Packing and covering the balanced complete bipartite multigraph with cycles and stars
Hung-Chih Lee

To cite this version:

HAL Id: hal-01188905
https://hal.inria.fr/hal-01188905
Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Packing and covering the balanced complete bipartite multigraph with cycles and stars

Hung-Chih Lee

Department of Information Technology, Ling Tung University, Taichung, Taiwan

received 24th Nov. 2013, accepted 16th Sep. 2014.

Let C_k denote a cycle of length k and let S_k denote a star with k edges. For multigraphs F, G and H, an (F,G)-decomposition of H is an edge decomposition of H into copies of F and G using at least one of each. For $L \subseteq H$ and $R \subseteq rH$, an (F,G)-packing (resp. (F,G)-covering) of H with leave L (resp. padding R) is an (F,G)-decomposition of $H - E(L)$ (resp. $H + E(R)$). An (F,G)-packing (resp. (F,G)-covering) of H with the largest (resp. smallest) cardinality is a maximum (F,G)-packing (resp. minimum (F,G)-covering), and its cardinality is referred to as the (F,G)-packing number (resp. (F,G)-covering number) of H. In this paper, we determine the packing number and the covering number of $\lambda K_{n,n}$ with C_k’s and S_k’s for any λ, n and k, and give the complete solution of the maximum packing and the minimum covering of $\lambda K_{n,n}$ with 4-cycles and 4-stars for any λ and n with all possible leaves and paddings.

Keywords: complete bipartite multigraph, cycle, star, packing, covering

1 Introduction

For positive integers m and n, $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. If $m = n$, the complete bipartite graph is referred to as balanced. A k-cycle, denoted by C_k, is a cycle of length k. A k-star, denoted by S_k, is the complete bipartite graph $K_{1,k}$. A k-path, denoted by P_k, is a path with k vertices. For a graph H and a positive integer λ, we use λH to denote the multigraph obtained from H by replacing each edge e by λ edges each having the same endpoints as e. When $\lambda = 1$, $1H$ is simply written as H.

Let F, G, and H be multigraphs. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. An (F,G)-decomposition of H is a decomposition of H into copies of F and G using at least one of each. If H has an (F,G)-decomposition, we say that H is (F,G)-decomposable and write $(F,G)|H$. If H does not admit an (F,G)-decomposition, two natural questions arise:

(1) What is the minimum number of edges needed to be removed from the edge set of H so that the resulting graph is (F,G)-decomposable, and what does the collection of removed edges look like?

*Email: birdy@teamail.ltu.edu.tw. Supported by the Ministry of Science and Technology of Taiwan.
(2) What is the minimum number of edges needed to be added to the edge set of H so that the resulting graph is (F,G)-decomposable, and what does the collection of added edges look like?

These questions are respectively called the maximum packing problem and the minimum covering problem of H with F and G.

Let F, G, and H be multigraphs. For $L \subseteq H$ and $R \subseteq rH$, an (F,G)-packing of H with leave L is an (F,G)-decomposition of $H - E(L)$, and an (F,G)-covering with padding R is an (F,G)-decomposition of $H + E(R)$. For an (F,G)-packing \mathcal{P} of H with leave L, if $|\mathcal{P}|$ is as large as possible (so that $|L|$ is as small as possible), then \mathcal{P} and L are referred to as a maximum (F,G)-packing and a minimum leave, respectively. Moreover, the cardinality of the maximum (F,G)-packing of H is called the (F,G)-packing number of H, denoted by $p(H; F,G)$. For an (F,G)-covering \mathcal{C} of H with padding R, if $|\mathcal{C}|$ is as small as possible (so that $|R|$ is as small as possible), then \mathcal{C} and R are referred to as a minimum covering and a minimum padding, respectively. Moreover, the cardinality of the minimum (F,G)-covering of H is called the (F,G)-covering number of H, denoted by $c(H; F,G)$. Clearly, an (F,G)-decomposition of H is a maximum (F,G)-packing with leave the empty graph, and also a minimum (F,G)-covering with padding the empty graph.

Recently, decomposition into a pair of graphs has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of (K_k, S_k)-decomposition of the complete graph K_n. Abueida and Daven [4] investigated the problem of the (C_4, E_2)-decomposition of several graph products where E_2 denotes two vertex disjoint edges. Abueida and O’Neil [7] settled the existence problem for (K_n, S_{k-1})-decomposition of the complete multigraph λK_n for $k \in \{3, 4, 5\}$. Priyadharsini and Muthusamy [12] [13] gave necessary and sufficient conditions for the existence of (G_n, H_n)-decompositions of λK_n and $\lambda K_{n,n}$ where $G_n, H_n \in \{C_n, P_n, S_{n-1}\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H on m non-isolated vertices such that $G \cup H$ is isomorphic to K_m. Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_n admits a (G, H)-decomposition where (G, H) is a graph-pair of order 4 or 5. Abueida, Clark and Leach [11] and Abueida and Hampson [6] considered the existence of decompositions of $K_n - F$ for the graph-pair of order 4 and 5, respectively, where F is a Hamiltonian cycle, a 1-factor, or almost 1-factor. Furthermore, Shyu [14] investigated the problem of decomposing K_n into paths and stars with k edges, giving a necessary and sufficient condition for $k = 3$. In [15] [16], Shyu considered the existence of a decomposition of K_n into paths and cycles with k edges, giving a necessary and sufficient condition for $k \in \{3, 4\}$. Shyu [17] investigated the problem of decomposing K_n into cycles and stars with k edges, settling the case $k = 4$. In [18], Shyu considered the existence of a decomposition of $K_{m,n}$ into paths and stars with k edges, giving a necessary and sufficient condition for $k = 3$. Recently, Lee [9] and Lee and Lin [10] established necessary and sufficient conditions for the existence of (C_k, S_k)-decompositions of the complete bipartite graph and the complete bipartite graph with a 1-factor removed, respectively. However, much less work has been done on the problem of packing and covering graphs with a pair of graphs. Abueida and Daven [3] obtained the maximum packing and the minimum covering of the complete graph K_n with (K_k, S_k). Abueida and Daven [2] and Abueida, Daven and Roblee [5] gave the maximum packing and the minimum covering of K_n and λK_n with G and H, respectively, where (G, H) is a graph-pair of order 4 or 5. In this paper, we determine the packing number and the covering number of $\lambda K_{n,n}$ with k-cycles and k-stars for any λ, n and k, and give the complete solution of the maximum packing and the minimum covering of $\lambda K_{n,n}$ with 4-cycles and 4-stars for any λ and n with all possible leaves and paddings.
2 Preliminaries

In this section we first collect some needed terminology and notation, and then present a result which is useful for our discussions to follow.

Let \(G \) be a multigraph. The \textit{degree} of a vertex \(x \) of \(G \), denoted by \(\deg_G x \), is the number of edges incident with \(x \). The vertex of degree \(k \) in \(S_k \) is the \textit{center} of \(S_k \) and any vertex of degree 1 is an \textit{endvertex} of \(S_k \). For \(W \subseteq V(G) \), we use \(G[W] \) to denote the subgraph of \(G \) induced by \(W \). Furthermore, \(\mu(uv) \) denotes the number of edges of \(G \) joining \(u \) and \(v \), \((v_1, \ldots, v_k)\) and \(v_1 \ldots v_k \) denote the \(k \)-cycle and the \(k \)-path through vertices \(v_1, \ldots, v_k \) in order, respectively, and \((x; y_1, \ldots, y_k)\) denotes the \(k \)-star with center \(x \) and endvertices \(y_1, \ldots, y_k \). When \(G_1, G_2, \ldots, G_i \) are multigraphs, not necessarily disjoint, we write \(G_1 \cup G_2 \cup \cdots \cup G_i \) or \(\bigcup_{i=1}^t G_i \) for the graph with vertex set \(\bigcup_{i=1}^t V(G_i) \) and edge set \(\bigcup_{i=1}^t E(G_i) \).

When the edge sets are disjoint, \(G = \bigcup_{i=1}^t G_i \) expresses the decomposition of \(G \) into \(G_1, G_2, \ldots, G_i \).

Given an \(S_k \)-decomposition of \(G \), a \textit{central function} \(c \) from \(V(G) \) to the set of non-negative integers is defined as follows. For each \(v \in V(G) \), \(c(v) \) is the number of \(k \)-stars in the decomposition whose center is \(v \).

The following result is essential to our proof.

\textbf{Proposition 2.1 (Hoffman \cite{8})} For a positive integer \(k \), a multigraph \(H \) has an \(S_k \)-decomposition with central function \(c \) if and only if

\begin{enumerate}
 \item[(i)] \[k \sum_{v \in V(H)} c(v) = |E(H)|, \]
 \item[(ii)] \[\text{for all } x, y \in V(H), \mu(xy) \leq c(x) + c(y), \]
 \item[(iii)] \[\text{for all } S \subseteq V(H), k \sum_{v \in S} c(v) \leq \varepsilon(S) + \sum_{x \in S, y \in V(H) - S} \min\{c(x), \mu(xy)\}. \]
\end{enumerate}

where \(\varepsilon(S) \) denotes the number of edges of \(H \) with both ends in \(S \).

In the sequel of the paper, \((A, B) \) denotes the bipartition of \(\lambda K_{n,n} \), where \(A = \{a_0, a_1, \ldots, a_{n-1}\} \) and \(B = \{b_0, b_1, \ldots, b_{n-1}\} \).

3 Packing numbers and covering numbers

In this section the packing number and the covering number of the balanced complete bipartite multigraph with \(k \)-cycles and \(k \)-stars are determined. We begin with a criterion for decomposing the complete bipartite graph into \(k \)-cycles.

\textbf{Proposition 3.1 (Sotteau \cite{19})} For positive integers \(m, n, \) and \(k \), the graph \(K_{m,n} \) is \(C_k \)-decomposable if and only if \(m, n, \) and \(k \) are even, \(k \geq 4 \), \(\min\{m, n\} \geq k/2 \), and \(k \) divides \(mn \).

Let \(K^*_{m,n} \) denote the symmetric complete bipartite digraph with parts of size \(m \) and \(n \), and let \(\overrightarrow{C_k} \) denote the directed \(k \)-cycle.

\textbf{Proposition 3.2 (Sotteau \cite{19})} For positive integers \(m, n, \) and \(k \), the digraph \(K^*_{m,n} \) is \(\overrightarrow{C_k} \)-decomposable if and only if \(k \) is even, \(k \geq 4 \), \(\min\{m, n\} \geq k/2 \), and \(k \) divides \(2mn \).

Removing the directions from the arcs of directed cycles in a \(\overrightarrow{C_k} \)-decomposition of \(K^*_{m,n} \), we obtain the following result by Proposition 3.2.
Lemma 3.3 For positive integers \(m, n, \) and \(k, \) the multigraph \(2K_{m,n} \) is \(C_k \)-decomposable if \(k \) is even, \(k \geq 4, \) \(\min\{m,n\} \geq k/2, \) and \(k \) divides \(2mn. \)

Lemma 3.4 Let \(\lambda, k, m, \) and \(n \) be positive integers with \(\lambda m \equiv \lambda n \equiv k \equiv 0 \pmod{2} \) and \(\min\{m,n\} \geq k/2 \geq 2. \) If \(m \) or \(n \) is divisible by \(k, \) then \(\lambda K_{m,n} \) is \(C_k \)-decomposable.

Proof: Since \(\lambda K_{m,n} \) is isomorphic to \(\lambda K_{n,m}, \) it suffices to show that the result holds for \(k \mid m. \) If \(\lambda \) is odd, then \(m \) and \(n \) are even from the assumption \(\lambda m \equiv \lambda n \equiv 0 \pmod{2}. \) Since \(k \) divides \(mn, \) Proposition 3.1 implies that \(K_{m,n} \) is \(C_k \)-decomposable. If \(\lambda \) is even, then \(2K_{m,n} \mid \lambda K_{m,n}. \) Since \(k \) divides \(2mn, \) \(2K_{m,n} \) is \(C_k \)-decomposable by Lemma 3.3. Hence \(\lambda K_{m,n} \) is \(C_k \)-decomposable. \(\square \)

Lemma 3.5 If \(k \) is a positive even integer with \(k \geq 4, \) then \(\lambda K_{k,k} \) is \((C_k, S_k) \)-decomposable.

Proof: Note that \(\lambda K_{k,k} = \lambda K_{k,k-2} \cup \lambda K_{k,k-2} \). By Lemma 3.4 \(\lambda K_{k,k-2} \) is \(C_k \)-decomposable. Trivially, \(\lambda K_{k,2} \) is \(C_k \)-decomposable. Therefore, \(\lambda K_{k,k} \) is \((C_k, S_k) \)-decomposable. \(\square \)

Lemma 3.6 Let \(k \) be a positive even integer and \(n \) be a positive integer with \(4 \leq k < n < 2k. \) If \(\lambda(n-k)^2 < k, \) then \(\lambda K_{n,n} \) has a \((C_k, S_k) \)-packing with leave \(\lambda K_{n-k,n-k} \) and a \((C_k, S_k) \)-covering with padding \(P_k - \lambda(n-k)^2+1. \)

Proof: Let \(n = k + r. \) The assumption \(k < n < 2k \) implies \(0 < r < k. \) We first give the required packing. Note that

\[
\lambda K_{n,n} = \lambda K_{k,k} \cup \lambda K_{k,r} \cup \lambda K_{r,k} \cup \lambda K_{r,r}.
\]

By Lemma 3.4 \(\lambda K_{k,k} \) has a \(C_k \)-decomposition \(D_1. \) Trivially, \(\lambda K_{k,r} \) and \(\lambda K_{r,k} \) have \(S_k \)-decompositions \(D_2 \) and \(D_3, \) respectively. Thus \(\bigcup_{i=1}^3 D_i \) is a \((C_k, S_k) \)-packing of \(\lambda K_{n,n} \) with leave \(\lambda K_{r,r}, \) as desired.

Now we give the required covering. Let \(s = \lambda r^2. \) Let \(A_0 = \{a_0, a_1, \ldots, a_{\lfloor (s-1)/2 \rfloor}\}, A_1 = A - A_0, B_0 = \{b_0, b_1, \ldots, b_{k-1}\} \) and \(B_1 = B - B_0. \) Define a \(k \)-cycle \(C \) and a \((k-s+1) \)-path \(P \) as follows:

\[
P = \begin{cases}
 b_0 a_{k/2 - 1} b_{k/2 - 1} a_{k/2 - 2} \ldots b_{s/2-1} & \text{if } s \text{ is odd}, \\
 b_0 a_{k/2 - 1} b_{k/2 - 1} a_{k/2 - 2} \ldots b_{s/2} & \text{if } s \text{ is even}.
\end{cases}
\]

Let

\[
H = \lambda K_{n,n} - E(C) + E(P).
\]

Note that \(V(H) = V(\lambda K_{n,n}), |E(H)| = \lambda n^2 - k + (k-s) = \lambda n^2 - \lambda r^2 = \lambda k(k+2r), \) and \(\mu(uv) \leq \lambda \) for all \(u, v \in V(H). \) Furthermore, for \(H' = H[A \cup B_0], \) we have

\[
\deg_{H'} v = \begin{cases}
 \lambda k - 2 & \text{if } v \in A_0 - \{a_{\lfloor (s-1)/2 \rfloor}\}, \\
 \lambda k - \rho & \text{if } v = a_{\lfloor (s-1)/2 \rfloor}, \\
 \lambda k & \text{if } v \in A_1,
\end{cases}
\]

where \(\rho = 1 \) if \(s \) is odd, and \(\rho = 2 \) if \(s \) is even. Define a function \(c : V(H) \to \mathbb{N} \) as follows:

\[
c(v) = \begin{cases}
 0 & \text{if } v \in B_0, \\
 \lambda & \text{otherwise}.
\end{cases}
\]
Now we show that there exists an S_k-decomposition of H with central function c by Proposition 2.1. First, $k \sum_{v \in V(H)} c(v) = k \lambda(k + 2r) = |E(H)|$. This proves (i). Next, if $u, v \in B_0$, then $c(u) + c(v) = 0 = \mu(uv)$; otherwise, $c(u) + c(v) \geq \lambda \geq \mu(uv)$. This proves (ii). Finally, for $S \subseteq V(H)$ and $i \in \{0, 1\}$, let $S \cap A_i = X_i$ and $S \cap B_i = Y_i$. Moreover, let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$. Define a set T of ordered pairs of vertices as follows:

$$T = \{ (u, v) | u \in X, v \in B_1 - Y_1 \text{ or } u \in X_1, v \in B_0 - Y_0 \text{ or } u \in Y_1, v \in A - X \}.$$

Note that

$$k \sum_{w \in S} c(w) = k \lambda(|X| + |Y_1|),$$

$$\varepsilon(S) = \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv),$$

and for $u \in S$ and $v \in V(H) - S$

$$\min\{c(u), \mu(uv)\} = \begin{cases} \lambda & \text{if } (u, v) \in T, \\ \mu(uv) & \text{if } u \in X_0, v \in B_0 - Y_0, \\ 0 & \text{otherwise}. \end{cases}$$

For $S \subseteq V(H)$, let

$$g(S) = \varepsilon(S) + \sum_{u \in S, v \in V(H) - S} \min\{c(u), \mu(uv)\} - k \sum_{w \in S} c(w).$$

Note that

$$\sum_{u \in X_0, v \in Y_0} \mu(uv) + \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) = \sum_{u \in X_0, v \in B_0} \mu(uv)$$

$$= \begin{cases} |X_0|(|\lambda k - 2|) & \text{if } a_{(s-1)/2} \notin X_0, \\ |X_0|(|\lambda k - 2|) + 2 - \rho & \text{if } a_{(s-1)/2} \in X_0. \end{cases}$$

By (1)–(3) and $|X_0| + |X_1| = |X|$, we have

$$g(S) = \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv)$$

$$+ \lambda(|X|(r - |Y_1|) + |X_1|(k - |Y_0|) + |Y_1|(k + r - |X|))$$

$$+ \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) - k \lambda(|X| + |Y_1|)$$

$$= \begin{cases} \lambda(r|X| + |Y_1|(r - |X|)) - 2|X_0| & \text{if } a_{(s-1)/2} \notin X_0, \\ \lambda(r|X| + |Y_1|(r - |X|)) - 2|X_0| + 2 - \rho & \text{if } a_{(s-1)/2} \in X_0. \end{cases}$$
If \(a_{(s-1)/2} \notin X_0 \), then \(|X_0| \leq [(s-1)/2] \), which implies \(-2|X_0| \geq -s \). If \(a_{(s-1)/2} \in X_0 \), then \(|X_0| \leq [(s-1)/2] + 1 \), which implies \(-2|X_0| + 2 - \rho \geq -2[(s-1)/2] - \rho = -2(s-\rho)/2 - \rho = -s \). Thus for \(|X| \geq r \), we have

\[
g(S) \geq \lambda(r|X| - |Y_1||X| - r)) - s = \lambda(r|X| - |Y_1||X| - r)) - \lambda r^2 = \lambda(|X| - r)|X| - r|Y_1|) \geq 0.
\]

If \(\lambda r = 1 \) and \(|X| < r \), then \(|X_0| = |X| = 0 \), which implies \(-2|X_0| = -\lambda r|X_0| \). If \(\lambda r \geq 2 \), then \(-2|X_0| \geq -\lambda r|X_0| \). Note that \(2 - \rho \geq 0 \). Hence for \(|X| < r \), we have

\[
g(S) \geq \lambda(r|X| + |Y_1||X| - r|) - \lambda r|X_0| = \lambda(r|X| + |Y_1||X| - r|) \geq 0.
\]

This settles (iii) and completes the proof. \(\square \)

Before going on, the following results are needed.

Proposition 3.7 (Ma et al. [11]) For positive integers \(k \) and \(n \), the graph obtained by deleting a 1-factor from \(K_{n,n} \) is \(C_k \)-decomposable if and only if \(n \) is odd, \(k \) is even, \(4 \leq k \leq 2n \), and \(n(n-1) \) is divisible by \(k \).

Lemma 3.8 If \(\lambda \) and \(p \) are positive integers and \(k \) is a positive even integer with \(k \geq 4 \), then there exist \(\lambda pk/2 - p \) edge-disjoint \(k \)-cycles in \(\lambda K_{k/2,pk} \) (also in \(\lambda K_{pk,k/2} \)).

Proof: It suffices to show that the result holds for \(\lambda K_{k/2,pk} \). If \(\lambda = k/2 \) is even, then by Lemma 3.4 there exists a \(C_k \)-decomposition \(\mathcal{D} \) of \(\lambda K_{k/2,pk} \) with \(|\mathcal{D}| = \lambda pk/2 \), in which \(k \)-cycles are edge-disjoint. If \(k/2 \) is odd, then by Proposition 3.7 there exists a \(C_k \)-decomposition \(\mathcal{D}' \) of \(K_{k/2,k} - I \) with \(|\mathcal{D}'| = (k-2)/4 \), where \(I \) is a 1-factor of \(K_{k/2,k/2} \). Since \(K_{k/2,pk} \) can be decomposed into \(2p \) copies of \(K_{k/2,k/2} \), there exist \(2p|\mathcal{D}'| = pk/2 - p \) edge-disjoint \(k \)-cycles in \(K_{k/2,pk} \). For odd \(\lambda \) with \(\lambda \geq 3 \), \(\lambda K_{k/2,k} = (\lambda - 1)K_{k/2,k} \cup K_{k/2,k} \). By Lemma 3.4 there exists a \(C_k \)-decomposition \(\mathcal{D}'' \) of \((\lambda - 1)K_{k/2,pk} \) with \(|\mathcal{D}''| = (\lambda - 1)pk/2 \). Hence there exist \((\lambda - 1)pk/2 + pk/2 - p = \lambda pk/2 - p \) edge-disjoint \(k \)-cycles in \(\lambda K_{k/2,pk} \). \(\square \)

Lemma 3.9 Let \(\lambda \) and \(r \) be positive integers and let \(k \) be a positive even integer with \(k \geq 4 \) and \(r < k \). If \(t = \lfloor \lambda r^2/k \rfloor \), then there exist \(\lceil t/2 \rceil \) edge-disjoint \(k \)-cycles in \(\lambda K_{k/2,k} \). Moreover, if \(\lambda \geq 2 \) or \(r \leq k - 2 \) and \(\lambda r^2 \geq k \), then \(\lceil t/2 \rceil + 1 \leq \lambda r/2 \) and there exist \(\lceil t/2 \rceil + 1 \) edge-disjoint \(k \)-cycles in \(\lambda K_{k/2,k} \).

Proof: Since \(r < k \), we have \(t < \lambda r \). Thus \(t + 1 \leq \lambda r \); in turn, \(\lfloor t/2 \rfloor \leq (t + 1)/2 \leq \lambda r/2 < \lambda k/2 \), which implies \(\lfloor t/2 \rfloor \leq \lambda k/2 - 1 \). By Lemma 3.8 there exist \(\lfloor t/2 \rfloor \) edge-disjoint \(k \)-cycles in \(\lambda K_{k/2,k} \).

When \(\lambda r^2 = k \), the result is trivial. When \(\lambda r^2 > k \), we have \(r > 2/\sqrt{\lambda} \) since \(k \geq 4 \). For \(\lambda \geq 2 \),

\[
\frac{\lambda r^2}{k} \leq \frac{\lambda r^2}{r + 1} = \lambda r - \frac{\lambda}{1 + 1/r} < \lambda r - \frac{2\lambda}{2 + \sqrt{\lambda}} < \lambda r - \frac{4}{2 + \sqrt{2}}.
\]
For $r \leq k - 2$,
\[
\frac{\lambda r^2}{k} \leq \frac{\lambda r^2}{r + 2} = \lambda r - \frac{2\lambda}{1 + 2/r} < \lambda r - \frac{2\lambda}{1 + \sqrt{\lambda}} < \lambda r - 1.
\]
Therefore, $t = \lfloor \lambda r^2/k \rfloor \leq \lambda r - 2$. In turn, $\lfloor t/2 \rfloor + 1 \leq t/2 + 1 \leq \lambda r/2$ for $\lambda \geq 2$ or $r \leq k - 2$. It implies $\lfloor t/2 \rfloor + 1 < \lambda k/2$. Hence $\lfloor t/2 \rfloor + 1 \leq \lambda k/2 - 1$ for $\lambda \geq 2$ or $r \leq k - 2$. This assures us that there exist $\lfloor t/2 \rfloor + 1$ edge-disjoint k-cycles in $\lambda K_{k/2,k}$ by Lemma 3.8.

Lemma 3.10 Let k be a positive even integer and let n be a positive integer with $4 \leq k < n < 2k$. If $\lambda(n-k)^2 \geq k$, then $\lambda K_{n,n}$ has a (C_k,S_k)-packing \mathcal{P} with $|\mathcal{P}| = \lfloor \lambda n^2/k \rfloor$ and a (C_k,S_k)-covering \mathcal{C} with $|\mathcal{C}| = \lfloor \lambda n^2/k \rfloor$.

Proof: Let $n = k + r$. From the assumption $k < n < 2k$, we have $0 < r < k$. Let $\lambda r^2 = tk + s$ such that s and t are integers with $0 \leq s < k$. Note that $t = \lfloor \lambda r^2/k \rfloor$. Hence $\lfloor \lambda n^2/k \rfloor = \lfloor \lambda (r + 2)/k \rfloor = \lambda (k + 2r) + t$ and
\[
\begin{align*}
\lfloor \lambda n^2/k \rfloor &= \lfloor \lambda (k + r)^2/k \rfloor = \left\{ \begin{array}{ll}
\lambda(k + 2r) + t & \text{if } s = 0 \\
\lambda(k + 2r) + t + 1 & \text{if } s > 0.
\end{array} \right.
\end{align*}
\]
Since $\lambda(n-k)^2 \geq k$, $t \geq 1$. Let $p_0 = \lceil t/2 \rceil$ and $p_1 = \lfloor t/2 \rfloor$. We have $p_0 = 1$ and $p_1 = 0$ for $t = 1$, and $p_0 \geq p_1 \geq 1$ for $t \geq 2$. In the sequel, we will show that $\lambda K_{n,n}$ has a packing \mathcal{P} consisting of t copies of k-cycles and $\lambda(k+2r)$ copies of k-stars with leave P_{s+1} (except in the case $s = 0$, in which the leave is the empty graph), and a covering \mathcal{C} with $|\mathcal{C}| = \lfloor \lambda n^2/k \rfloor$.

Let $A_0 = \{a_0, a_1, \ldots, a_{k/2-1}\}$, $A_1 = \{a_{k/2}, a_{k/2+1}, \ldots, a_{k-1}\}$, $A_2 = A - (A_0 \cup A_1)$, $B_0 = \{b_0, b_1, \ldots, b_{k-1}\}$ and $B_1 = B - B_0$. In addition, letting $A'_i = \{a_{k/2}, a_{k/2+1}, \ldots, a_{[(k+s)/2]-1}\}$ for $s > 0$ and $G_i = \lambda K_{n,n}[A_i \cup B_i]$ for $i = 0, 1$. Clearly, G_0 and G_1 are isomorphic to $\lambda K_{k/2,k}$. By Lemma 3.9, there exist p_i edge-disjoint k-cycles in G_i for $i \in \{0, 1\}$, and there exist $p_1 + 1$ edge-disjoint k-cycles in G_1 for $\lambda \geq 2$ or $r \leq k - 2$. Let $\delta = 0$ for $p_1 = 0$ and $\delta = 1$ for $p_1 \geq 1$. Suppose that $Q_{i,0}, Q_{i,1}, \ldots, Q_{i,p_i-1}$ are edge-disjoint k-cycles in G_i for $0 \leq i \leq \delta$. Moreover, for $\lambda \geq 2$ or $r \leq k - 2$, let Q be a k-cycle in G_1 which is edge-disjoint with $Q_{1,j}$ for $0 \leq j \leq p_1 - 1$. Without loss of generality, we assume that
\[
Q = (b_{j_1}, a_{k/2}, b_{j_2}, a_{k/2+1}, \ldots, b_{j_{k/2}}, a_{k-1}).
\]
Note, for $\lambda = 1$ and $r = k - 1$, that $\lambda r^2 = (k - 1)^2 = k(k - 2) + 1$, which implies $t = k - 2$ and $s = 1$. For $s > 0$, define an $(s + 1)$-path P as follows:
\[
P = \begin{cases}
 a_{k/2}b_\ell \\
 b_{j_1}a_{k/2}b_{j_2}a_{k/2+1} \ldots b_{j_s}a_{(k+s)/2-1}b_{j_{s+1}} \\
 b_{j_1}a_{k/2}b_{j_2}a_{k/2+1} \ldots b_{j_{(k+1)/2}}a_{(k+s+1)/2-1}
\end{cases}
\]
\[
\text{if } \lambda = 1, r = k - 1,
\]
\[
\text{if } \lambda \geq 2 \text{ or } r \leq k - 2, \text{ is even,}
\]
\[
\text{if } \lambda \geq 2 \text{ or } r \leq k - 2, \text{ is odd,}
\]
where $a_{k/2}b_\ell$ is any edge (incident with $a_{k/2}$) not in $Q_{1,0}, Q_{1,1}, \ldots, Q_{1,p_1-1}$. Let
\[
H = \lambda K_{n,n} - E(\bigcup_{i=0}^{\delta} (\bigcup_{h=0}^{p_i-1} Q_{i,h}) \cup P).
\]
Note that $V(H) = V(\lambda K_{n,n})$, $|E(H)| = \lambda n^2 - (tk + s) = \lambda n^2 - \lambda r^2 = \lambda k + 2r$, and $\mu(uv) \leq \lambda$ for all $u, v \in V(H)$. Moreover, for $H' = H[A \cup B_0]$, we have

$$
\deg_{H', v} = \begin{cases}
\lambda k - 2\left[\frac{t}{2}\right] & \text{if } v \in A_0, \\
\lambda k - 2\left[\frac{t}{2}\right] + 1 & \text{if } s > 0 \text{ and } v \in A'_1 - \{a_{\left[\frac{t}{2}\right]} - 1\}, \\
\lambda k - 2\left[\frac{t}{2}\right] - \rho & \text{if } s > 0 \text{ and } v = a_{\left[\frac{t}{2}\right]} - 1, \\
\lambda k - 2\left[\frac{t}{2}\right] & \text{if } s > 0 \text{ and } v \in A_1 - A'_1, \text{ or } s = 0 \text{ and } v \in A_1, \\
\lambda k & \text{if } v \in A_2,
\end{cases}
$$

where $\rho = 1$ if s is odd, and $\rho = 2$ if s is even. Define a function $c : V(H) \rightarrow \mathbb{N}$ as follows:

$$
c(v) = \begin{cases}
0 & \text{if } v \in B_0, \\
\lambda & \text{otherwise.}
\end{cases}
$$

Now we show that there exists an S_λ-decomposition \mathcal{D} of H with central function c by Proposition 2.1.

First, $k \sum_{v \in V(H)} c(v) = k\lambda(k + 2r) = |E(H)|$. This proves (i). Next, if $u, v \in B_0$, then $c(u) + c(v) = 0 = \mu(uv)$; otherwise, $c(u) + c(v) \geq \lambda \geq \mu(uv)$. This proves (ii). Finally, for $S \subseteq V(H)$, $i \in \{0, 1, 2\}$, and $j \in \{0, 1\}$, let $S \cap A_i = X_i$ and $S \cap B_j = Y_j$. Moreover, letting $S \cap A'_1 = X'_1$, $X = X_0 \cup X_1 \cup X_2$, and $Y = Y_0 \cup Y_1$, define a set T of ordered pairs of vertices as follows:

$$
T = \{(u, v) | u \in X, v \in B_1 - Y_1 \text{ or } u \in X_2, v \in B_0 - Y_0 \text{ or } u \in Y_1, v \in A - X\}.
$$

Note that

$$
k \sum_{u \in S} c(u) = k\lambda(|X| + |Y_1|),
$$

$$
\varepsilon(S) = \lambda(|X||Y_1| + |X_2||Y_0|) + \sum_{u \in X_0 \cup X_1, v \in Y_0} \mu(uv),
$$

and for $u \in S$ and $v \in V(H) - S$

$$
\min\{c(u), \mu(uv)\} = \begin{cases}
\lambda & \text{if } (u, v) \in T, \\
\mu(uv) & \text{if } u \in X_0 \cup X_1, v \in B_0 - Y_0, \\
0 & \text{otherwise.}
\end{cases}
$$

For $S \subseteq V(H)$, let

$$
g(S) = \varepsilon(S) + \sum_{u \in S, v \in V(H) - S} \min\{c(u), \mu(uv)\} - k \sum_{u \in S} c(u).
$$

Note that

$$
\sum_{u \in X_0 \cup X_1, v \in Y_0} \mu(uv) + \sum_{u \in X_0 \cup X_1, v \in B_0 - Y_0} \mu(uv)
= \sum_{u \in X_0 \cup X_1, v \in B_0} \mu(uv)
= \begin{cases}
|X_0|(|\lambda k - 2\left[\frac{t}{2}\right]| + |X_1|(|\lambda k - 2\left[\frac{t}{2}\right]|) & \text{if } s = 0, \\
|X_0|(|\lambda k - 2\left[\frac{t}{2}\right]| + |X_1|(|\lambda k - 2\left[\frac{t}{2}\right]| - 2|X'_1|) & \text{if } s > 0, a_{\left[\frac{t}{2}\right]} - 1 \notin X'_1, \\
|X_0|(|\lambda k - 2\left[\frac{t}{2}\right]| + |X_1|(|\lambda k - 2\left[\frac{t}{2}\right]| - 2|X'_1| + 2 - \rho) & \text{if } s > 0, a_{\left[\frac{t}{2}\right]} - 1 \in X'_1.
\end{cases}
$$
By (4) and $|X_0| + |X_1| + |X_2| = |X|$, we have

\[g(S) = \lambda(|X||Y_1| + |X_2||Y_0|) + \sum_{u \in X_0 \cup X_1, v \in Y_0} \mu(uv) + \lambda(|X|(r - |Y_1|) + |X_2|(k - |Y_0|) + |Y_1|(k + r - |X|)) + \sum_{u \in X_0 \cup X_1, v \in B_0 - Y_0} \mu(uv) - k\lambda(|X| + |Y_1|) \]

where

\[m = \begin{cases} -2(|X_0|\lceil t/2 \rceil + |X_1|\lceil t/2 \rceil) & \text{if } s = 0, \\ -2(|X_0|\lceil t/2 \rceil + |X_1|\lceil t/2 \rceil) - 2|X_1| & \text{if } s > 0, a_{(k+s)/2} - 1 \notin X_1', \\ -2(|X_0|\lceil t/2 \rceil + |X_1|\lceil t/2 \rceil) - 2|X_1| + 2 - \rho & \text{if } s > 0, a_{(k+s)/2} - 1 \in X_1'. \end{cases} \]

If $a_{(k+s)/2} - 1 \notin X_1'$, then $|X_1| \leq |A_1'| - 1 = \lceil s/2 \rceil - 1$. Hence $-2|X_1| \geq -2\lceil s/2 \rceil - 1 \geq -s$. If $a_{(k+s)/2} - 1 \in X_1$, then $|X_1| \leq |A_1'| = \lceil s/2 \rceil$. In addition, $\rho = 1$ for odd s and $\rho = 2$ for even s. Therefore, $-2|X_1| + 2 - \rho \geq -2\lceil s/2 \rceil + 2 - \rho = -s$. Together with the fact $\max\{|X_0|, |X_1|\} \leq k/2$, we have

\[m \geq -2(k/2\lceil t/2 \rceil + k/2\lceil t/2 \rceil) - s = -(kt + s) = -\lambda r^2. \]

Thus for $|X| \geq r$, we have

\[g(S) \geq \lambda(r||X| - |Y_1|(|X| - r)) - \lambda r^2 = \lambda(|X| - r)(r - |Y_1|) \geq 0. \]

So it remains to consider the case $|X| < r$. Recall that $t = k - 2$ and $s = 1$ for $(\lambda, r) = (1, k - 1)$. Thus $\lceil t/2 \rceil = \lceil t/2 \rceil = (\lambda r - 1)/2$. In addition, $|X_1'| = 0$ for $a_{(k+s)/2} - 1 \notin X_1'$, and $\rho = 1$ as well as $|X_1'| = 1$ (which implies $|X_1| \geq 1$) for $a_{(k+s)/2} - 1 \in X_1'$. Hence for $a_{(k+s)/2} - 1 \notin X_1'$,

\[m = -2(|X_0| + |X_1|)(\lambda r - 1)/2 \geq -\lambda r(|X_0| + |X_1|), \]

and for $a_{(k+s)/2} - 1 \in X_1'$,

\[m = -2(|X_0| + |X_1|)(\lambda r - 1)/2 - 1 = -\lambda r(|X_0| + |X_1|) + |X_0| + |X_1| \geq -\lambda r(|X_0| + |X_1|). \]

On the other hand, for $\lambda \geq 2$ or $r \leq k - 2$, we have $|t/2| + 1 \leq \lambda r/2$ by Lemma 3.9. This implies

\[m \geq -2(|X_0|\lceil t/2 \rceil + |X_1|((t/2) + 1) + (|X_1| - |X_1'|)(t/2)) \geq -2(|X_0| + |X_1|)(\lambda r/2) = -\lambda r(|X_0| + |X_1|). \]

Therefore, for $|X| < r$, we have

\[g(S) \geq \lambda(r||X| - |Y_1|(|r - |X|)) - \lambda r(|X_0| + |X_1|) = \lambda(r||X_2| + |Y_1|(|r - |X|)) \geq 0. \]

This settles (iii).
Let $\mathcal{P} = \mathcal{D} \cup \bigcup_{t=0}^{n} \{Q_{t,0}, Q_{t,1}, \ldots, Q_{t,p_t-1}\}$. Clearly, \mathcal{P} is the required packing. Let

$$\mathcal{C} = \begin{cases} \mathcal{P} & \text{if } s = 0, \\ \mathcal{P} \cup \{Q\} & \text{if } s \geq 1. \end{cases}$$

It is easy to check that \mathcal{C} is the covering as required. \hfill \Box

Now, we are ready for the main result of this section.

Theorem 3.11 If λ and n are positive integers and k is a positive even integer with $4 \leq k \leq n$, then $p(\lambda K_{n,n}; C_k, S_k) = [\lambda n^2/k]$ and $c(\lambda K_{n,n}; C_k, S_k) = [\lambda n^2/k]$.

Proof: Obviously,

$$p(\lambda K_{n,n}; C_k, S_k) \leq \left\lfloor \frac{\lambda n^2}{k} \right\rfloor \leq \left\lceil \frac{\lambda n^2}{k} \right\rceil \leq c(\lambda K_{n,n}; C_k, S_k).$$

Let $n = qk + r$ where q and r are integers with $0 \leq r < k$. For $q = 1$, the result follows from Lemmas 3.5 and 3.10. \hfill \Box

If $q \geq 2$, then $\lambda K_{n,n} = \lambda K_{k+r,k+r} \cup \lambda K_{k+r, (q-1)k} \cup \lambda K_{(q-1)k, n}$. Note that $\lambda K_{k+r,k+k}$ has a (C_k, S_k)-packing \mathcal{P} with $|\mathcal{P}| = \lfloor \lambda(k+r)^2/k \rfloor$ and a (C_k, S_k)-covering \mathcal{C} with $|\mathcal{C}| = \lfloor \lambda(k+r)^2/k \rfloor$. Similarly, $\lambda K_{k+r,(q-1)k}$ and $\lambda K_{(q-1)k,n}$ have S_k-decompositions \mathcal{D} and \mathcal{D}' with $|\mathcal{D}| = \lambda(k+r)(q-1)$ and $|\mathcal{D}'| = \lambda(q-1)n$, respectively. Since $\lambda(k+r)^2/k + \lambda(k+r)(q-1) + \lambda(q-1)n = \lambda(qk+r)^2/k = \lambda n^2/k$, $\mathcal{P} \cup \mathcal{D} \cup \mathcal{D}'$ is a (C_k, S_k)-packing of $\lambda K_{n,n}$ with cardinality $\lfloor \lambda n^2/k \rfloor$ and $\mathcal{C} \cup \mathcal{D} \cup \mathcal{D}'$ is a (C_k, S_k)-covering of $\lambda K_{n,n}$ with cardinality $\lceil \lambda n^2/k \rceil$. This completes the proof. \hfill \Box

Clearly, if $\lambda K_{n,n}$ admits a (C_k, S_k)-decomposition, then $4 \leq k \leq n$ and k is even and λn^2 is divisible by k. When k divides λn^2, a (C_k, S_k)-packing \mathcal{P} with $|\mathcal{P}| = \lfloor \lambda n^2/k \rfloor$ is a (C_k, S_k)-decomposition. Therefore, with the aid of Theorem 3.11, we have the following.

Corollary 3.12 For positive integers λ, k, and n, the balanced complete bipartite multigraph $\lambda K_{n,n}$ is (C_k, S_k)-decomposable if and only if $4 \leq k \leq n$, k is even, and λn^2 is divisible by k.

4 Packing and covering with 4-cycles and 4-stars

In this section a complete solution to the maximum packing and minimum covering problem of $\lambda K_{n,n}$ with C_4 and S_4 is given. Before that, we need more notations. For multigraphs G and H, $G \uplus H$ denotes the disjoint union of G and H, $G \circ H$ denotes the union of G and H with a common vertex. For a set \mathcal{R} and a positive integer r, $r\mathcal{R}$ denotes the multiset in which each element in \mathcal{R} appears r times. In addition, M_t denotes the graph induced by t nonadjacent edges. We begin with the discussion for the possible minimum leaves and paddings of $\lambda K_{n,n}$ with C_4 and S_4.

Note that $|E(\lambda K_{n,n})| = \lambda n^2$. If $\lambda \equiv 0 \pmod{4}$ or $n \equiv 0 \pmod{2}$, then $|E(\lambda K_{n,n})| \equiv 0 \pmod{4}$. By Corollary 3.12 both of the possible minimum leave and the possible minimum padding are the empty graph. If $\lambda \equiv 1 \pmod{4}$ and $n \equiv 1 \pmod{2}$, then $|E(\lambda K_{n,n})| \equiv 1 \pmod{4}$. This implies that the possible minimum leave is only P_2, and the possible minimum paddings are S_3, $P_3 \uplus P_2$, M_1, $2P_2 \uplus P_2$, $P_3 \uplus P_2$, and $3P_2$. If $\lambda \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{2}$, then $|E(\lambda K_{n,n})| \equiv 2 \pmod{4}$. This implies that the possible minimum leaves are P_3, M_2, and $2P_2$, so are the possible minimum paddings. If $\lambda \equiv 3 \pmod{4}$ and $n \equiv 1 \pmod{2}$, then $|E(\lambda K_{n,n})| \equiv 3 \pmod{4}$. This implies that the possible minimum leaves are S_3, P_3, $P_3 \uplus P_2$, M_3, $2P_2 \uplus P_2$, $2P_2 \uplus P_2$, and $3P_2$, and the possible minimum padding is only P_2. \hfill \Box
Lemma 4.1 \(K_{5,5} \) has no \((C_4, S_4)\)-covering with padding \(3P_2\).

Proof: It suffices to show that \(K_{5,5} + 3\{a_0b_0\} \) is not \((C_4, S_4)\)-decomposable. Suppose, to the contrary of the conclusion, that there exists a \((C_4, S_4)\)-decomposition \(\mathcal{D}\) of \(K_{5,5} + 3\{a_0b_0\} \). Since there are at most two star with center \(a_0\) (or \(b_0\)) and each edge joining \(a_0\) and \(b_0\) lies in exactly one subgraph in \(\mathcal{D}\), there are exactly three possibilities for the edges joining \(a_0\) and \(b_0\) to lie in the decomposition: in four 4-cycles, in three 4-cycles and a 4-star, or in two 4-cycles and two 4-stars. Let \(G_1\) be the graph obtained from \(K_{5,5} + 3\{a_0b_0\} \) by deleting the edges of four 4-cycles, and let \(G_2\) be the graph obtained from \(K_{5,5} + 3\{a_0b_0\} \) by deleting the edges of three 4-cycles or deleting the edges of two 4-cycles. Note that \(\deg_{G_1} x = 3\) for \(x \notin \{a_0, b_0\}\), which implies that there is no 4-star in \(G_1\). Since \(\deg_{G_2} x \leq 3\) for \(x \in \{a_0, b_0\}\), there is no 4-star with center at \(a_0\) or \(b_0\) in \(G_2\). This leads to a contradiction and completes the proof. \(\square\)

We summarize the results discussed above in Table 1.

Table 1: The possible minimum leaves and paddings of \(\lambda K_{n,n}\) with \(C_4\) and \(S_4\)

<table>
<thead>
<tr>
<th>(\lambda) (mod 4)</th>
<th>(\lambda \equiv 0) or (n \equiv 0)</th>
<th>(\lambda \equiv 1) and (n \equiv 1)</th>
<th>(\lambda \equiv 2) and (n \equiv 1)</th>
<th>(\lambda \equiv 3) and (n \equiv 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave</td>
<td>(\emptyset)</td>
<td>(P_2)</td>
<td>(P_3, M_2, 2P_2)</td>
<td>(S_3, P_4, P_3 \uplus P_2, M_3, 2P_2 \uplus P_2, 2P_2 \circ P_2, 3P_2) if (\lambda \equiv 1)</td>
</tr>
<tr>
<td>Padding</td>
<td>(\emptyset)</td>
<td>(S_3, P_4, P_3 \uplus P_2, M_3, 2P_2 \uplus P_2, 2P_2 \circ P_2, 3P_2) if (\lambda \equiv 1)</td>
<td>(P_3, M_2, 2P_2)</td>
<td>(P_2)</td>
</tr>
</tbody>
</table>

Lemma 4.2 Let \(r \in \{1, 2, 3, 5\}\).

(a) There exists a \((C_4, S_4)\)-packing of \(rK_{5,5}\) with leave \(L\) where

\[
\begin{align*}
L & = P_2 & \text{if } r = 1 \text{ or } r = 5, \\
L & \in \{P_3, M_2, 2P_2\} & \text{if } r = 2, \\
L & \in \{S_3, P_4, P_3 \uplus P_2, M_3, 2P_2 \uplus P_2, 2P_2 \circ P_2, 3P_2\} & \text{if } r = 3.
\end{align*}
\]

(b) There exists a \((C_4, S_4)\)-covering of \(rK_{5,5}\) with padding \(R\) where

\[
\begin{align*}
R & \in \{S_3, P_4, P_3 \uplus P_2, M_3, 2P_2 \uplus P_2, 2P_2 \circ P_2\} & \text{if } r = 1, \\
R & \in \{P_3, M_2, 2P_2\} & \text{if } r = 2, \\
R & = P_2 & \text{if } r = 3, \\
R & \in \{S_3, P_4, P_3 \uplus P_2, M_3, 2P_2 \uplus P_2, 2P_2 \circ P_2, 3P_2\} & \text{if } r = 5.
\end{align*}
\]

Proof: The proof is divided into four parts according to the value of \(r\).

Case 1. \(r = 1\).

Let \(A_1 = \{a_1, a_2, a_3, a_4\}\) and \(B_1 = \{b_1, b_2, b_3, b_4\}\), and let \(H = K_{5,5}[A_1 \cup B_1]\). Trivially, \(H\) is isomorphic to \(K_{4,4}\). By Corollary 3.12 there exists a \((C_4, S_4)\)-decomposition \(\mathcal{D}\) of \(K_{4,4}\). Let \(\mathcal{D} = \ldots \)
Now we give the required coverings of $K_{5,5}$. Note that $\mathcal{P} \cup \{(a_0; b_0, b_1, b_2, b_3)\}$ is a (C_4, S_4)-covering of $K_{5,5}$ with padding $S_3 : \{(a_0; b_1, b_2, b_3)\}$, and $\mathcal{P} \cup \{(a_0, b_1, a_1, b_0)\}$ is a (C_4, S_4)-covering of $K_{5,5}$ with padding $P_4 : \{a_0b_1a_1b_0\}$. Without loss of generality, we assume that \mathcal{P} contains a 4-star $(a_4; b_1, b_2, b_3, b_4)$. Thus $\mathcal{P} - \{(a_0; b_1, b_2, b_3, b_4), (a_4; b_1, b_2, b_3, b_4)\} \cup \{(a_0, b_3, a_4), (a_0; b_0, a_1, a_2, a_3, a_4)\}$ is a (C_4, S_4)-covering of $K_{5,5}$ with padding $P_3 \cup P_4 : \{b_0a_4b_4, a_0b_3\}$. In addition, $\{(a_3, a_4, b_4), (a_0; b_0, b_1, b_3, b_4), (a_1; b_0, b_1, b_3, b_4), (a_2; b_1, b_2, b_3, b_4), (b_0; a_0, a_3, a_4), (b_1; a_0, a_1, a_2, a_3, a_4)\}$ is a (C_4, S_4)-covering of $K_{5,5}$ with padding $M_3 : \{a_0b_0, a_1b_1, a_2b_2\}$.

Case 2. $r = 2$.

First, we use \mathcal{P} to construct the required packings of $2K_{5,5}$. Exchanging b_0 with b_1 in \mathcal{P}, we obtain a packing \mathcal{P}' of $K_{5,5}$ with leave a_0b_0. Let $\mathcal{P}_1 = \mathcal{P} \cup \mathcal{P}'$. One can see that \mathcal{P}_1 is a packing of $2K_{5,5}$ with leave $P_3 : \{b_0a_0b_1\}$. Next, rename the vertices a_0, a_1, b_0, b_1 in \mathcal{P} to a_1, a_0, b_1, b_0, respectively, we obtain a packing \mathcal{P}'' of $K_{5,5}$ with leave a_1b_1. Let $\mathcal{P}_2 = \mathcal{P} \cup \mathcal{P}''$. It is easy to see that \mathcal{P}_2 is a packing of $2K_{5,5}$ with leave $M_2 : \{a_0b_0, a_1b_1\}$. Finally, $2\mathcal{P}$ is clearly a packing of $2K_{5,5}$ with leave $2P_2 : 2\{a_0b_0\}$.

Now we use packings to construct the required coverings of $2K_{5,5}$. Note that $\mathcal{P}_1 \cup \{(a_0; b_0, a_1, b_2, b_3)\}$ is a (C_4, S_4)-covering of $2K_{5,5}$ with padding $P_3 : \{b_2a_0b_3\}$, and $\mathcal{P}_2 \cup \{(a_0, b_0, a_1, b_1)\}$ is a (C_4, S_4)-covering of $2K_{5,5}$ with padding $M_2 : \{a_0b_0, a_1b_1\}$. Moreover, $2\mathcal{P} - \{(a_0; b_1, b_2, b_3, b_4), (a_1; b_0, b_1, b_3, b_4), (a_2; b_1, b_2, b_3, b_4)\} \cup \{(a_0, b_0, a_4, a_5), (a_4; b_0, b_1, a_2b_2)\}$ is a (C_4, S_4)-covering of $2K_{5,5}$ with padding $2P_2 \cup \mathcal{P}_2 : 2\{b_0a_4 \cup a_0b_0\}$.

Case 3. $r = 3$.

First, we use packings of $K_{5,5}$ and $2K_{5,5}$ to construct the required packings of $3K_{5,5}$. Exchanging b_0 with b_2 in \mathcal{P}, we obtain a packing \mathcal{P} of $K_{5,5}$ with leave a_0b_0. Hence $\mathcal{P} \cup \mathcal{P}$ is a packing of $3K_{5,5}$ with leave $S_3 : \{(a_0; b_0, b_1, b_2)\}$. Next, rename the vertices a_0, a_2, b_0, b_2 in \mathcal{P} to a_2, a_0, b_0, b_2, respectively, we obtain a packing \mathcal{P}'' of $K_{5,5}$ with leave a_2b_2. Thus $\mathcal{P}_2 \cup \mathcal{P}''$ is a packing of $3K_{5,5}$ with leave $M_3 : \{a_0b_0, a_1b_1, a_2b_2\}$. Note that $\mathcal{P}_1 \cup \mathcal{P}''$ is a packing of $3K_{5,5}$ with leave $P_3 : \{b_0a_0b_1a_1\}$.

In addition, $\mathcal{P}_1 \cup \mathcal{P}''$ is a packing of $3K_{5,5}$ with leave $P_3 \cup \mathcal{P}_2 : \{b_0a_0b_1 \cup a_2b_2\}$, $2\mathcal{P} \cup \mathcal{P}$ is a packing of $3K_{5,5}$ with leave $2P_2 \cup \mathcal{P}_2 : 2\{a_0b_0 \cup a_2b_2\}$, and $3\mathcal{P}$ is clearly a packing of $3K_{5,5}$ with leave $3P_2 : 3\{a_0b_0\}$.

Finally, since $3(5-4)^2 = 3 < 4$, there exists a (C_4, S_4)-covering of $3K_{5,5}$ with leave P_2 by Lemma 3.6.

Case 4. $r = 5$.

By Corollary 3.12 $(C_4, S_4) | 4K_{5,5}$. Since $5K_{5,5} = K_{5,5} \cup 4K_{5,5}$, it suffices to show that there exists a (C_4, S_4)-covering of $5K_{5,5}$ with padding $3P_3$. Note that $5K_{5,5} = 2K_{5,5} \cup 3K_{5,5}$. Since $2K_{5,5}$ has a (C_4, S_4)-covering with padding $2P_2 : 2\{a_0a_1\}$ and $3K_{5,5}$ has a (C_4, S_4)-covering with padding P_2 (say $\{a_0b_0\}$), we have the required covering.

Lemma 4.3 Let r be a positive integer and let m be a positive odd integer with $m \geq 5$. If $rK_{m,m}$ has a (C_4, S_4)-packing (resp. (C_4, S_4)-covering) with leave L (resp. padding R), then $rK_{m+2,m+2}$ also has a (C_4, S_4)-packing (resp. (C_4, S_4)-covering) with leave L (resp. padding R).

Proof: Let $m = 2t + 1$ where t is a positive integer with $t \geq 2$. Let $A_1 = \{a_0, a_1, \ldots, a_{2t}\}$ and
Packing and covering the complete bipartite multigraph

Let \(B_1 = \{b_0, b_1, \ldots, b_{2t}\} \). Letting \(G_1 = K_{m+2,m+2}[A_1 \cup B_1] \) and \(G_2 = K_{m+2,m+2} - E(G_1) \). Clearly, \(G_1 \) is isomorphic to \(K_{m,m} \). Note that \(\{(a_{2i+1}; b_{2i+2}, a_{2i+2}, b_{2i+1}): i = 0, 1, \ldots, t-2\} \cup \{(a_{2i+1}; b_{2i-2}, b_{2i-1}, b_{2i}, b_{2i+1}), (a_{2i+2}; b_{2i-2}, b_{2i-1}, b_{2i}, b_{2i+2}), (b_{2i+1}; a_{2i-2}, a_{2i-1}, a_{2i}, a_{2i+2}), (b_{2i+2}; a_{2i-2}, a_{2i-1}, a_{2i}, a_{2i+2})\} \) is a \((C_4, S_4)\)-decomposition of \(G_2 \). Since \(rK_{m+2,m+2} = rG_1 \cup rG_2 \), \(rK_{m+2,m+2} \) has the required packings and coverings.

Now, we are ready for the main result of this section.

Theorem 4.4 Let \(\lambda \) and \(n \) be positive integers with \(n \geq 4 \).

(A) \(\lambda K_{n,n} \) has a maximum \((C_4, S_4)\)-packing with leave \(L \) if and only if

\[
\begin{align*}
L &= \emptyset & \text{if } \lambda n^2 \equiv 0 \pmod 4, \\
L &= \{P_2\} & \text{if } \lambda n^2 \equiv 1 \pmod 4, \\
L &= \{P_2, 2P_2\} & \text{if } \lambda n^2 \equiv 2 \pmod 4, \\
L &= \{S_3, P_1, P_3 \cup P_2, M_3, 2P_2 \cup P_2, 2P_2 \cup 2P_2, 3P_2\} & \text{if } \lambda n^2 \equiv 3 \pmod 4.
\end{align*}
\]

(B) \(\lambda K_{n,n} \) has a minimum \((C_4, S_4)\)-covering with padding \(R \) if and only if

\[
\begin{align*}
R &= \emptyset & \text{if } \lambda n^2 \equiv 0 \pmod 4, \\
R &= \{S_3, P_1, P_3 \cup P_2, M_3, 2P_2 \cup P_2, 2P_2 \cup 2P_2\} & \text{if } \lambda n^2 \equiv 1 \pmod 4 \text{ and } \lambda = 1, \\
R &= \{S_3, P_1, P_3 \cup P_2, M_3, 2P_2 \cup P_2, 2P_2 \cup 2P_2, 3P_2\} & \text{if } \lambda n^2 \equiv 1 \pmod 4 \text{ and } \lambda \geq 5, \\
R &= \{P_3, M_2, 2P_2\} & \text{if } \lambda n^2 \equiv 2 \pmod 4, \\
R &= \{P_2\} & \text{if } \lambda n^2 \equiv 3 \pmod 4.
\end{align*}
\]

Proof: The necessity follows from the arguments above Table 1. It suffices to show that \(\lambda K_{n,n} \) has required packings and coverings. The result for \(\lambda n^2 \equiv 0 \pmod 4 \) follows from Corollary 3.12 immediately. So it remains to consider the case \(\lambda n^2 \equiv r \pmod 4 \) for \(r \in \{1, 2, 3\} \). Note that \(\lambda n^2 \equiv r \pmod 4 \) if and only if \(\lambda \equiv r \pmod 4 \) and \(n \equiv 1 \pmod 2 \). When \(\lambda \in \{1, 2, 3, 5\} \), the result for \(n = 5 \) follows from Lemma 4.2, and the result for \(n > 5 \) can be obtained by using Lemma 4.3 recursively. Now consider \(\lambda \equiv r \pmod 4 \) and \(\lambda \geq 5 \). Note that \(\lambda K_{n,n} = rK_{n,n} \cup (\lambda - r)K_{n,n} \). Since \((\lambda - r)K_{n,n} \) is \((C_4, S_4)\)-decomposable by Corollary 3.12, we have the result. \(\square \)

References

