Packing and covering the balanced complete bipartite multigraph with cycles and stars

Hung-Chih Led]
Department of Information Technology, Ling Tung University, Taichung, Taiwan
received $24^{\text {th }}$ Nov. 2013, accepted $16^{\text {th }}$ Sep. 2014.

Abstract

Let C_{k} denote a cycle of length k and let S_{k} denote a star with k edges. For multigraphs F, G and H, an (F, G) decomposition of H is an edge decomposition of H into copies of F and G using at least one of each. For $L \subseteq H$ and $R \subseteq r H$, an (F, G)-packing (resp. (F, G)-covering) of H with leave L (resp. padding R) is an (F, G) decomposition of $H-E(L)$ (resp. $\mathrm{H}+\mathrm{E}(\mathrm{R})$). An (F, G)-packing (resp. (F, G)-covering) of H with the largest (resp. smallest) cardinality is a maximum (F, G)-packing (resp. minimum (F, G)-covering), and its cardinality is referred to as the (F, G)-packing number (resp. (F, G)-covering number) of H. In this paper, we determine the packing number and the covering number of $\lambda K_{n, n}$ with C_{k} 's and S_{k} 's for any λ, n and k, and give the complete solution of the maximum packing and the minimum covering of $\lambda K_{n, n}$ with 4 -cycles and 4 -stars for any λ and n with all possible leaves and paddings.

Keywords: complete bipartite multigraph, cycle, star, packing, covering

1 Introduction

For positive integers m and $n, K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. If $m=n$, the complete bipartite graph is referred to as balanced. A k-cycle, denoted by C_{k}, is a cycle of length k. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. A k-path, denoted by P_{k}, is a path with k vertices. For a graph H and a positive integer λ, we use λH to denote the multigraph obtained from H by replacing each edge e by λ edges each having the same endpoints as e. When $\lambda=1,1 H$ is simply written as H.

Let F, G, and H be multigraphs. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. An (F, G)-decomposition of H is a decomposition of H into copies of F and G using at least one of each. If H has an (F, G)-decomposition, we say that H is (F, G)-decomposable and write $(F, G) \mid H$. If H does not admit an (F, G)-decomposition, two natural questions arise:
(1) What is the minimum number of edges needed to be removed from the edge set of H so that the resulting graph is (F, G)-decomposable, and what does the collection of removed edges look like?

[^0](2) What is the minimum number of edges needed to be added to the edge set of H so that the resulting graph is (F, G)-decomposable, and what does the collection of added edges look like?

These questions are respectively called the maximum packing problem and the minimum covering problem of H with F and G.

Let F, G, and H be multigraphs. For $L \subseteq H$ and $R \subseteq r H$, an (F, G)-packing of H with leave L is an (F, G)-decomposition of $H-E(L)$, and an (F, G)-covering with padding R is an (F, G)-decomposition of $H+E(R)$. For an (F, G)-packing \mathscr{P} of H with leave L, if $|\mathscr{P}|$ is as large as possible (so that $|L|$ is as small as possible), then \mathscr{P} and L are referred to as a maximum (F, G)-packing and a minimum leave, respectively. Moreover, the cardinality of the maximum (F, G)-packing of H is called the (F, G)-packing number of H, denoted by $p(H ; F, G)$. For an (F, G)-covering \mathscr{C} of H with padding R, if $|\mathscr{C}|$ is as small as possible (so that $|R|$ is as small as possible), then \mathscr{C} and R are referred to as a minimum covering and a minimum padding, respectively. Moreover, the cardinality of the minimum (F, G)-covering of H is called the (F, G)-covering number of H, denoted by $c(H ; F, G)$. Clearly, an (F, G)-decomposition of H is a maximum (F, G)-packing with leave the empty graph, and also a minimum (F, G)-covering with padding the empty graph.

Recently, decomposition into a pair of graphs has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of $\left(K_{k}, S_{k}\right)$-decomposition of the complete graph K_{n}. Abueida and Daven [4] investigated the problem of the $\left(C_{4}, E_{2}\right)$-decomposition of several graph products where E_{2} denotes two vertex disjoint edges. Abueida and O'Neil [7] settled the existence problem for $\left(C_{k}, S_{k-1}\right)$ decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. Priyadharsini and Muthusamy [12, 13] gave necessary and sufficient conditions for the existence of $\left(G_{n}, H_{n}\right)$-decompositions of λK_{n} and $\lambda K_{n, n}$ where $G_{n}, H_{n} \in\left\{C_{n}, P_{n}, S_{n-1}\right\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H on m non-isolated vertices such that $G \cup H$ is isomorphic to K_{m}. Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_{n} admits a (G, H) decomposition where (G, H) is a graph-pair of order 4 or 5 . Abueida, Clark and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_{n}-F$ for the graph-pair of order 4 and 5 , respectively, where F is a Hamiltonian cycle, a 1-factor, or almost 1-factor. Furthermore, Shyu [14] investigated the problem of decomposing K_{n} into paths and stars with k edges, giving a necessary and sufficient condition for $k=3$. In [15, 16], Shyu considered the existence of a decomposition of K_{n} into paths and cycles with k edges, giving a necessary and sufficient condition for $k \in\{3,4\}$. Shyu [17] investigated the problem of decomposing K_{n} into cycles and stars with k edges, settling the case $k=4$. In [18], Shyu considered the existence of a decomposition of $K_{m, n}$ into paths and stars with k edges, giving a necessary and sufficient condition for $k=3$. Recently, Lee [9] and Lee and Lin [10] established necessary and sufficient conditions for the existence of $\left(C_{k}, S_{k}\right)$-decompositions of the complete bipartite graph and the complete bipartite graph with a 1 -factor removed, respectively. However, much less work has been done on the problem of packing and covering graphs with a pair of graphs. Abueida and Daven [3] obtained the maximum packing and the minimum covering of the complete graph K_{n} with $\left(K_{k}, S_{k}\right)$. Abueida and Daven [2] and Abueida, Daven and Roblee [5] gave the maximum packing and the minimum covering of K_{n} and λK_{n} with G and H, respectively, where (G, H) is a graph-pair of order 4 or 5 . In this paper, we determine the packing number and the covering number of $\lambda K_{n, n}$ with k-cycles and k-stars for any λ, n and k, and give the complete solution of the maximum packing and the minimum covering of $\lambda K_{n, n}$ with 4 -cycles and 4 -stars for any λ and n with all possible leaves and paddings.

2 Preliminaries

In this section we first collect some needed terminology and notation, and then present a result which is useful for our discussions to follow.
Let G be a multigraph. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$, is the number of edges incident with x. The vertex of degree k in S_{k} is the center of S_{k} and any vertex of degree 1 is an endvertex of S_{k}. For $W \subseteq V(G)$, we use $G[W]$ to denote the subgraph of G induced by W. Furthermore, $\mu(u v)$ denotes the number of edges of G joining u and $v,\left(v_{1}, \ldots, v_{k}\right)$ and $v_{1} \ldots v_{k}$ denote the k-cycle and the k-path through vertices v_{1}, \ldots, v_{k} in order, respectively, and $\left(x ; y_{1}, \ldots, y_{k}\right)$ denotes the k-star with center x and endvertices y_{1}, \ldots, y_{k}. When $G_{1}, G_{2}, \ldots, G_{t}$ are multigraphs, not necessarily disjoint, we write $G_{1} \cup G_{2} \cup \cdots \cup G_{t}$ or $\bigcup_{i=1}^{t} G_{i}$ for the graph with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$. When the edge sets are disjoint, $G=\bigcup_{i=1}^{t} G_{i}$ expresses the decomposition of G into $G_{1}, G_{2}, \ldots, G_{t}$. Given an S_{k}-decomposition of G, a central function c from $V(G)$ to the set of non-negative integers is defined as follows. For each $v \in V(G), c(v)$ is the number of k-stars in the decomposition whose center is v.

The following result is essential to our proof.
Proposition 2.1 (Hoffman [8]) For a positive integer k, a multigraph H has an S_{k}-decomposition with central function c if and only if
(i) $k \sum_{v \in V(H)} c(v)=|E(H)|$,
(ii) for all $x, y \in V(H), \mu(x y) \leq c(x)+c(y)$,
(iii) for all $S \subseteq V(H), k \sum_{v \in S} c(v) \leq \varepsilon(S)+\sum_{x \in S, y \in V(H)-S} \min \{c(x), \mu(x y)\}$.
where $\varepsilon(S)$ denotes the number of edges of H with both ends in S.
In the sequel of the paper, (A, B) denotes the bipartition of $\lambda K_{n, n}$, where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$.

3 Packing numbers and covering numbers

In this section the packing number and the covering number of the balanced complete bipartite multigraph with k-cycles and k-stars are determined. We begin with a criterion for decomposing the complete bipartite graph into k-cycles.

Proposition 3.1 (Sotteau [19]) For positive integers m, n, and k, the graph $K_{m, n}$ is C_{k}-decomposable if and only if m, n, and k are even, $k \geq 4, \min \{m, n\} \geq k / 2$, and k divides $m n$.

Let $K_{m, n}^{*}$ denote the symmetric complete bipartite digraph with parts of size m and n, and let $\overrightarrow{C_{k}}$ denote the directed k-cycle.
Proposition 3.2 (Sotteau [19]) For positive integers m, n, and k, the digraph $K_{m, n}^{*}$ is $\overrightarrow{C_{k}}$-decomposable if and only if k is even, $k \geq 4, \min \{m, n\} \geq k / 2$, and k divides $2 m n$.

Removing the directions from the arcs of directed cycles in a $\overrightarrow{C_{k}}$-decomposition of $K_{m, n}^{*}$, we obtain the following result by Proposition 3.2 .

Lemma 3.3 For positive integers m, n, and k, the multigraph $2 K_{m, n}$ is C_{k}-decomposable if k is even, $k \geq 4, \min \{m, n\} \geq k / 2$, and k divides $2 m n$.
Lemma 3.4 Let λ, k, m, and n be positive integers with $\lambda m \equiv \lambda n \equiv k \equiv 0 \quad(\bmod 2)$ and $\min \{m, n\} \geq$ $k / 2 \geq 2$. If m or n is divisible by k, then $\lambda K_{m, n}$ is C_{k}-decomposable.

Proof: Since $\lambda K_{m, n}$ is isomorphic to $\lambda K_{n, m}$, it suffices to show that the result holds for $k \mid m$. If λ is odd, then m and n are even from the assumption $\lambda m \equiv \lambda n \equiv 0(\bmod 2)$. Since k divides $m n$, Proposition 3.1 implies that $K_{m, n}$ is C_{k}-decomposable. If λ is even, then $2 K_{m, n} \mid \lambda K_{m, n}$. Since k divides $2 m n, 2 K_{m, n}$ is C_{k}-decomposable by Lemma 3.3. Hence $\lambda K_{m, n}$ is C_{k}-decomposable.

Lemma 3.5 If k is a positive even integer with $k \geq 4$, then $\lambda K_{k, k}$ is $\left(C_{k}, S_{k}\right)$-decomposable.
Proof: Note that $\lambda K_{k, k}=\lambda K_{k, k-2} \cup \lambda K_{k, 2}$. By Lemma 3.4, $\lambda K_{k, k-2}$ is C_{k}-decomposable. Trivially, $\lambda K_{k, 2}$ is C_{k}-decomposable. Therefore, $\lambda K_{k, k}$ is $\left(C_{k}, S_{k}\right)$-decomposable.

Lemma 3.6 Let k be a positive even integer and let n be a positive integer with $4 \leq k<n<2 k$. If $\lambda(n-k)^{2}<k$, then $\lambda K_{n, n}$ has a $\left(C_{k}, S_{k}\right)$-packing with leave $\lambda K_{n-k, n-k}$ and a $\left(C_{k}, S_{k}\right)$-covering with padding $P_{k-\lambda(n-k)^{2}+1}$.

Proof: Let $n=k+r$. The assumption $k<n<2 k$ implies $0<r<k$. We first give the required packing. Note that

$$
\lambda K_{n, n}=\lambda K_{k, k} \cup \lambda K_{k, r} \cup \lambda K_{r, k} \cup \lambda K_{r, r}
$$

By Lemma 3.4. $\lambda K_{k, k}$ has a C_{k}-decomposition \mathscr{D}_{1}. Trivially, $\lambda K_{k, r}$ and $\lambda K_{r, k}$ have S_{k}-decompositions \mathscr{D}_{2} and \mathscr{D}_{3}, respectively. Thus $\bigcup_{i=1}^{3} \mathscr{D}_{i}$ is a $\left(C_{k}, S_{k}\right)$-packing of $\lambda K_{n, n}$ with leave $\lambda K_{r, r}$, as desired.

Now we give the required covering. Let $s=\lambda r^{2}$. Let $A_{0}=\left\{a_{0}, a_{1}, \ldots, a_{\lfloor(s-1) / 2\rfloor}\right\}, A_{1}=A-A_{0}$, $B_{0}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$ and $B_{1}=B-B_{0}$. Define a k-cycle C and a $(k-s+1)$-path P as follows:

$$
\begin{gathered}
C=\left(b_{0}, a_{0}, b_{1}, a_{1}, \ldots, b_{k / 2-1}, a_{k / 2-1}\right) \\
P= \begin{cases}b_{0} a_{k / 2-1} b_{k / 2-1} a_{k / 2-2} \ldots b_{(s+1) / 2} a_{(s-1) / 2} & \text { if } s \text { is odd, } \\
b_{0} a_{k / 2-1} b_{k / 2-1} a_{k / 2-2} \ldots a_{s / 2} b_{s / 2} & \text { if } s \text { is even. }\end{cases}
\end{gathered}
$$

Let

$$
H=\lambda K_{n, n}-E(C)+E(P)
$$

Note that $V(H)=V\left(\lambda K_{n, n}\right),|E(H)|=\lambda n^{2}-k+(k-s)=\lambda n^{2}-\lambda r^{2}=\lambda k(k+2 r)$, and $\mu(u v) \leq \lambda$ for all $u, v \in V(H)$. Furthermore, for $H^{\prime}=H\left[A \cup B_{0}\right]$, we have

$$
\operatorname{deg}_{H^{\prime}} v= \begin{cases}\lambda k-2 & \text { if } v \in A_{0}-\left\{a_{\lfloor(s-1) / 2\rfloor}\right\} \\ \lambda k-\rho & \text { if } v=a_{\lfloor(s-1) / 2\rfloor} \\ \lambda k & \text { if } v \in A_{1}\end{cases}
$$

where $\rho=1$ if s is odd, and $\rho=2$ if s is even. Define a function $c: V(H) \rightarrow \mathbb{N}$ as follows:

$$
c(v)= \begin{cases}0 & \text { if } v \in B_{0} \\ \lambda & \text { otherwise }\end{cases}
$$

Now we show that there exists an S_{k}-decomposition of H with central function c by Proposition 2.1 .
First, $k \sum_{v \in V(H)} c(v)=k \lambda(k+2 r)=|E(H)|$. This proves (i). Next, if $u, v \in B_{0}$, then $c(u)+c(v)=$ $0=\mu(u v)$; otherwise, $c(u)+c(v) \geq \lambda \geq \mu(u v)$. This proves (ii). Finally, for $S \subseteq V(H)$ and $i \in\{0,1\}$, let $S \cap A_{i}=X_{i}$ and $S \cap B_{i}=Y_{i}$. Moreover, let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$. Define a set T of ordered pairs of vertices as follows:

$$
T=\left\{(u, v) \mid u \in X, v \in B_{1}-Y_{1} \text { or } u \in X_{1}, v \in B_{0}-Y_{0} \text { or } u \in Y_{1}, v \in A-X\right\}
$$

Note that

$$
\begin{gather*}
k \sum_{w \in S} c(w)=k \lambda\left(|X|+\left|Y_{1}\right|\right) \tag{1}\\
\varepsilon(S)=\lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) \tag{2}
\end{gather*}
$$

and for $u \in S$ and $v \in V(H)-S$

$$
\min \{c(u), \mu(u v)\}= \begin{cases}\lambda & \text { if }(u, v) \in T \tag{3}\\ \mu(u v) & \text { if } u \in X_{0}, v \in B_{0}-Y_{0} \\ 0 & \text { otherwise }\end{cases}
$$

For $S \subseteq V(H)$, let

$$
g(S)=\varepsilon(S)+\sum_{u \in S, v \in V(H)-S} \min \{c(u), \mu(u v)\}-k \sum_{w \in S} c(w)
$$

Note that

$$
\begin{aligned}
& \sum_{u \in X_{0}, v \in Y_{0}} \mu(u v)+\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v) \\
= & \sum_{u \in X_{0}, v \in B_{0}} \mu(u v) \\
= & \begin{cases}\left|X_{0}\right|(\lambda k-2) & \text { if } a_{\lfloor(s-1) / 2\rfloor} \notin X_{0}, \\
\left|X_{0}\right|(\lambda k-2)+2-\rho & \text { if } a_{\lfloor(s-1) / 2\rfloor} \in X_{0} .\end{cases}
\end{aligned}
$$

By $\sqrt[1]{1}-\sqrt{3}$ and $\left|X_{0}\right|+\left|X_{1}\right|=|X|$, we have

$$
\begin{aligned}
g(S)= & \lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) \\
& +\lambda\left(|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{1}\right|\left(k-\left|Y_{0}\right|\right)+\left|Y_{1}\right|(k+r-|X|)\right) \\
& +\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v)-k \lambda\left(|X|+\left|Y_{1}\right|\right) \\
= & \begin{cases}\lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-2\left|X_{0}\right| & \text { if } a_{\lfloor(s-1) / 2\rfloor} \notin X_{0}, \\
\lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-2\left|X_{0}\right|+2-\rho & \text { if } a_{\lfloor(s-1) / 2\rfloor} \in X_{0} .\end{cases}
\end{aligned}
$$

If $a_{\lfloor(s-1) / 2\rfloor} \notin X_{0}$, then $\left|X_{0}\right| \leq\lfloor(s-1) / 2\rfloor$, which implies $-2\left|X_{0}\right| \geq-s$. If $a_{\lfloor(s-1) / 2\rfloor} \in X_{0}$, then $\left|X_{0}\right| \leq\lfloor(s-1) / 2\rfloor+1$, which implies $-2\left|X_{0}\right|+2-\rho \geq-2\lfloor(s-1) / 2\rfloor-\rho=-2(s-\rho) / 2-\rho=-s$. Thus for $|X| \geq r$, we have

$$
\begin{aligned}
g(S) & \geq \lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-s \\
& =\lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-\lambda r^{2} \\
& =\lambda(|X|-r)\left(r-\left|Y_{1}\right|\right) \\
& \geq 0
\end{aligned}
$$

If $\lambda r=1$ and $|X|<r$, then $\left|X_{0}\right|=|X|=0$, which implies $-2\left|X_{0}\right|=-\lambda r\left|X_{0}\right|$. If $\lambda r \geq 2$, then $-2\left|X_{0}\right| \geq-\lambda r\left|X_{0}\right|$. Note that $2-\rho \geq 0$. Hence for $|X|<r$, we have

$$
\begin{aligned}
g(S) & \geq \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-\lambda r\left|X_{0}\right| \\
& =\lambda\left(r\left|X_{1}\right|+\left|Y_{1}\right|(r-|X|)\right) \\
& \geq 0 .
\end{aligned}
$$

This settles (iii) and completes the proof.
Before going on, the following results are needed.
Proposition 3.7 (Ma et al. [11]) For positive integers k and n, the graph obtained by deleting a 1-factor from $K_{n, n}$ is C_{k}-decomposable if and only if n is odd, k is even, $4 \leq k \leq 2 n$, and $n(n-1)$ is divisible by k.
Lemma 3.8 If λ and p are positive integers and k is a positive even integer with $k \geq 4$, then there exist $\lambda p k / 2-p$ edge-disjoint k-cycles in $\lambda K_{k / 2, p k}$ (also in $\lambda K_{p k, k / 2}$).

Proof: It suffices to show that the result holds for $\lambda K_{k / 2, p k}$. If λ or $k / 2$ is even, then by Lemma 3.4 there exists a C_{k}-decomposition \mathscr{D} of $\lambda K_{k / 2, p k}$ with $|\mathscr{D}|=\lambda p k / 2$, in which k-cycles are edge-disjoint. If $k / 2$ is odd, then by Proposition 3.7 there exists a C_{k}-decomposition \mathscr{D}^{\prime} of $K_{k / 2, k / 2}-I$ with $\left|\mathscr{D}^{\prime}\right|=$ $(k-2) / 4$, where I is a 1 -factor of $K_{k / 2, k / 2}$. Since $K_{k / 2, p k}$ can be decomposed into $2 p$ copies of $K_{k / 2, k / 2}$, there exist $2 p\left|\mathscr{D}^{\prime}\right|=p k / 2-p$ edge-disjoint k-cycles in $K_{k / 2, p k}$. For odd λ with $\lambda \geq 3$, $\lambda K_{k / 2, k}=(\lambda-1) K_{k / 2, k} \cup K_{k / 2, k}$. By Lemma 3.4 there exists a C_{k}-decomposition $\mathscr{D}^{\prime \prime}$ of $(\lambda-1) K_{k / 2, p k}$ with $\left|\mathscr{D}^{\prime \prime}\right|=(\lambda-1) p k / 2$. Hence there exist $(\lambda-1) p k / 2+p k / 2-p=\lambda p k / 2-p$ edge-disjoint k-cycles in $\lambda K_{k / 2, p k}$.

Lemma 3.9 Let λ and r be positive integers and let k be a positive even integer with $k \geq 4$ and $r<k$. If $t=\left\lfloor\lambda r^{2} / k\right\rfloor$, then there exist $\lceil t / 2\rceil$ edge-disjoint k-cycles in $\lambda K_{k / 2, k}$. Moreover, if $\lambda \geq 2$ or $r \leq k-2$ and $\lambda r^{2} \geq k$, then $\lfloor t / 2\rfloor+1 \leq \lambda r / 2$ and there exist $\lfloor t / 2\rfloor+1$ edge-disjoint k-cycles in $\lambda K_{k / 2, k}$.

Proof: Since $r<k$, we have $t<\lambda r$. Thus $t+1 \leq \lambda r$; in turn, $\lceil t / 2\rceil \leq(t+1) / 2 \leq \lambda r / 2<\lambda k / 2$, which implies $\lceil t / 2\rceil \leq \lambda k / 2-1$. By Lemma 3.8, there exist $\lceil t / 2\rceil$ edge-disjoint k-cycles in $\lambda K_{k / 2, k}$. When $\lambda r^{2}=k$, the result is trivial. When $\lambda r^{2}>k$, we have $r>2 / \sqrt{\lambda}$ since $k \geq 4$. For $\lambda \geq 2$,

$$
\frac{\lambda r^{2}}{k} \leq \frac{\lambda r^{2}}{r+1}=\lambda r-\frac{\lambda}{1+1 / r}<\lambda r-\frac{2 \lambda}{2+\sqrt{\lambda}}<\lambda r-\frac{4}{2+\sqrt{2}}
$$

For $r \leq k-2$,

$$
\frac{\lambda r^{2}}{k} \leq \frac{\lambda r^{2}}{r+2}=\lambda r-\frac{2 \lambda}{1+2 / r}<\lambda r-\frac{2 \lambda}{1+\sqrt{\lambda}}<\lambda r-1
$$

Therefore, $t=\left\lfloor\lambda r^{2} / k\right\rfloor \leq \lambda r-2$. In turn, $\lfloor t / 2\rfloor+1 \leq t / 2+1 \leq \lambda r / 2$ for $\lambda \geq 2$ or $r \leq k-2$. It implies $\lfloor t / 2\rfloor+1<\lambda k / 2$. Hence $\lfloor t / 2\rfloor+1 \leq \lambda k / 2-1$ for $\lambda \geq 2$ or $r \leq k-2$. This assures us that there exist $\lfloor t / 2\rfloor+1$ edge-disjoint k-cycles in $\lambda K_{k / 2, k}$ by Lemma 3.8

Lemma 3.10 Let k be a positive even integer and let n be a positive integer with $4 \leq k<n<2 k$. If $\lambda(n-k)^{2} \geq k$, then $\lambda K_{n, n}$ has a $\left(C_{k}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ and a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Proof: Let $n=k+r$. From the assumption $k<n<2 k$, we have $0<r<k$. Let $\lambda r^{2}=t k+s$ such that s and t are integers with $0 \leq s<k$. Note that $t=\left\lfloor\lambda r^{2} / k\right\rfloor$. Hence $\left\lfloor\lambda n^{2} / k\right\rfloor=\left\lfloor\lambda(k+r)^{2} / k\right\rfloor=$ $\lambda(k+2 r)+t$ and

$$
\left\lceil\frac{\lambda n^{2}}{k}\right\rceil=\left\lceil\frac{\lambda(k+r)^{2}}{k}\right\rceil= \begin{cases}\lambda(k+2 r)+t & \text { if } s=0 \\ \lambda(k+2 r)+t+1 & \text { if } s>0\end{cases}
$$

Since $\lambda(n-k)^{2} \geq k, t \geq 1$. Let $p_{0}=\lceil t / 2\rceil$ and $p_{1}=\lfloor t / 2\rfloor$. We have $p_{0}=1$ and $p_{1}=0$ for $t=1$, and $p_{0} \geq p_{1} \geq 1$ for $t \geq 2$. In the sequel, we will show that $\lambda K_{n, n}$ has a packing \mathscr{P} consisting of t copies of k-cycles and $\lambda(k+2 r)$ copies of k-stars with leave P_{s+1} (except in the case $s=0$, in which the leave is the empty graph), and a covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Let $A_{0}=\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\}, A_{1}=\left\{a_{k / 2}, a_{k / 2+1}, \ldots, a_{k-1}\right\}, A_{2}=A-\left(A_{0} \cup A_{1}\right), B_{0}=$ $\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$ and $B_{1}=B-B_{0}$. In addition, letting $A_{1}^{\prime}=\left\{a_{k / 2}, a_{k / 2+1}, \ldots, a_{\lceil(k+s) / 2\rceil-1}\right\}$ for $s>0$ and $G_{i}=\lambda K_{n, n}\left[A_{i} \cup B_{1}\right]$ for $i=0,1$. Clearly, G_{0} and G_{1} are isomorphic to $\lambda K_{k / 2, k}$. By Lemma 3.9, there exist p_{i} edge-disjoint k-cycles in G_{i} for $i \in\{0,1\}$, and there exist $p_{1}+1$ edge-disjoint k-cycles in G_{1} for $\lambda \geq 2$ or $r \leq k-2$. Let $\delta=0$ for $p_{1}=0$ and $\delta=1$ for $p_{1} \geq 1$. Suppose that $Q_{i, 0}, Q_{i, 1}, \ldots, Q_{i, p_{i}-1}$ are edge-disjoint k-cycles in G_{i} for $0 \leq i \leq \delta$. Moreover, for $\lambda \geq 2$ or $r \leq k-2$, let Q be a k-cycle in G_{1} which is edge-disjoint with $Q_{1, j}$ for $0 \leq j \leq p_{1}-1$. Without loss of generality, we assume that

$$
Q=\left(b_{j_{1}}, a_{k / 2}, b_{j_{2}}, a_{k / 2+1}, \ldots, b_{j_{k / 2}}, a_{k-1}\right)
$$

Note, for $\lambda=1$ and $r=k-1$, that $\lambda r^{2}=(k-1)^{2}=k(k-2)+1$, which implies $t=k-2$ and $s=1$. For $s>0$, define an $(s+1)$-path P as follows:

$$
P= \begin{cases}a_{k / 2} b_{\ell} & \text { if } \lambda=1, r=k-1 \\ b_{j_{1}} a_{k / 2} b_{j_{2}} a_{k / 2+1} \ldots b_{j_{s / 2}} a_{(k+s) / 2-1} b_{j_{s / 2+1}} & \text { if } \lambda \geq 2 \text { or } r \leq k-2, s \text { is even } \\ b_{j_{1}} a_{k / 2} b_{j_{2}} a_{k / 2+1} \ldots b_{j_{(s+1) / 2}} a_{(k+s+1) / 2-1} & \text { if } \lambda \geq 2 \text { or } r \leq k-2, s \text { is odd }\end{cases}
$$

where $a_{k / 2} b_{\ell}$ is any edge (incident with $a_{k / 2}$) not in $Q_{1,0}, Q_{1,1}, \ldots, Q_{1, p_{1}-1}$. Let

$$
H=\lambda K_{n, n}-E\left(\bigcup_{i=0}^{\delta}\left(\bigcup_{h=0}^{p_{i}-1} Q_{i, h}\right) \cup P\right)
$$

Note that $V(H)=V\left(\lambda K_{n, n}\right),|E(H)|=\lambda n^{2}-(t k+s)=\lambda n^{2}-\lambda r^{2}=\lambda k(k+2 r)$, and $\mu(u v) \leq \lambda$ for all $u, v \in V(H)$. Moreover, for $H^{\prime}=H\left[A \cup B_{0}\right]$, we have

$$
\operatorname{deg}_{H^{\prime}} v= \begin{cases}\lambda k-2\lceil t / 2\rceil & \text { if } v \in A_{0} \\ \lambda k-2(\lfloor t / 2\rfloor+1) & \text { if } s>0 \text { and } v \in A_{1}^{\prime}-\left\{a_{\lceil(k+s) / 2\rceil-1}\right\} \\ \lambda k-2\lfloor t / 2\rfloor-\rho & \text { if } s>0 \text { and } v=a_{\lceil(k+s) / 2\rceil-1} \\ \lambda k-2\lfloor t / 2\rfloor & \text { if } s>0 \text { and } v \in A_{1}-A_{1}^{\prime}, \text { or } s=0 \text { and } v \in A_{1} \\ \lambda k & \text { if } v \in A_{2}\end{cases}
$$

where $\rho=1$ if s is odd, and $\rho=2$ if s is even. Define a function $c: V(H) \rightarrow \mathbb{N}$ as follows:

$$
c(v)= \begin{cases}0 & \text { if } v \in B_{0} \\ \lambda & \text { otherwise }\end{cases}
$$

Now we show that there exists an S_{k}-decomposition \mathscr{D} of H with central function c by Proposition 2.1
First, $k \sum_{v \in V(H)} c(v)=k \lambda(k+2 r)=|E(H)|$. This proves (i). Next, if $u, v \in B_{0}$, then $c(u)+c(v)=$ $0=\mu(u v)$; otherwise, $c(u)+c(v) \geq \lambda \geq \mu(u v)$. This proves (ii). Finally, for $S \subseteq V(H), i \in\{0,1,2\}$, and $j \in\{0,1\}$, let $S \cap A_{i}=X_{i}$ and $S \cap B_{j}=Y_{j}$. Moreover, letting $S \cap A_{1}^{\prime}=X_{1}^{\prime}, X=X_{0} \cup X_{1} \cup X_{2}$, and $Y=Y_{0} \cup Y_{1}$. Define a set T of ordered pairs of vertices as follows:

$$
T=\left\{(u, v) \mid u \in X, v \in B_{1}-Y_{1} \text { or } u \in X_{2}, v \in B_{0}-Y_{0} \text { or } u \in Y_{1}, v \in A-X\right\}
$$

Note that

$$
\begin{gather*}
k \sum_{w \in S} c(w)=k \lambda\left(|X|+\left|Y_{1}\right|\right) \tag{4}\\
\varepsilon(S)=\lambda\left(|X|\left|Y_{1}\right|+\left|X_{2}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0} \cup X_{1}, v \in Y_{0}} \mu(u v) \tag{5}
\end{gather*}
$$

and for $u \in S$ and $v \in V(H)-S$

$$
\min \{c(u), \mu(u v)\}= \begin{cases}\lambda & \text { if }(u, v) \in T \tag{6}\\ \mu(u v) & \text { if } u \in X_{0} \cup X_{1}, v \in B_{0}-Y_{0} \\ 0 & \text { otherwise }\end{cases}
$$

For $S \subseteq V(H)$, let

$$
g(S)=\varepsilon(S)+\sum_{u \in S, v \in V(H)-S} \min \{c(u), \mu(u v)\}-k \sum_{w \in S} c(w)
$$

Note that

$$
\begin{aligned}
& \sum_{u \in X_{0} \cup X_{1}, v \in Y_{0}} \mu(u v)+\sum_{u \in X_{0} \cup X_{1}, v \in B_{0}-Y_{0}} \mu(u v) \\
= & \sum_{u \in X_{0} \cup X_{1}, v \in B_{0}} \mu(u v) \\
= & \begin{cases}\left|X_{0}\right|(\lambda k-2\lceil t / 2\rceil)+\left|X_{1}\right|(\lambda k-2\lfloor t / 2\rfloor) & \text { if } s=0, \\
\left|X_{0}\right|(\lambda k-2\lceil t / 2\rceil)+\left|X_{1}\right|(\lambda k-2\lfloor t / 2\rfloor)-2\left|X_{1}^{\prime}\right| & \text { if } s>0, a_{\lceil(k+s) / 2\rceil-1} \notin X_{1}^{\prime}, \\
\left|X_{0}\right|(\lambda k-2\lceil t / 2\rceil)+\left|X_{1}\right|(\lambda k-2\lfloor t / 2\rfloor)-2\left|X_{1}^{\prime}\right|+2-\rho & \text { if } s>0, a_{\lceil(k+s) / 2\rceil-1} \in X_{1}^{\prime} .\end{cases}
\end{aligned}
$$

By (4)- (6) and $\left|X_{0}\right|+\left|X_{1}\right|+\left|X_{2}\right|=|X|$, we have

$$
\begin{aligned}
g(S)= & \lambda\left(|X|\left|Y_{1}\right|+\left|X_{2}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0} \cup X_{1}, v \in Y_{0}} \mu(u v) \\
& +\lambda\left(|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{2}\right|\left(k-\left|Y_{0}\right|\right)+\left|Y_{1}\right|(k+r-|X|)\right) \\
& +\sum_{u \in X_{0} \cup X_{1}, v \in B_{0}-Y_{0}} \mu(u v)-k \lambda\left(|X|+\left|Y_{1}\right|\right) \\
= & \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)+m,
\end{aligned}
$$

where

$$
m= \begin{cases}-2\left(\left|X_{0}\right|\lceil t / 2\rceil+\left|X_{1}\right|\lfloor t / 2\rfloor\right) & \text { if } s=0 \\ -2\left(\left|X_{0}\right|\lceil t / 2\rceil+\left|X_{1}\right|\lfloor t / 2\rfloor\right)-2\left|X_{1}^{\prime}\right| & \text { if } s>0, a_{\lceil(k+s) / 2\rceil-1} \notin X_{1}^{\prime} \\ -2\left(\left|X_{0}\right|\lceil t / 2\rceil+\left|X_{1}\right|\lfloor t / 2\rfloor\right)-2\left|X_{1}^{\prime}\right|+2-\rho & \text { if } s>0, a_{\Gamma(k+s) / 2\rceil-1} \in X_{1}^{\prime}\end{cases}
$$

If $a_{\lceil(k+s) / 2\rceil-1} \notin X_{1}^{\prime}$, then $\left|X_{1}^{\prime}\right| \leq\left|A_{1}^{\prime}\right|-1=\lceil s / 2\rceil-1$. Hence $-2\left|X_{1}^{\prime}\right| \geq-2(\lceil s / 2\rceil-1) \geq-s$. If $a_{\lceil(k+s) / 2\rceil-1} \in X_{1}$, then $\left|X_{1}^{\prime}\right| \leq\left|A_{1}^{\prime}\right|=\lceil s / 2\rceil$. In addition, $\rho=1$ for odd s and $\rho=2$ for even s. Therefore, $-2\left|X_{1}^{\prime}\right|+2-\rho \geq-2\lceil s / 2\rceil+2-\rho=-s$. Together with the fact $\max \left\{\left|X_{0}\right|,\left|X_{1}\right|\right\} \leq k / 2$, we have

$$
m \geq-2(k / 2\lceil t / 2\rceil+k / 2\lfloor t / 2\rfloor)-s=-(k t+s)=-\lambda r^{2}
$$

Thus for $|X| \geq r$, we have

$$
g(S) \geq \lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-\lambda r^{2}=\lambda(|X|-r)\left(r-\left|Y_{1}\right|\right) \geq 0
$$

So it remains to consider the case $|X|<r$. Recall that $t=k-2$ and $s=1$ for $(\lambda, r)=(1, k-1)$. Thus $\lceil t / 2\rceil=\lfloor t / 2\rfloor=(\lambda r-1) / 2$. In addition, $\left|X_{1}^{\prime}\right|=0$ for $a_{\lceil(k+s) / 2\rceil-1} \notin X_{1}^{\prime}$, and $\rho=1$ as well as $\left|X_{1}^{\prime}\right|=1$ (which implies $\left|X_{1}\right| \geq 1$) for $a_{\lceil(k+s) / 2\rceil-1} \in X_{1}^{\prime}$. Hence for $a_{\lceil(k+s) / 2\rceil-1} \notin X_{1}^{\prime}$,

$$
m=-2\left(\left|X_{0}\right|+\left|X_{1}\right|\right)(\lambda r-1) / 2 \geq-\lambda r\left(\left|X_{0}\right|+\left|X_{1}\right|\right)
$$

and for $a_{\lceil(k+s) / 2\rceil-1} \in X_{1}^{\prime}$,

$$
\begin{aligned}
m & =-2\left(\left|X_{0}\right|+\left|X_{1}\right|\right)(\lambda r-1) / 2-1 \\
& =-\lambda r\left(\left|X_{0}\right|+\left|X_{1}\right|\right)+\left|X_{0}\right|+\left|X_{1}\right|-1 \\
& \geq-\lambda r\left(\left|X_{0}\right|+\left|X_{1}\right|\right)
\end{aligned}
$$

On the other hand, for $\lambda \geq 2$ or $r \leq k-2$, we have $\lfloor t / 2\rfloor+1 \leq \lambda r / 2$ by Lemma 3.9, this implies

$$
\begin{aligned}
m & \geq-2\left(\left|X_{0}\right|\lceil t / 2\rceil+\left|X_{1}^{\prime}\right|(\lfloor t / 2\rfloor+1)+\left(\left|X_{1}\right|-\left|X_{1}^{\prime}\right|\right)\lfloor t / 2\rfloor\right) \\
& \geq-2\left(\left|X_{0}\right|+\left|X_{1}\right|\right)(\lambda r / 2) \\
& =-\lambda r\left(\left|X_{0}\right|+\left|X_{1}\right|\right)
\end{aligned}
$$

Therefore, for $|X|<r$, we have

$$
g(S) \geq \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-\lambda r\left(\left|X_{0}\right|+\left|X_{1}\right|\right)=\lambda\left(r\left|X_{2}\right|+\left|Y_{1}\right|(r-|X|)\right) \geq 0
$$

This settles (iii).

Let $\mathscr{P}=\mathscr{D} \cup_{i=0}^{\delta}\left\{Q_{i, 0}, Q_{i, 1}, \ldots, Q_{i, p_{i}-1}\right\}$. Clearly, \mathscr{P} is the required packing. Let

$$
\mathscr{C}= \begin{cases}\mathscr{P} & \text { if } s=0 \\ \mathscr{P} \cup\{Q\} & \text { if } s \geq 1\end{cases}
$$

It is easy to check that \mathscr{C} is the covering as required.
Now, we are ready for the main result of this section.
Theorem 3.11 If λ and n are positive integers and k is a positive even integer with $4 \leq k \leq n$, then $p\left(\lambda K_{n, n} ; C_{k}, S_{k}\right)=\left\lfloor\lambda n^{2} / k\right\rfloor$ and $c\left(\lambda K_{n, n} ; C_{k}, S_{k}\right)=\left\lceil\lambda n^{2} / k\right\rceil$.

Proof: Obviously,

$$
p\left(\lambda K_{n, n} ; C_{k}, S_{k}\right) \leq\left\lfloor\frac{\lambda n^{2}}{k}\right\rfloor \leq\left\lceil\frac{\lambda n^{2}}{k}\right\rceil \leq c\left(\lambda K_{n, n} ; C_{k}, S_{k}\right)
$$

Let $n=q k+r$ where q and r are integers with $0 \leq r<k$. For $q=1$, the result follows from Lemmas 3.5, 3.6, and 3.10. If $q \geq 2$,then $\lambda K_{n, n}=\lambda K_{k+r, k+r} \cup \lambda K_{k+r,(q-1) k} \cup \lambda K_{(q-1) k, n}$. Note that $\lambda K_{k+r, k+r}$ has a $\left(C_{k}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda(k+r)^{2} / k\right\rfloor$ and a $\left(C_{k}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda(k+r)^{2} / k\right\rceil$. Trivially, $\lambda K_{k+r,(q-1) k}$ and $\lambda K_{(q-1) k, n}$ have S_{k}-decompositions \mathscr{D} and \mathscr{D}^{\prime} with $|\mathscr{D}|=\lambda(k+r)(q-1)$ and $\left|\mathscr{D}^{\prime}\right|=\lambda(q-1) n$, respectively. Since $\lambda(k+r)^{2} / k+\lambda(k+r)(q-1)+\lambda(q-1) n=$ $\lambda(q k+r)^{2} / k=\lambda n^{2} / k, \mathscr{P} \cup \mathscr{D} \cup \mathscr{D}^{\prime}$ is a $\left(C_{k}, S_{k}\right)$-packing of $\lambda K_{n, n}$ with cardinality $\left\lfloor\lambda n^{2} / k\right\rfloor$ and $\mathscr{C} \cup \mathscr{D} \cup \mathscr{D}^{\prime}$ is a $\left(C_{k}, S_{k}\right)$-covering of $\lambda K_{n, n}$ with cardinality $\left\lceil\lambda n^{2} / k\right\rceil$. This completes the proof.

Clearly, if $\lambda K_{n, n}$ admits a $\left(C_{k}, S_{k}\right)$-decomposition, then $4 \leq k \leq n$ and k is even and λn^{2} is divisible by k. When k divides λn^{2}, a $\left(C_{k}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ is a $\left(C_{k}, S_{k}\right)$-decomposition. Therefore, with the aid of Theorem 3.11, we have the following.

Corollary 3.12 For positive integers λ, k and n, the balanced complete bipartite multigraph $\lambda K_{n, n}$ is $\left(C_{k}, S_{k}\right)$-decomposable if and only if $4 \leq k \leq n, k$ is even, and λn^{2} is divisible by k.

4 Packing and covering with 4 -cycles and 4 -stars

In this section a complete solution to the maximum packing and minimum covering problem of $\lambda K_{n, n}$ with C_{4} and S_{4} is given. Before that, we need more notations. For multigraphs G and $H, G \uplus H$ denotes the disjoint union of G and $H, G \odot H$ denotes the union of G and H with a common vertex. For a set \mathscr{R} and a positive integer $t, t \mathscr{R}$ denotes the multiset in which each element in \mathscr{R} appears t times. In addition, M_{t} denotes the graph induced by t nonadjacent edges. We begin with the discussion for the possible minimum leaves and paddings of $\lambda K_{n, n}$ with C_{4} and S_{4}.

Note that $\left|E\left(\lambda K_{n, n}\right)\right|=\lambda n^{2}$. If $\lambda \equiv 0 \quad(\bmod 4)$ or $n \equiv 0(\bmod 2)$, then $\left|E\left(\lambda K_{n, n}\right)\right| \equiv 0$ $(\bmod 4)$. By Corollary 3.12, both of the possible minimum leave and the possible minimum padding are the empty graph. If $\lambda \equiv 1(\bmod 4)$ and $n \equiv 1 \quad(\bmod 2)$, then $\left|E\left(\lambda K_{n, n}\right)\right| \equiv 1(\bmod 4)$. This implies that the possible minimum leave is only P_{2}, and the possible minimum paddings are S_{3}, $P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}$, and $3 P_{2}$. If $\lambda \equiv 2(\bmod 4)$ and $n \equiv 1(\bmod 2)$, then $\left|E\left(\lambda K_{n, n}\right)\right| \equiv 2 \quad(\bmod 4)$. This implies that the possible minimum leaves are P_{3}, M_{2}, and $2 P_{2}$, so are the possible minimum paddings. If $\lambda \equiv 3(\bmod 4)$ and $n \equiv 1 \quad(\bmod 2)$, then $\left|E\left(\lambda K_{n, n}\right)\right| \equiv 3$ $(\bmod 4)$. This implies that the possible minimum leaves are $S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}$, and $3 P_{2}$, and the possible minimum padding is only P_{2}.

Lemma 4.1 $K_{5,5}$ has no $\left(C_{4}, S_{4}\right)$-covering with padding $3 P_{2}$.

Proof: It suffices to show that $K_{5,5}+3\left\{a_{0} b_{0}\right\}$ is not $\left(C_{4}, S_{4}\right)$-decomposable. Suppose, to the contrary of the conclusion, that there exists a $\left(C_{4}, S_{4}\right)$-decomposition \mathscr{D} of $K_{5,5}+3\left\{a_{0} b_{0}\right\}$. Since there are at most two star with center a_{0} (or b_{0}) and each edge joining a_{0} and b_{0} lies in exactly one subgraph in \mathscr{D}, there are exactly three possibilities for the edges joining a_{0} and b_{0} to lie in the decomposition: in four 4 -cycles, in three 4 -cycles and a 4 -star, or in two 4 -cycles and two 4 -stars. Let G_{1} be the graph obtained from $K_{5,5}+3\left\{a_{0} b_{0}\right\}$ by deleting the edges of four 4 -cycles, and let G_{2} be the graph obtained from $K_{5,5}+3\left\{a_{0} b_{0}\right\}$ by deleting the edges of three 4 -cycles or deleting the edges of two 4 -cycles. Note that $\operatorname{deg}_{G_{1}} x=3$ for $x \notin\left\{a_{0}, b_{0}\right\}$, which implies that there is no 4 -star in G_{1}. Since $\operatorname{deg}_{G_{2}} x \leq 3$ for $x \in\left\{a_{0}, b_{0}\right\}$, there is no 4 -star with center at a_{0} or b_{0} in G_{2}. This leads to a contradiction and completes the proof.

We summarize the results discussed above in Table 1

Tab. 1: The possible minimum leaves and paddings of $\lambda K_{n, n}$ with C_{4} and S_{4}

$\lambda \quad(\bmod 4)$ n $(\bmod 2)$	$\lambda \equiv 0$ or $n \equiv 0$	$\lambda \equiv 1$ and $n \equiv 1$	$\lambda \equiv 2$ and $n \equiv 1$	$\lambda \equiv 3$ and $n \equiv 1$
				P_{2}

Lemma 4.2 Let $r \in\{1,2,3,5\}$.
(a) There exists a $\left(C_{4}, S_{4}\right)$-packing of $r K_{5,5}$ with leave L where

$$
\begin{cases}L=P_{2} & \text { if } r=1 \text { or } r=5, \\ L \in\left\{P_{3}, M_{2}, 2 P_{2}\right\} & \text { if } r=2, \\ L \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}, 3 P_{2}\right\} & \text { if } r=3 .\end{cases}
$$

(b) There exists a $\left(C_{4}, S_{4}\right)$-covering of $r K_{5,5}$ with padding R where

$$
\begin{cases}R \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}\right\} & \text { if } r=1, \\ R \in\left\{P_{3}, M_{2}, 2 P_{2}\right\} & \text { if } r=2, \\ R=P_{2} & \text { if } r=3, \\ R \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}, 3 P_{2}\right\} & \text { ifr }=5 .\end{cases}
$$

Proof: The proof is divided into four parts according to the value of r.
Case 1. $r=1$.
Let $A_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $B_{1}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$, and let $H=K_{5,5}\left[A_{1} \cup B_{1}\right]$. Trivially, H is isomorphic to $K_{4,4}$. By Corollary 3.12 there exists a $\left(C_{4}, S_{4}\right)$-decomposition \mathscr{D} of $K_{4,4}$. Let $\mathscr{P}=$
$\mathscr{D} \cup\left\{\left(a_{0} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(b_{0} ; a_{1}, a_{2}, a_{3}, a_{4}\right)\right\}$. Clearly, \mathscr{P} is a $\left(C_{4}, S_{4}\right)$-packing of $K_{5,5}$ with leave P_{2} : $\left\{a_{0} b_{0}\right\}$.

Now we give the required coverings of $K_{5,5}$. Note that $\mathscr{P} \cup\left\{\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$ covering of $K_{5,5}$ with padding $S_{3}:\left\{\left(a_{0} ; b_{1}, b_{2}, b_{3}\right)\right\}$, and $\mathscr{P} \cup\left\{\left(a_{0}, b_{1}, a_{1}, b_{0}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $K_{5,5}$ with padding $P_{4}:\left\{a_{0} b_{1} a_{1} b_{0}\right\}$. Without loss of generality, we assume that \mathscr{P} contains a 4 -star $\left(a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)$. Thus $\mathscr{P}-\left\{\left(a_{0} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)\right\} \cup\left\{\left(a_{0}, b_{3}, a_{4}, b_{4}\right),\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right.$, $\left.\left(a_{4} ; b_{0}, b_{1}, b_{2}, b_{4}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $K_{5,5}$ with padding $P_{3} \uplus P_{2}:\left\{b_{0} a_{4} b_{4}, a_{0} b_{3}\right\}$. In addition, $\left\{\left(a_{3}, b_{3}, a_{4}, b_{4}\right),\left(a_{0} ; b_{0}, b_{2}, b_{3}, b_{4}\right),\left(a_{1} ; b_{0}, b_{1}, b_{3}, b_{4}\right),\left(a_{2} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(b_{0} ; a_{0}, a_{2}, a_{3}, a_{4}\right),\left(b_{1} ; a_{0}, a_{1}\right.\right.$, $\left.\left.a_{3}, a_{4}\right),\left(b_{2} ; a_{1}, a_{2}, a_{3}, a_{4}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $K_{5,5}$ with padding $M_{3}:\left\{a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2}\right\}, \mathscr{P}$ $\left\{\left(a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)\right\} \cup\left\{\left(a_{0}, b_{0}, a_{4}, b_{4}\right),\left(a_{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $K_{5,5}$ with padding $2 P_{2} \uplus P_{2}: 2\left\{b_{0} a_{4}\right\} \cup\left\{a_{0} b_{4}\right\}$, and $\mathscr{P}-\left\{\left(a_{0} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)\right\} \cup\left\{\left(a_{0}, b_{0}, a_{4}, b_{4}\right),\left(a_{0} ; b_{0}, b_{1}\right.\right.$, $\left.\left.b_{2}, b_{3}\right),\left(a_{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $K_{5,5}$ with padding $2 P_{2} \odot P_{2}: 2\left\{b_{0} a_{4}\right\} \cup\left\{b_{0} a_{0}\right\}$.
Case 2. $r=2$.
First, we use \mathscr{P} to construct the required packings of $2 K_{5,5}$. Exchanging b_{0} with b_{1} in \mathscr{P}, we obtain a packing \mathscr{P}^{\prime} of $K_{5,5}$ with leave $a_{0} b_{1}$. Let $\mathscr{P}_{1}=\mathscr{P} \cup \mathscr{P}^{\prime}$. One can see that \mathscr{P}_{1} is a packing of $2 K_{5,5}$ with leave $P_{3}:\left\{b_{0} a_{0} b_{1}\right\}$. Next, rename the vertices $a_{0}, a_{1}, b_{0}, b_{1}$ in \mathscr{P} to $a_{1}, a_{0}, b_{1}, b_{0}$, respectively, we obtain a packing $\mathscr{P}^{\prime \prime}$ of $K_{5,5}$ with leave $a_{1} b_{1}$. Let $\mathscr{P}_{2}=\mathscr{P} \cup \mathscr{P}^{\prime \prime}$. It is easy to see that \mathscr{P}_{2} is a packing of $2 K_{5,5}$ with leave $M_{2}:\left\{a_{0} b_{0}, a_{1} b_{1}\right\}$. Finally, $2 \mathscr{P}$ is clearly a packing of $2 K_{5,5}$ with leave $2 P_{2}: 2\left\{a_{0} b_{0}\right\}$.

Now we use packings to construct the required coverings of $2 K_{5,5}$. Note that $\mathscr{P}_{1} \cup\left\{\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $2 K_{5,5}$ with padding $P_{3}:\left\{b_{2} a_{0} b_{3}\right\}$, and $\mathscr{P}_{2} \cup\left\{\left(a_{0}, b_{0}, a_{1}, b_{1}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$ covering of $2 K_{5,5}$ with padding $M_{2}:\left\{a_{0} b_{1}, a_{1} b_{0}\right\}$. Moreover, $2 \mathscr{P}-\left\{\left(a_{0} ; b_{1}, b_{2}, b_{3}, b_{4}\right),\left(a_{4} ; b_{1}, b_{2}, b_{3}\right.\right.$, $\left.\left.b_{4}\right)\right\} \cup\left\{\left(a_{0}, b_{0}, a_{4}, b_{4}\right),\left(a_{0} ; b_{0}, b_{1}, b_{2}, b_{3}\right),\left(a_{4} ; b_{0}, b_{1}, b_{2}, b_{3}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-covering of $2 K_{5,5}$ with padding $2 P_{2}: 2\left\{b_{0} a_{4}\right\}$.
Case 3. $r=3$.
First, we use packings of $K_{5,5}$ and $2 K_{5,5}$ to construct the required packings of $3 K_{5,5}$. Exchanging b_{0} with b_{2} in \mathscr{P}, we obtain a packing \mathscr{R} of $K_{5,5}$ with leave $a_{0} b_{2}$. Hence $\mathscr{P}_{1} \cup \mathscr{R}$ is a packing of $3 K_{5,5}$ with leave $S_{3}:\left\{\left(a_{0} ; b_{0}, b_{1}, b_{2}\right)\right\}$. Next, rename the vertices $a_{0}, a_{2}, b_{0}, b_{2}$ in \mathscr{P} to $a_{2}, a_{0}, b_{2}, b_{0}$, respectively, we obtain a packing \mathscr{R}^{\prime} of $K_{5,5}$ with leave $a_{2} b_{2}$. Thus $\mathscr{P}_{2} \cup \mathscr{R}^{\prime}$ is a packing of $3 K_{5,5}$ with leave $M_{3}:\left\{a_{0} b_{0}, a_{1} b_{1}, a_{2} b_{2}\right\}$. Note that $\mathscr{P}_{1} \cup \mathscr{P}^{\prime \prime}$ is a packing of $3 K_{5,5}$ with leave $\left.P_{4}:\left\{b_{0} a_{0} b_{1} a_{1}\right)\right\}$. In addition, $\mathscr{P}_{1} \cup \mathscr{R}^{\prime}$ is a packing of $3 K_{5,5}$ with leave $P_{3} \uplus P_{2}:\left\{b_{0} a_{0} b_{1}\right\} \cup\left\{a_{2} b_{2}\right\}, 2 \mathscr{P} \cup \mathscr{R}^{\prime}$ is a packing of $3 K_{5,5}$ with leave $2 P_{2} \uplus P_{2}: 2\left\{a_{0} b_{0}\right\} \cup\left\{a_{2} b_{2}\right\}, 2 \mathscr{P} \cup \mathscr{R}$ is a packing of $3 K_{5,5}$ with leave $2 P_{2} \odot P_{2}: 2\left\{a_{0} b_{0}\right\} \cup\left\{a_{0} b_{2}\right\}$, and $3 \mathscr{P}$ is clearly a packing of $3 K_{5,5}$ with leave $3 P_{2}: 3\left\{a_{0} b_{0}\right\}$.

Finally, since $3(5-4)^{2}=3<4$, there exists a $\left(C_{4}, S_{4}\right)$-covering of $3 K_{5,5}$ with leave P_{2} by Lemma 3.6 Case 4. $r=5$.

By Corollary 3.12, $\left(C_{4}, S_{4}\right) \mid 4 K_{5,5}$. Since $5 K_{5,5}=K_{5,5} \cup 4 K_{5,5}$, it suffices to show that there exists a $\left(C_{4}, S_{4}\right)$-covering of $5 K_{5,5}$ with padding $3 P_{2}$. Note that $5 K_{5,5}=2 K_{5,5} \cup 3 K_{5,5}$. Since $2 K_{5,5}$ has a $\left(C_{4}, S_{4}\right)$-covering with padding $2 P_{2}: 2\left\{b_{0} a_{4}\right\}$ and $3 K_{5,5}$ has a $\left(C_{4}, S_{4}\right)$-covering with padding P_{2} (say $\left\{b_{0} a_{4}\right\}$), we have the required covering.

Lemma 4.3 Let r be a positive integer and let m be a positive odd integer with $m \geq 5$. If $r K_{m, m}$ has a $\left(C_{4}, S_{4}\right)$-packing (resp. $\left(C_{4}, S_{4}\right)$-covering) with leave L (resp. padding R), then $r K_{m+2, m+2}$ also has a $\left(C_{4}, S_{4}\right)$-packing (resp. $\left(C_{4}, S_{4}\right)$-covering $)$ with leave L (resp. padding R).

Proof: Let $m=2 t+1$ where t is a positive integer with $t \geq 2$. Let $A_{1}=\left\{a_{0}, a_{1}, \ldots, a_{2 t}\right\}$ and
$B_{1}=\left\{b_{0}, b_{1}, \ldots, b_{2 t}\right\}$. Letting $G_{1}=K_{m+2, m+2}\left[A_{1} \cup B_{1}\right]$ and $G_{2}=K_{m+2, m+2}-E\left(G_{1}\right)$. Clearly, G_{1} is isomorphic to $K_{m, m}$. Note that $\left\{\left(a_{2 t+1}, b_{2 i}, a_{2 t+2}, b_{2 i+1}\right),\left(a_{2 i}, b_{2 t+1}, a_{2 i+1}, b_{2 t+2}\right): i=0,1, \ldots, t-\right.$ $2\} \cup\left\{\left(a_{2 t+1} ; b_{2 t-2}, b_{2 t-1}, b_{2 t}, b_{2 t+1}\right),\left(a_{2 t+2} ; b_{2 t-2}, b_{2 t-1}, b_{2 t}, b_{2 t+2}\right),\left(b_{2 t+1} ; a_{2 t-2}, a_{2 t-1}, a_{2 t}, a_{2 t+2}\right)\right.$, $\left.\left(b_{2 t+2} ; a_{2 t-2}, a_{2 t-1}, a_{2 t}, a_{2 t+1}\right)\right\}$ is a $\left(C_{4}, S_{4}\right)$-decomposition of G_{2}. Since $r K_{m+2, m+2}=r G_{1} \cup r G_{2}$, $r K_{m+2, m+2}$ has the required packings and coverings.

Now, we are ready for the main result of this section.
Theorem 4.4 Let λ and n be positive integers with $n \geq 4$.
(A) $\lambda K_{n, n}$ has a maximum $\left(C_{4}, S_{4}\right)$-packing with leave L if and only if

$$
\left\{\begin{array}{lll}
L=\emptyset & \text { if } \lambda n^{2} \equiv 0 & (\bmod 4), \\
L=P_{2} & \text { if } \lambda n^{2} \equiv 1 & (\bmod 4), \\
L \in\left\{P_{3}, M_{2}, 2 P_{2}\right\} & \text { if } \lambda n^{2} \equiv 2(\bmod 4), \\
L \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}, 3 P_{2}\right\} & \text { if } \lambda n^{2} \equiv 3(\bmod 4) .
\end{array}\right.
$$

(B) $\lambda K_{n, n}$ has a minimum $\left(C_{4}, S_{4}\right)$-covering with padding R if and only if

$$
\begin{cases}R=\emptyset & \text { if } \lambda n^{2} \equiv 0(\bmod 4), \\ R \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}\right\} & \text { if } \lambda n^{2} \equiv 1 \quad(\bmod 4) \text { and } \lambda=1, \\ R \in\left\{S_{3}, P_{4}, P_{3} \uplus P_{2}, M_{3}, 2 P_{2} \uplus P_{2}, 2 P_{2} \odot P_{2}, 3 P_{2}\right\} & \text { if } \lambda n^{2} \equiv 1 \quad(\bmod 4) \text { and } \lambda \geq 5, \\ R \in\left\{P_{3}, M_{2}, 2 P_{2}\right\} & \text { if } \lambda n^{2} \equiv 2(\bmod 4), \\ R=P_{2} & \text { if } \lambda n^{2} \equiv 3(\bmod 4) .\end{cases}
$$

Proof: The necessity follows from the arguments above Table 1. It suffices to show that $\lambda K_{n, n}$ has required packings and coverings. The result for $\lambda n^{2} \equiv 0(\bmod 4)$ follows from Corollary 3.12 immediately. So it remains to consider the case $\lambda n^{2} \equiv r \quad(\bmod 4)$ for $r \in\{1,2,3\}$. Note that $\lambda n^{2} \equiv r$ $(\bmod 4)$ if and only if $\lambda \equiv r \quad(\bmod 4)$ and $n \equiv 1 \quad(\bmod 2)$. When $\lambda \in\{1,2,3,5\}$, the result for $n=5$ follows from Lemma 4.2, and the result for $n>5$ can be obtained by using Lemma 4.3 recursively. Now consider $\lambda \equiv r \quad(\bmod 4)$ and $\lambda>5$. Note that $\lambda K_{n, n}=r K_{n, n} \cup(\lambda-r) K_{n, n}$. Since $(\lambda-r) K_{n, n}$ is $\left(C_{4}, S_{4}\right)$-decomposable by Corollary 3.12 , we have the result.

References

[1] A. Abueida, S. Clark, and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves. Ars Combin., 93:403-407, 2009.
[2] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5. Graphs Combin., 19:433447, 2003.
[3] A. Abueida and M. Daven, Multidecompositons of the complete graph. Ars Combin., 72:17-22, 2004.
[4] A. Abueida and M. Daven, Multidecompositions of several graph products. Graphs Combin., 29:315-326, 2013.
[5] A. Abueida, M. Daven, and K. J. Roblee, Multidesigns of the λ-fold complete graph for graph-pairs of order 4 and 5. Australas J. Combin., 32:125-136, 2005.
[6] A. Abueida and C. Hampson, Multidecomposition of $K_{n}-F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor. Ars Combin., 97:399-416, 2010.
[7] A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws. Bull. Inst. Combin. Appl., 49:32-40, 2007.
[8] D.G. Hoffman, The real truth about star designs. Discrete Math., 284:177-180, 2004.
[9] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars. Ars Combin., 108:355-364, 2013.
[10] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars. Discrete Math., 313:2354-2358, 2013.
[11] J. Ma, L. Pu, and H. Shen, Cycle decompositions of $K_{n, n}-I$. SIAM J. Discrete Math., 20:603-609, 2006.
[12] H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}. J. Combin. Math. Combin. Comput., 69:145-150, 2009.
[13] H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$. Bull. Inst. Combin. Appl., 66:42-48, 2012.
[14] T.-W. Shyu, Decomposition of complete graphs into paths and stars. Discrete Math., 310:2164-2169, 2010.
[15] T.-W. Shyu, Decompositions of complete graphs into paths and cycles. Ars Combin., 97:257-270, 2010.
[16] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles. Ars Combin., 107:209-224, 2012.
[17] T.-W. Shyu, Decomposition of complete graphs into cycles and stars. Graphs Combin., 29:301-313, 2013.
[18] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges. Discrete Math., 313:865-871, 2013.
[19] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$. J. Combin. Theory, Ser. B, 30:75-81, 1981.

[^0]: *Email: birdy@teamail.ltu.edu.tw. Supported by the Ministry of Science and Technology of Taiwan. 1365-8050 © 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

