
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:3, 2013, 139–154

Coloring and Guarding Arrangements

Prosenjit Bose1† Jean Cardinal2‡ Sébastien Collette2§ Ferran Hurtado3¶
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Given a simple arrangement of lines in the plane, what is the minimum number c of colors required so that we can

color all lines in a way that no cell of the arrangement is monochromatic? In this paper we give worst-case bounds

on the number c for both the above question and for some of its variations. Line coloring problems can be redefined

as geometric hypergraph coloring problems as follows: if we define Hline−cell as the hypergraph whose vertices are

lines and edges are cells of the arrangement, then c is equal to the chromatic number of this hypergraph. Specifically,

we prove that this chromatic number is between Ω(log n/ log log n) and O(
√
n).

Furthermore, we give bounds on the minimum size of a subset S of the intersection points between pairs of lines

in A such that every cell contains at least a vertex of S. This may be seen as the problem of guarding cells with

vertices when the lines act as obstacles. The problem can also be defined as the minimum vertex cover problem in the

hypergraph Hvertex−cell, the vertices of which are the line intersections, and the hyperedges are vertices of a cell.

Analogously, we consider the problem of touching the lines with a minimum subset of the cells of the arrangement,

which we identify as the minimum vertex cover problem in the Hcell−zone hypergraph.
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1 Introduction

While dual transformations may allow converting a combinatorial geometry problem about a configura-

tion of points into a problem about an arrangement of lines the truth is that most mathematical questions

appear to be much cleaner and natural in only one of the settings. In many cases, the dual version is

considered solely when, rather than making sense, it is additionally useful. Both kinds of geometric ob-

jects have inspired many problems and attracted much attention. For finite point sets, the Erdős-Szekeres

problem on finding large subsets in convex position, or the repeated distances problem on how many

times a single distance can appear between pairs of points, are examples of famous questions that have

been pursued for decades and are still open. Many research problems of this kind are described in [3],

Chapter 8. Concerning arrangements of lines, possibly the most prevalent problems consist of studying

the number of cells of each size, say triangles, that appear in every arrangement; however, many other

questions have also been considered (see [4, 7, 8]). There are also problems that combine both kinds of

objects, like counting incidences between points and lines, or studying the arrangements of lines spanned

by point sets, which includes the celebrated Sylvester-Gallai problem [3] on ordinary lines (containing

exactly two input points).

In the first class of problems, substantial attention has been given to colored point sets (that is, con-

figurations of points that belong to several classes or colors). Among those, we highlight the chromatic

variants of the repeated distances problem and the Erdős-Szekeres problem, and colored versions of Tver-

berg’s Theorem and Helly’s Theorem. In particular there is a vast body of research on problems involving

a set of red points and a set of blue points. Refer to [12] for a survey on red-blue problems, or to [3] for a

more generic account.

Somehow surprisingly, there does not exist a comparable set of questions that have been studied for

colored arrangements of lines. There is a series of papers on bicolored sets of lines that study the existence

of monochromatic vertices [9, 10, 15] (intersection points of lines of the same color). Another series of

papers study colorings of the so-called arrangement graphs, in which vertices are the intersection points

and edges are the segments between any two that are consecutive on one of the lines [2, 5].

However, many other natural questions can be asked. For example, is it true that every bicolored

arrangement of lines has a monochromatic cell? We prove in this paper that the generic answer is “no”,

but that it is “yes” when the colors are slightly unbalanced. This leads immediately to another question

that we discuss: How many colors are always sufficient, and occasionally necessary, to color any set of n
lines in such a way that the induced arrangement contains no monochromatic cell?

The last question is reminiscent of Art Gallery Problems [16–18], where we consider several questions

that, to our knowledge, have not been studied before in the context of line arrangements. Examples of

such questions that we consider are: How many vertices of an arrangement suffice to guard (touch) all of

its cells? How many lines are enough to guard all cells?

While at first glance the problem of coloring arrangements of lines may appear unrelated to that of

guarding, there is a clean unifying framework provided by considering appropriate geometric hyper-

graphs. For example, minimally coloring an arrangement while avoiding monochromatic cells can be

reformulated as finding the chromatic number of the hypergraph Hline−cell, whose vertices are lines, and

edges represent cells of the arrangement. Guarding all cells with a small number of lines can be seen as a

vertex cover of the same hypergraph Hline−cell.

In this work we consider several questions that are variations on the themes of coloring and guarding

arrangements of lines, which translate consistently into problems on geometric hypergraphs, such as size
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of maximal independent set, vertex cover, or chromatic number.

The terminology for hypergraphs on arrangements is introduced in Section 2, where we also provide a

table summarizing our results. Coloring problems are then discussed in Section 3 and guarding problems

in Section 4. We conclude with some observations and open problems.

2 Definitions and Summary of Results

Let A be an arrangement of a set of lines L in R
2. We say that an arrangement of lines A is simple if every

two lines intersect, and no three lines have a common intersection point. From now on, we only consider

simple arrangements of lines(i).

Any arrangement A decomposes the plane into different cells, where a cell is a maximal connected

component of R2 \ L. We define Hline−cell = (L,C) as the geometric hypergraph corresponding to the

arrangement, where C is the set containing all cells of A. Similarly, Hvertex−cell = (V,C) is the hyper-

graph defined by the vertices of the arrangements and its cells, where V =
(

L
2

)

is the set of intersection of

lines in A. Finally, Hcell−zone = (C,Z) is the hypergraph defined by the cells of the arrangement and its

zones. The zone of a line ℓ in A is the set of cells bounded by ℓ. The set Z is defined as the set of subsets

of C induced by the zones of A. Note that this hypergraph is the dual hypergraph of Hline−cell.

An independent set of a hypergraph H = (S,E) is a set S′ ⊆ S such that ∀e ∈ E : e 6⊆ S′. This

definition is the natural extension from the graph variant, and requires that no hyperedge is completely

contained in S′. Analogously, a vertex cover of H is a set S′ ⊆ S such that ∀e ∈ E : e ∩ S′ 6= ∅. The

chromatic number χ(H) of H is the minimum number of colors that can be assigned to the vertices v ∈ S
so that no hyperedge containing two or more vertices is monochromatic (that is, ∀e ∈ E such that |e| > 1,

there exist v1, v2 ∈ e such that col(v1) 6= col(v2)).
In the forthcoming sections we give upper and lower bounds on the worst-case values for these quan-

tities on the three hypergraphs defined on a given line arrangement. Our results are summarized in Table

1. Note that the maximum independent set and minimum vertex cover problems are complementary. As

a result, any lower bound on one gives an upper bound on the other and vice versa. This property, along

with the facts that |L| = n, |V | =
(

n
2

)

, and |C| = n(n+1)
2 + 1, are used to complement many entries of

the table.

The definitions of an independent set and a proper coloring of the Hline−cell hypergraph of an arrange-

ment are illustrated in Figures 1(a) and 1(b), respectively. Similarly, the definition of a vertex cover of the

Hvertex−cell and Hcell−zone hypergraphs are illustrated in Figures 1(c), and 1(d), respectively.

Hypergraph Max. Ind. Set Vertex Cover Chromatic number

Hline−cell ≥
√
n+ 1− 1 (Th. 3) ≥ n

3
(Cor. 14) Ω(log n/ log log n) (Th. 6)

≤ 2n
3

(Th. 4) ≤ n+ 1−
√
n+ 1 (Cor. 14) ≤ 2

√
n+O(1) (Th. 5)

Hvertex−cell ≥ n2

3
− 5n

2
(Lem. 10) ≥ n2

6
(Th. 9) ≥ 2 (Trivial)

≤ n2

3
− n

2
(Lem. 10) ≤ n2

6
+ n (Th. 9) ≤ 3 (Obs. 1)

Hcell−zone ≥ n2

2
+ 5n

48
− o(n) (Cor. 13) ≥ n

4
(Th. 12) 2 (Th. 8)

≤ n2

2
+ 5n

4
+ 1 (Cor. 13) ≤ 19n

48
+ o(n) (Th. 12)

Tab. 1: Summary of worst-case bounds for the different problems studied in this paper.

(i) For non-simple arrangements, the answer to most of the problems we study are either trivial or not well defined.
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(a) The thick lines form an independent set in the

Hline−cell hypergraph: no cell is bounded by these

lines only.

(b) A proper 3-coloring of the Hline−cell hyper-

graph: no cell is monochromatic.

(c) The marked intersections form a vertex cover of

the Hvertex−cell hypergraph: every cell has at least

one such intersection on its boundary. That is, these

vertices guard the cells.

(d) The two marked cells form a vertex cover of the

Hcell−zone hypergraph: every line has a segment

that lies on the boundary of one of these cells. That

is, these two cells guard the lines.

Fig. 1: Illustrations of the definitions.
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3 Coloring Lines, and Related Results

We first consider the chromatic number of the line-cell hypergraph of an arrangement, that is, the number

of colors required for coloring the lines so that no cell has a monochromatic boundary. At the end of the

section we include other results for similar hypergraphs.

3.1 Two-colorability

We say that a set of lines L is k-colorable if we can color L with k colors such that no cell is monochro-

matic (in other words, the corresponding Hline−cell hypergraph has chromatic number at most k). Any

coloring c : L → {0, . . . , k} that satisfies such a property is said to be proper. We first tackle the (simple)

question of whether the two-colorable Hline−cell hypergraphs have bounded size.

Theorem 1 There are arbitrarily large two-colorable sets of lines.

Fig. 2: A set of lines that can be colored with two colors without a monochromatic cell.

Proof: For any q ∈ N consider a set of 2q lines in convex position (a set of lines whose projective dual is

a set of points in convex position, see Figure 2). In such an arrangement of lines, each cell is bounded by

either (1) two consecutive lines, (2) the first and the last line or (3) all lines of the arrangement. Thus, if

we color the lines alternatingly red and blue by order of slope, no cell will be monochromatic. ✷

The coloring used in Theorem 1 uses roughly the same number of lines of each color. This is not a

coincidence, since we now show that any proper coloring must satisfy a similar property.

Theorem 2 Each color class of a proper two-coloring L → {0, 1} of a set L of n lines has size at most
n
2 +

√
n−1−1

2 .

Proof: Let R be the set of lines that are assigned color 0, and B the set of lines that are assigned color 1.

Let AR denote the arrangement of the lines in R. As R does not completely define a cell of A, each cell

of AR must be traversed by a line in B.

We proceed iteratively: we start with AR, and add the lines of B one at a time. When adding a line ℓ,
some cells of AR will be split into two by a line segment induced by ℓ.

To each cell c of AR, we assign a number that represents the number of connected components defined

by the segments inside c (that is, segments whose intersection graph is connected). Let f(c, i) denote the
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number of connected components inside the cell c after adding the i − th line of B, and f(AR, i) is the

sum of f(c, i) over all cells c ∈ AR.

When the first line ℓ1 ∈ B is added, f(c, 1) = 1 for each cell c crossed by ℓ1, and remains zero for every

other cell. Since ℓ1 will cross all lines of R exactly once, we have f(AR, 1) = |R|+ 1. In general, when

the i− th line ℓi is added, f(AR, i) increases by |R|+2− i. Indeed, in each cell c, the blue line can only

intersect each component once; otherwise the corresponding segments would create a cycle, meaning that

a new face bounded only by blue lines (and thus monochromatic) is created. This implies that ℓi intersects

all previous i−1 lines in i−1 disjoint components. Inside a cell c, if a line ℓi intersects t components, then

f(c, i) = f(c, i−1)−t+1. Thus, f(AR, i) = f(AR, i−1)−(i−1)+|R|+1 = f(AR, i−1)+|R|+2−i.
What we also know is that at the end of this process, each cell of AR contains at least one component,

otherwise the cell is monochromatic. Thus f(AR, |B|) is bigger than or equal to the number of cells in

AR.

We get:

|R| · (|R|+ 1)

2
+ 1 ≤ f(AR, |B|) =

|B|
∑

i=1

|R|+ 2− i,

|R|(|R|+ 1) + 2 ≤ 2|B| · (|R|+ 2)− 2

|B|
∑

i=1

i

|R|2 + |R|+ 2 ≤ 2|B| · (|R|+ 2)− |B| · (|B|+ 1)

|R|2 + |R|+ 2 ≤ 2(n− |R|) · (|R|+ 2)− (n− |R|) · (n− |R|+ 1)

|R|2 + |R|+ 2 ≤ 2(−|R|2 + (n− 2)|R|+ 2n)− (|R|2 − (1 + 2n)|R|+ (n2 + n))

4|R|2 + 4(1− n)|R|+ n2 − 3n+ 2 ≤ 0

|R| ≤ 4(n− 1) +
√

16(1− n)2 − 16(n2 − 3n+ 2)

8

|R| ≤ (n− 1) +
√
n− 1

2
=

n

2
+

√
n− 1− 1

2

which concludes the proof. ✷

3.2 Independent lines in Hline−cell

Recall that an independent set of lines in an arrangement is defined as a subset of lines S so that no cell

of the arrangement is only adjacent to lines in S.

Theorem 3 For any set L of n lines, the corresponding Hline−cell hypergraph has an independent set of

size
√
n+ 1− 1.

Proof: We prove that any (inclusionwise) maximal independent set has size
√
n+ 1 − 1. Consider such

a maximal independent set I ⊂ L. By maximality, each line ℓ ∈ L \ I can be associated with at least

one cell of L whose boundary consists only of one segment of ℓ, and segments of lines in I (otherwise we

could add ℓ to I , resulting in a contradiction). For each line ℓ ∈ L \ I we pick one such cell (arbitrarily).

We call this cell the witness of ℓ and denote it by cℓ.
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In order to prove our claim, we use the following charging scheme for all lines of ℓ: if cℓ is formed

by exactly two lines, we charge ℓ to the only line of I in cℓ. Otherwise, cℓ is defined by many lines and

all ℓ belong to I . In particular, it must contain a vertex defined by the intersection of two lines of I . We

charge ℓ to the first such vertex that we encounter when we traverse the boundary of cℓ starting from the

segment defined by ℓ and continuing in a clockwise fashion. We note that lines of I and the intersection

point between two lines of I can only be charged twice (a line can only belong to two cells of size two.

Likewise an intersection point appears in four different cells, but it cannot be charged to two adjacent

cells). Thus, we obtain the following bound on the size of I:

|L \ I| ≤ 2

(|I|
2

)

+ 2|I|,

n− |I| ≤ |I|(|I| − 1) + 2|I|,
0 ≤ |I|2 + 2|I| − n,

|I| ≥
√
n+ 1− 1

✷

Theorem 4 Given a set L of n lines, an independent set of the corresponding Hline−cell hypergraph has

size at most 2n/3.

Proof: Let S be an independent set of lines in Hline−cell. This means that, in the corresponding arrange-

ment AS , each cell is touched by at least a line ℓ ∈ L \ S (otherwise it would not be independent). Each

line ℓ ∈ L \ S crosses |S|+ 1 cells of AS . There are
|S|·(|S|+1)

2 + 1 cells in AS , and thus

|L \ S| · (|S|+ 1) = (n− |S|) · (|S|+ 1) ≥ |S| · (|S|+ 1)

2 + 1

n ≥ 3|S|
2

+
1

|S|+ 1
>

3|S|
2

⇒ |S| < 2n

3

✷

3.3 Chromatic number of Hline−cell

In this section, we study the problem of coloring the Hline−cell hypergraph. That is, we want to color

the set L so that no cell is monochromatic. We start by giving an upper bound on the required number of

colors.

Theorem 5 Any arrangement of n lines can be colored with at most 2
√
n+O(1) colors so that no edge

of the associated Hline−cell hypergraph is monochromatic.

Before giving the proof we note that, following a preliminary publication of this research, Ackerman and

Pinchasi [1] improved the upper bound by showing that O(
√

n/ log n) colors are sufficient to color the

Hline−cell hypergraph. In their work, they also relate this problem with a longstanding open problem by

Erdős : Estimating the maximum number of points in general position within a set of n points that has no

more than three collinear points. For completeness, we present a proof of Theorem 5.
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Proof: Our coloring scheme is as follows: select the largest independent set I , color all the lines of I
with the same color, remove I from L, and iterate this process on the remaining lines. At each step of the

algorithm, we assign a different color to the lines we remove. The algorithm stops whenever the number

of non-colored lines is at most n0 (where n0 is the bound from Theorem 3). Whenever n0 or fewer lines

remain, we complete the coloring by adding a new color to each of the remaining lines.

First we show that this method indeed provides a proper coloring. For this purpose, observe that any

independent set of L′ ⊆ L is also an independent set of L. That is, lines with the same color form an

independent set of L. In particular, there cannot exist a cell whose associated lines are assigned the same

color.

Let c(n) be the maximum number of colors used for an arrangement of n lines with the above coloring

strategy. We claim that for any ε > 0 and for any sufficiently large n, c(n) ≤ (2 + ε)
√
n + O(1) (note

that this implies c(n) ≤ 2
√
n+O(1)).

Recall that, by Theorem 3, the size of a maximal independent set is at least
√
n+ 1 − 1. Thus, we

obtain the following recursion:

c(n) ≤ c(n−
√
n+ 1− 1) + 1

We now assume that c(n) ≤ k
√
n for some constant k. By substituting in the previous inequality we

obtain:

c(n) ≤ k

√

n+ 1−
√
n+ 1 + 1

Thus, in order to complete the proof we must show that for any k > 2 the following holds:

√

n+ 1−
√
n+ 1 + 1/k ≤ √

n ⇔

k ≤ 1
√
n−

√

n+ 1−
√
n+ 1

The limit of this ratio is 2, thus the claim holds for any constant larger than 2 as desired.

✷

We now construct a slightly sublogarithmic lower bound for the chromatic number of Hline−cell.

Theorem 6 For any n0 ∈ N, there exists an arrangement of n ≥ n0 lines whose corresponding hyper-

graph Hline−cell has chromatic number Ω(log n/ log log n).

In the following we construct a set of roughly kk lines in which any k-coloring will induce a monochro-

matic cell (for any k > 0). Since we are interested in the asymptotic behavior, it suffices to consider the

case in which k + 1 = 2q for some q ≥ 0. In order to proceed with the proof, we first introduce some

definitions and helpful results.

For any x0 ∈ R we consider the order of the intersections of the lines of L with the vertical line of

equation x = x0, from top to bottom. Although the permutation obtained will depend on L and x0,

there will be exactly
(

n
2

)

different permutations in any set L of n lines. Let ΠL be the set of the different

permutations that we can obtain on a line arrangement L. Each of these permutations is called a snapshot

of L. We say that a real number x0 realizes a snapshot π if the ordering in the line x = x0 is π.



Coloring and Guarding Arrangements 147

y = 0

G′
2q−1

G′′
2q−1

Fig. 3: Induction step in the gadget G2q construction (left). The additional snapshots are shown as dashed vertical

lines. The generated arrangement for q = 8 and its witness set is shown on the right. For clarity, lines of G8 have

been depicted as pseudolines.

We say that a set of snapshots W ⊆ ΠL is a witness set of L if for any two distinct lines ℓ, ℓ′ ∈ L, there

exists a snapshot π ∈ W in which the two lines appear consecutively in π. It is easy to see that the entire

set ΠL is a witness set of quadratic size for any set of lines. Since the size of the witness set has a direct

impact on our bound, we first show how to construct a line arrangement with a small witness set.

Lemma 7 For any q ≥ 0 there exists a set L of 2q lines and a witness set W of L such that |W| ≤ 2q+1.

Proof: We construct the arrangement by induction on q. For q = 0 our base gadget G1 consists of a single

line. Note that the witness property is vacuous, hence we define W1 = ∅.

As we are only interested in the ordering in which lines are crossed, we can do any linear transformation

to a set L of lines, provided that transformation preserves the permutations in the set ΠL. If we update the

coordinates of the snapshots in the witness set accordingly, the witness property still holds. In particular,

we can transform a set L of lines so that their slopes lie in an arbitrary small interval. We call this operation

the flattening of L.

With this operation in mind we can do the induction step as follows: for any q > 0 generate a copy of

gadget G2q−1 and flatten the lines so that they all have small positive slopes and all crossings between any

two lines occur below the horizontal line y = 0. Let G′
2q−1 be the transformed set of lines and G′′

2q−1 be

the reflexion of G′
2q−1 with respect to line y = 0. The gadget G2q is defined as the union of G′

2q−1 and

G′′
2q−1 (see Figure 3).

G2q satisfies the following properties:

(i) G2q has size exactly 2q . Moreover, any two lines cross exactly once.

(ii) The witness set W2q−1 of G′
2q−1 also acts as witness set of G′′

2q−1 .

(iii) The lines of G′
2q−1 and G′′

2q−1 intersect in a grid-like fashion, forming cells of size 4 and 2.

Observe that property (i) certifies that the construction is a valid set of lines, while properties (ii) and

(iii) help us obtain a witness set W2q of small size; the crossing between lines of different gadgets can be

guarded with n− 2 = 2q − 2 snapshots (see Figure 3). Moreover, the crossings between lines of the same
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gadget can be guarded by the witness set W2q−1 (which by induction satisfies |W2q−1 | ≤ 2 · 2q−1 = 2q).

By construction we have that |W2q | = (2q − 2) + |W2q−1 | < 2q + 2q = 2q+1.

To complete the proof we must show that W2q is indeed a witness set of L: Let ℓ, ℓ′ be any two lines

of L. If these lines belong to the same sub-gadget, we can apply induction and obtain that they must be

consecutive in one of the first snapshots. Otherwise, the two lines belong to different sub-gadgets of G2q ,

hence they will be consecutive at the latter snapshots. ✷

With the previous result we can now prove Theorem 6:

Proof: Let L(0) be the set of lines constructed in Lemma 7 and let W(0) be the witness set of L(0)

(recall that we have |L(0)| = k + 1 = 2q and |W(0)| = m for some m ≤ 2(k + 1)). In general, a

witness set W contains several snapshots. We number these snapshots from left to right. That is, we have

W = {π1, . . . , πm}, and π1 is the snapshot whose realizer has smallest x-coordinate. We note that this

ordering is well defined, since it does not depend on the choice of the realizer.

Consider now any coloring of L(0) with k colors. By the pigeonhole principle, there must exist two

lines ℓ, ℓ′ with the same assigned color. Since W(0) is a witness set, these two lines must be consecutive at

some snapshot π ∈ W(0). Whenever this happens, we say that ℓ and ℓ′ form a monochromatic consecutive

pair at snapshot π.

With the above definitions we can give an intuitive idea of our construction. Our goal is to cross two

monochromatic consecutive pairs that are colored with the same color, thereby obtaining a monochro-

matic quadrilateral. The main difficulty of the proof is that we do not know which snapshot contains

the monochromatic consecutive pair, nor which color it is assigned. In order to reduce the size of the

witness set we essentially cross k + 1 copies of W(0). The main property of the construction is that these

copies pairwise cross at the first snapshot. Thus, if all copies have their monochromatic consecutive pair

at the first (that is, leftmost) snapshot, we can use the pigeonhole principle and obtain a monochromatic

quadrilateral. Otherwise, at least one of the copies has a monochromatic consecutive pair at another snap-

shot, and in particular we can ignore the first snapshot of W(0). That is, by making k + 1 copies of the

original line arrangement we can reduce the size of the witness set by one. If we repeat this process suffi-

ciently many times, we obtain a line arrangement whose witness set has a single snapshot. We complete

the construction by crossing k + 1 copies of such gadget to finally obtain the desired monochromatic

quadrilateral.

In general we use a set L(i) containing (k + 1)i+1 lines (for any i ∈ {0, . . . ,m + 1}). In any k-

coloring of the set L(i), our objective is to have either a monochromatic cell, or two lines that form a

monochromatic consecutive pair at some snapshot πj (for i ≤ j ≤ m). In particular, the second situation

cannot occur for set L(m+1), hence it must contain a monochromatic cell.

We now specify how to construct the set L(i) by induction on i. By flattening the lines of L(0) and

scaling the instance, we can ensure that, for any i ≤ m, the permutation induced by the line of equation

x = i is equal to the ith snapshot of W(0) (that is, the x-coordinate i realizes the ith snapshot of W(0)).

For any i > 0, our aim is to construct L(i) with k + 1 different copies of set L(i−1) flattened and scaled

so that they satisfy the following properties:

(i) For any j ∈ {i, . . .m}, the ordering of each of the copies of L(i−1) at line x = j corresponds to the

jth snapshot of W(i−1). That is, j realizes the jth snapshot of each copy L(i−1).

(ii) No two lines of the same copy of L(i−1) cross in the vertical strip {−m < x < i}. In particular, the

snapshot taken at any coordinate of the strip is πi.
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x = i mi+ 1 . . .

Fig. 4: Construction of the set L(i) by combining k + 1 different copies of L(i−1). In the Figure, each thick line

represents a copy of L(i−1) (and the dotted vertical lines the snapshots of πj , for j ≥ i). Observe that all the crossings

between lines of different copies occur in the vertical strip {0 < x < i} (depicted as light gray in the figure). Since

no crossing between lines of the same copy occur in the strip, the vertical ordering of the lines of a single copy at any

position in the strip is exactly πi. In the right we depict a larger image of the crossing between two copies of L(i−1).

The main property is that any two consecutive lines of a copy of L(i−1) form a quadrilateral with any other pair of

consecutive lines of another copy of L(i−1).

(iii) Lines of two different copies of L(i−1) cross in the vertical strip {0 < x < i} in a grid-like fashion.

In particular, any two lines that are consecutive in πi form a quadrilateral with other two consecutive

lines of another copy of L(i−1).

Such a construction can be obtained by flattening all the copies of L(i−1), placing the different copies in

convex position, and scaling the instance (see Figure 4). Observe that since L(i) is composed of k + 1
different copies of L(i−1), we indeed have |L(i)| = (k + 1)|L(i−1)| = (k + 1)i+1.

We define the witness set W(i) of L(i) as follows. For any j ∈ {i + 1, . . . ,m} we consider the line

x = j, and add the corresponding snapshot to W(i). By definition, we have |W(i)| = m − i. Since the

copies do not cross at those coordinates, the jth snapshot of W(i) essentially consists of k + 1 copies of

the jth snapshot of W(i−1) one after the other.

In order to complete the proof we must show that in any coloring c of L(i), we either have a monochro-

matic cell or a monochromatic consecutive pair in πj (for some m ≤ j > i). For i = 0 our claim is true

by Lemma 7, hence we can focus on the inductive step. For larger values of i, we apply induction to the

two copies of L(i−1): if at least one of the copies has a monochromatic cell or has its monochromatic

consecutive pairs at snapshot πj (for some j > i) we are done, since the same property will hold for L(i).

The other case occurs when all copies of L(i−1) have their monochromatic consecutive pair at snapshot

πi. Let ℓν , ℓ
′
ν be the monochromatic consecutive pair of the νth copy of L(i−1) and let cν be its color. By

the pigeonhole principle, there must be two distinct indices u, v ≤ ν such that cu = cv . By property (iii)
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of our construction, the lines ℓu, ℓ
′
u, ℓv, ℓ

′
v form a quadrilateral in the arrangement of lines of L(i). The

quadrilateral will be monochromatic, since by definition the four lines have the same color assigned. ✷

3.4 Other coloring results

For the sake of completeness, we end this section by mentioning two issues on coloring vertices or cells

instead of lines. We start by considering the chromatic number of Hvertex−cell. Recall that we are

interested in colorings in which no hyperedge (containing two or more vertices) is monochromatic.

The following well-known result considers the coloring of cells so that no line is only adjacent to cells

of a single color class:

Theorem 8 (Folklore) The chromatic number of Hcell−zone is 2.

Proof: This claim is equivalent to the fact that the dual graph of the arrangement (where vertices are

faces, and there is an edge between two faces if they are adjacent) is bipartite. This result has appeared in

recreational texts and concited some research as well [11, 14]. ✷

We now consider the problem of coloring the vertices of an arrangement so that no cell is monochro-

matic:

Observation 1 Any arrangement of n ≥ 3 lines can be colored with at most 3 colors so that the only

monochromatic edges of the associated Hvertex−cell hypergraph are those of size one.

Proof: It is known that the graph obtained from an Euclidean arrangement of lines by taking only the

bounded edges of the arrangement has chromatic number 3 [5]: simply sweep with a vertical line from left

to right. In this ordering, every vertex in the arrangement is adjacent to at most two predecessors. Thus,

we can color the vertices with three colors greedily, and no cell of size at least 2 will be monochromatic.

✷

Naturally, two colors are always necessary, thus the chromatic number will either be 2 or 3. We note

that some arrangements of lines need three colors (for example, any arrangement of three lines), but we

have been unable to generalise these examples to arbitrarily large line arrangements.

4 Guarding Arrangements

We now consider the vertex cover problem for the hypergraphs defined in Section 2. That is, we would

like to select the minimum number of vertices so that any hyperedge is adjacent to the selected subset.

Geometrically speaking, we would like to select the minimum number of vertices (or cells or lines), so

that each cell (or line or cell, respectively) contains at least one of the selected items. Recall that this

problem is the complement of the independent set problem, in the sense that this minimum is equal to the

number of vertices minus the size of a largest independent set.

4.1 Guarding cells with vertices

We first consider the following problem: Given an arrangement of lines A, how many of the vertices

can guard the entire arrangement when lines act as obstacles blocking visibility? This question can be

rephrased as finding the smallest subset of vertices V so that each cell contains a vertex in V ; thus we are

looking for bounds on the size of a vertex cover for Hvertex−cell.
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Theorem 9 For any set L of n lines, a vertex cover of the corresponding Hvertex−cell hypergraph has

size at most n2/6 + n. Furthermore, n2/6 vertices might be necessary.

Proof: First notice that any arrangement can have at most 2n unbounded cells. Moreover, these cells

can be easily guarded with n guards. Thus, we focus our attention to bounded cells. We sweep the

arrangement in any fixed direction. Along the sweep we find the vertices of the arrangement one by one.

We will color the vertices (with three colors) in the order in which they are discovered.

Vertices that are adjacent to unbounded cells are colored with any arbitrary color among the three

possible ones. Now observe that any vertex v that is not adjacent to an unbounded cell must have degree

exactly 4. Moreover, when v is encountered, its predecessors u and w have already been colored.

If u and w have distinct colors, we simply assign the third color to v. Otherwise, both u and v have the

same color assigned. Observe that v is the rightmost vertex of exactly one cell, and in this cell both u and

v are present. Since the cell is bounded, it must have another vertex other than u, v, and w. Moreover,

that vertex must have a color different to the color assigned to both u and v. Thus, we simply assign the

third color to v.

With this color assignment, all bounded cells have three vertices with distinct colors on their boundary.

In particular, the vertices of any color class can guard all bounded cells. Since we used three colors and

the total number of vertices is
(

n
2

)

< n2/2, there will be a color class with at most n2/6 vertices.

For the lower bound we use the construction of Füredi et al. [6]. This construction creates a family of

arrangements that has n2/3 triangles in which any vertex of the arrangement is incident to at most two of

these triangles. In particular, any vertex cover of the triangles will need at least n2/6 vertices. ✷

Recall that the hypergraph Hvertex−cell has
(

n
2

)

= n2

2 − n
2 vertices. Combining this fact with the

preceding bounds on the size of a vertex cover allows us to get similar bounds for the independent set

problem:

Lemma 10 For any set L of n lines, a maximum independent set of the corresponding Hvertex−cell

hypergraph has size at least n2/3−O(n). Furthermore, there exist sets of lines whose largest independent

set has size at most n2

3 − n
2 .

4.2 Guarding lines with cells

Here we consider the problem of touching all lines of L with a smallest subset of cells, that is, we look

for bounds on the size of a vertex cover for Hcell−zone.

We begin with a simple proof that a minimal vertex cover of Hcell−zone hypergraph has size at most

⌈n
2 ⌉, that we will improve below.

Lemma 11 Given a set L of n lines, a minimal vertex cover of the corresponding Hcell−zone hypergraph

has size at most ⌈n
2 ⌉.

Proof: We describe a greedy algorithm to find a vertex cover of size ⌈n
2 ⌉; we start with an empty set L.

We find a pair p, q of lines that we still have to cover. Since every two lines cross, there must exist a cell c
adjacent to both p and q. We add that cell c to the set L, and proceed with the unguarded cells. In the last

step, if a single line ℓ remains to be covered we add to L any cell touching ℓ. Since each cell (except the

last one) of L guards at least two lines, at most ⌈n
2 ⌉ cells will be added into L. ✷

We next provide a lower bound, and improve as well on the upper bound, for large values of n.
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Theorem 12 Given any set L of n lines, a minimal vertex cover of the corresponding Hcell−zone hyper-

graph has size at most 19n
48 + o(n). Moreover, there exists a set L of n lines, such that every vertex cover

of the corresponding Hcell−zone hypergraph has size at least n
4 .

Proof: The lower bound is proved by the fact that there exist arrangements where the largest cell has size

four (see [13]). This implies that each cell touches at most four lines, and therefore n/4 cells are required

to touch them all.

The proof of the upper bound claim is a refined version of the method in Theorem 12: We first select

cells of size four or more, and add them to L until any remaining cell that we add to our set is not

guaranteed to cover more than three new lines. We then continue adding cells that cover at least three

lines in the same fashion. Finally, we complete our construction with cells that cover two lines as in

Lemma 11.

The first iterations of the algorithm select cells that each cover four new lines. We iteratively select a

cell covering four lines as long as the average number of segments of uncovered lines bounding a cell is

strictly greater than three. The total number of segments is n2, and each contribute to two cells. Every

selected cell discards four lines and 4n segments (if the cell is bounded by more than four lines, we only

discard exactly four of them, arbitrarily). The total number of cells after the ith iteration is |C| − i. By

double counting, the number of iterations is the largest value i that satisfies:

2n2 − 8in

|C| − i
> 3,

2n2 − 8in

n(n+ 1)/2 + 1− i
> 3,

i ∼ n

16
+ o(n).

Hence we can select roughly n
16 cells, covering together n

4 lines.

In the second phase of the algorithm, we iteratively select cells covering three new lines. Following the

same reasoning, and taking into account the i ≃ n/16 previously selected cells. Using again the double

counting argument, we know that the number j of iterations satisfies:

2n2 − 8in− 6jn

|C| − i− j
> 2,

2n2 − n2/2− 6jn

n(n+ 1)/2 + 1− n/16− j
> 2,

j ∼ n

12
+ o(n).

Hence we can select roughly n
12 more cells, covering together n

4 lines.

Overall, we now have n
16 + n

12 + o(n) cells covering n
2 lines. It remains to cover the remaining n

2 lines

with n
4 cells, each covering two lines, as in Lemma 11. The total number of cells is therefore

n

16
+

n

12
+

n

4
+ o(n) =

19

48
n+ o(n).

✷



Coloring and Guarding Arrangements 153

Corollary 13 For any set L of n lines, a maximum independent set of the corresponding Hcell−zone

hypergraph has size at least n2

2 + 5n
48 − o(1) and at most n2

2 + n
4 + 1.

This Corollary follows directly from the preceding theorem, the fact that the complement of a vertex cover

is an independent set, and that any arrangement of n lines in general position has
n(n+1)

2 +1 cells (hence,

the Hcell−zone hypergraph will have that many vertices).

4.3 Guarding cells with lines

For the sake of completeness, we also give bounds on the number of lines needed to guard (touch) all

cells.

Corollary 14 For any set L of n lines, its minimal vertex cover of the corresponding Hline−cell hyper-

graph has size at least n/3 and at most n+ 1−
√
n+ 1.

Proof of the lower bound is a direct consequence of the complementarity of the vertex cover/independent

set and Theorem 4 (upper bound on the maximum independent set of Hline−cell). Analogously, the upper

bound is a consequence of Theorem 3.

5 Concluding Remarks

The main open problems arising from our work consist of closing gaps (when they exist) between lower

and upper bounds; this is especially interesting in our opinion for the problem of coloring lines without

producing any monochromatic cell. We observe that most of our observations hold for pseudo lines as

well. Hence, another natural extension would be studying how the bounds change when we consider

families of curves any two of which intersect at most t times (for some constant t > 0).

It is also worth noting that there are several computational questions that are interesting as well. For

example, it is unclear what the complexity is of deciding whether a given arrangement of lines admits a

two-coloring in which no cell is monochromatic.
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[15] T. S. Motzkin. Nonmixed connecting lines. Abstract 67T 605, Notices Amer. Math. Soc., 14(1967),

p. 837.

[16] J. O’Rourke. Art Gallery, Theorems and Algorithms. Oxford University Press, 1987.

[17] J. O’Rourke. Visibility. Chapter in Handbook of Discrete and Computational Geometry, CRC Press

LLC, Boca Raton, FL, 2nd edition, J. E. Goodman and J. O’Rourke eds., pp. 643-665, 2004 2nd

ed.ition).

[18] J. Urrutia. Art Gallery and Illumination Problems. Chapter in Handbook on Computational Geom-

etry, Elsevier Science Publishers, J.R. Sack and J. Urrutia, eds., pp. 973-1026, 2000.


	Introduction
	Definitions and Summary of Results
	Coloring Lines, and Related Results
	Two-colorability
	Independent lines in Hline-cell
	Chromatic number of Hline-cell
	Other coloring results

	Guarding Arrangements
	Guarding cells with vertices
	Guarding lines with cells
	Guarding cells with lines

	Concluding Remarks
	Acknowledgements

