif, and? = O(n'/2). Lety := 74 > 0 be the
constant specified in Theor.2. We distinguish betweeridlowing three types ofd + 1)-tuples:
Type 1: (d + 1)-tuples of P contained in a (d — 2)-flat in a hyperplane in 1. Let F be the set of
(d — 2)-flats that are contained in some hyperplang{iand spanned by the poinfs Let s;, denote the
number of flats inF that contain exactly points of P. We projectP onto a(d — 1)-flat K via a generic
projectionr to obtain a set of point®’ := =(P) in R¥". Let %’ be the set of hyperplanegI") for
eachl’ ¢ F. By Lemma[A.l,|P NT| = |P' N ()| for eachl' € F. Thussy, is also the number of
hyperplanes ir{’ containingk points of P’. Moreover, the hyperplanes#’ contain at most points of
P

Applying the induction hypothesis aft’ with respect toH’ we deduce that the number éftuples in
P’ that lie in a hyperplane i’ is

4

k
Z Sk (d) < n?tlogt.

k=d

Therefore, the number ¢t + 1)-tuples of P lying on a(d — 2)-flatin F is

¢ ¢
k k d—1 d
lek(d+1)§ Z ksk<d>§€n log ¢ < n®logt.

k=d+ k=d+1
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Type 2: (d + 1)-tuples of P that span a~y-degenerate hyperplane ir{. Let h;, denote the number of
~-degenerate hyperplanesfhicontaining exactly: points of P. Using Theore2, we get

£ k ¢
Zk:d+1 hk (d+1) S Zk:d+1 kdhzk

)

< Zi:dﬂ k4 (kf}—f:l + %) <nlogl + ?ni=1 < nélog .

Type 3: (d + 1)-tuples of P that span a hyperplane inH that is not v-degenerate.Recall that if a
hyperplaneH spanned byP is not~y-degenerate, then more thanydraction of its points lie in some
(d—2)-flat. Consider &d — 2)-flat L containing exactly: points of P. A pointin P\ L can be on at most
one hyperplane containinf. Letn,. denote the number of hyperplanestincontainingZ and exactly-
points of P\ L. Then)_ n,r < n, and by assumption on the hyperplane{iywe have- < /.

We will assign each tuple of Type 3 to(d — 2)-flat that causes it to be Type 3. Fixé — 2)-flat L
with & points and consider a hyperplafiec H that is noty-degenerate because it containsThat is,
supposéd containsr + k points, andc > v(r + k), sor < O(k). All tuples that span H contain at least
one point not inZ. Hence the number of tuples that spénis O(rk?). Assign these tuples tb. The
total number of tuples of Type 3 that will be assigned.tm this way is therefore at most

0 (Z nTrkd> < nk.

Let F be the set ofd — 2)-flats that have at least one Type 3 tuple assigned to thems Fha a
finite set. Lets;, denote the number of flats if that contain exactly points of P. We projectP onto a
(d — 1)-flat K via a generic projection to obtain a set of point®” := 7(P) in R*"!. LetH’ be the set
of hyperplanes:(T") for eachl’ € F. By Lemma[A.lL|P NT| = | P’ N7 (T")| for eachl’ € F. Thussy, is
also the number of hyperplanesfifi containingk points of P’. Moreover, the hyperplanes#’ contain
at most¢ points of P’. Applying the induction hypothesis oR’ with respect to}{’ we deduce that the
number ofd-tuples inP’ that lie in a hyperplane i’ is

Y4

k
Z Sk (d) < n?tlogt.

k=d
Moreover,ZZ;} spk? < =1, Therefore, the number ¢ff + 1)-tuples of Type 3 is at most

4 4

Z spnk® < nz sek® < nlogt.
k=1 k=1

Summing over all three cases, the proof is complete. O



