Oriented diameter and rainbow connection number of a graph
Xiaolong Huang, Hengzhe Li, Xueliang Li, Yuefang Sun

To cite this version:
Xiaolong Huang, Hengzhe Li, Xueliang Li, Yuefang Sun. Oriented diameter and rainbow connection number of a graph. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress) (3), pp.51–60. <hal-01188907>
Oriented diameter and rainbow connection number of a graph

Xiaolong Huang Hengzhe Li† Xueliang Li Yuefang Sun

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin, China

received 23rd Dec. 2012, accepted 28th May 2014.

The oriented diameter of a bridgeless graph G is $\min\{\text{diam}(H) \mid H \text{ is an orientation of } G\}$. A path in an edge-colored graph G, where adjacent edges may have the same color, is called rainbow if no two edges of the path are colored the same. The rainbow connection number $rc(G)$ of G is the smallest integer number k for which there exists a k-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. In this paper, we obtain upper bounds for the oriented diameter and the rainbow connection number of a graph in terms of $\text{rad}(G)$ and $\eta(G)$, where $\text{rad}(G)$ is the radius of G and $\eta(G)$ is the smallest integer number such that every edge of G is contained in a cycle of length at most $\eta(G)$. We also obtain constant bounds of the oriented diameter and the rainbow connection number for a (bipartite) graph G in terms of the minimum degree of G.

Keywords: Diameter, Radius, Oriented diameter, Rainbow connection number, Cycle length, Bipartite graph.

1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book [2] for notation and terminology not described here. A path $u = u_1, u_2, \ldots, u_k = v$ is called a $P_{u,v}$ path. Denote by $u_i Pu_j$ the subpath $u_i, u_{i+1}, \ldots, u_j$ for $i \leq j$. The length $\ell(P)$ of a path P is the number of edges in P. The distance between two vertices x and y in G, denoted by $d_G(x,y)$, is the length of a shortest path between them. The eccentricity of a vertex x in G is $\text{ecc}_G(x) = \max_{y \in V(G)} d(x,y)$. The radius and diameter of G are $\text{rad}(G) = \min_{x \in V(G)} \text{ecc}(x)$ and $\text{diam}(G) = \max_{x \in V(G)} \text{ecc}(x)$, respectively. A vertex u is a center of a graph G if $\text{ecc}(u) = \text{rad}(G)$. The oriented diameter of a bridgeless graph G is $\min \{\text{diam}(H) \mid H \text{ is an orientation of } G\}$, and the oriented radius of a bridgeless graph G is $\min \{\text{rad}(H) \mid H \text{ is an orientation of } G\}$. For any graph G with edge-connectivity $\lambda(G) = 0, 1$, G has oriented radius (resp. diameter) ∞.

In 1939, Robbins solved the One-Way Street Problem and proved that a graph G admits a strongly connected orientation if and only if G is bridgeless, that is, G does not have any cut-edge. Naturally, one hopes that the oriented diameter of a bridgeless graph is as small as possible. Bondy and Murty suggested

*Supported by NSFC No.11071130, and “the Fundamental Research Funds for the Central Universities”.
†Email: lhz2010@mail.nankai.edu.cn, lhz@htu.cn

1365–8050 © 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
to study the quantitative variations on Robbins’ theorem. In particular, they conjectured that there exists a function \(f \) such that every bridgeless graph with diameter \(d \) admits an orientation of diameter at most \(f(d) \).

Theorem 1 (Chvátal and Thomassen 1978 [5]) For every bridgeless graph \(G \), there exists an orientation \(H \) of \(G \) such that

\[
\text{rad}(H) \leq \text{rad}(G)^2 + \text{rad}(G),
\]

\[
\text{diam}(H) \leq 2\text{rad}(G)^2 + 2\text{rad}(G).
\]

Moreover, the above bounds are optimal.

There exists a minor error when they constructed the graph \(G_d \) which arrives at the upper bound when \(d \) is odd. Kwok, Liu and West gave a slight correction in [11]. They also showed that determining whether an arbitrary graph can be oriented so that its diameter is at most 2 is NP-complete. Bounds for the oriented diameter of graphs have also been studied in terms of other parameters, for example, radius, dominating number [5, 6, 11, 18], etc. Some classes of graphs have also been studied in [6, 7, 8, 9, 14].

Let \(\eta(G) \) be the smallest integer such that every edge of \(G \) belongs to a cycle of length at most \(\eta(G) \).

In this paper, we show the following result.

Theorem 2 For every bridgeless graph \(G \), there exists an orientation \(H \) of \(G \) such that

\[
\text{rad}(H) \leq \sum_{i=1}^{\text{rad}(G)} \min\{2i, \eta(G) - 1\} \leq \text{rad}(G)(\eta(G) - 1),
\]

\[
\text{diam}(H) \leq 2\sum_{i=1}^{\text{rad}(G)} \min\{2i, \eta(G) - 1\} \leq 2\text{rad}(G)(\eta(G) - 1).
\]

Note that \(\sum_{i=1}^{\text{rad}(G)} \min\{2i, \eta(G) - 1\} \leq \text{rad}(G)^2 + \text{rad}(G) \) and \(\text{diam}(H) \leq 2\text{rad}(H) \). So our result implies Chvátal and Thomassen’s Theorem 1.

A path in an edge-colored graph \(G \), where adjacent edges may have the same color, is called rainbow if no two edges of the path are colored the same. An edge-coloring of a graph \(G \) is a rainbow edge-coloring if every two distinct vertices of the graph \(G \) are connected by a rainbow path. The rainbow connection number \(rc(G) \) of \(G \) is the minimum integer \(k \) for which there exists a rainbow \(k \)-edge-coloring of \(G \). It is easy to see that \(\text{diam}(G) \leq rc(G) \) for any connected graph \(G \). The rainbow connection number was introduced by Chartrand et al. in [4]. It is of great use in transferring information of high security in multicomputer networks. We refer the readers to [3] for details.

Chakraborty et al. [3] investigated the hardness and algorithms for the rainbow connection number, and showed that given a graph \(G \), deciding if \(rc(G) = 2 \) is \(NP \)-complete. Bounds for the rainbow connection number of a graph have also been studied in terms of other graph parameters, for example, radius, dominating number, minimum degree, connectivity, etc. [11, 4, 10]. Cayley graphs and line graphs were studied in [12] and [13], respectively.

A subgraph \(H \) of a graph \(G \) is called isometric if the distance between any two distinct vertices in \(H \) is the same as their distance in \(G \). The size of a largest isometric cycle in \(G \) is denoted by \(\zeta(G) \).
Clearly, every isometric cycle is an induced cycle and thus \(\zeta(G) \) is not larger than the chordality, where chordality is the length of a largest induced cycle in \(G \). In [1], Basavaraju, Chandran, Rajendraprasad and Ramaswamy got the following sharp upper bound for the rainbow connection number of a bridgeless graph \(G \) in terms of \(\text{rad}(G) \) and \(\zeta(G) \).

Theorem 3 (Basavaraju et al. [1]) For every bridgeless graph \(G \),

\[
\text{rc}(G) \leq \sum_{i=1}^{\text{rad}(G)} \min\{2i + 1, \zeta(G)\} \leq \text{rad}(G)\zeta(G).
\]

In this paper, we show the following result.

Theorem 4 For every bridgeless graph \(G \),

\[
\text{rc}(G) \leq \sum_{i=1}^{\text{rad}(G)} \min\{2i + 1, \eta(G)\} \leq \text{rad}(G)\eta(G).
\]

From Lemma 2 of Section 2, we will see that \(\eta(G) \leq \zeta(G) \). Thus our result implies Theorem 3.

This paper is organized as follows: in Section 2, we introduce some definitions and show several lemmas. In Section 3, we prove Theorem 2 and study upper bounds for the oriented radius (resp. diameter) of plane graphs, edge-transitive graphs and general (bipartite) graphs. In Section 4, we prove Theorem 4 and study upper for the rainbow connection number of plane graphs, edge-transitive graphs and general (bipartite) graphs.

2 Preliminaries

In this section, we introduce some definitions and show several lemmas.

Definition 1 For any \(x \in V(G) \) and \(k \geq 0 \), the \(k \)-step open neighborhood is \(\{y \mid d(x, y) = k\} \) and denoted by \(N_k(x) \), the \(k \)-step closed neighborhood is \(\{y \mid d(x, y) \leq k\} \) and denoted by \(N_k[x] \). If \(k = 1 \), we simply write \(N(x) \) and \(N[x] \) for \(N_1(x) \) and \(N_1[x] \), respectively.

Definition 2 Let \(G \) be a graph and \(H \) be a subset of \(V(G) \) (or a subgraph of \(G \)). The edges between \(H \) and \(G \setminus H \) are called legs of \(H \). An \(H \)-ear is a path \(P = (u_0, u_1, \ldots, u_k) \) in \(G \) such that \(V(H) \cap V(P) = \{u_0, u_k\} \). The vertices \(u_0, u_k \) are called the feet of \(P \) in \(H \) and \(u_0u_1, u_{k-1}u_k \) are called the legs of \(P \). The length of an \(H \)-ear is the length of the corresponding path. If \(u_0 = u_k \), then \(P \) is called a closed \(H \)-ear. For any leg \(e \) of \(H \), denote by \(\ell(e) \) the smallest number such that there exists an \(H \)-ear of length \(\ell(e) \) containing \(e \), and such an \(H \)-ear is called an optimal \((H, e)\)-ear.

Note that for any optimal \((H, e)\)-ear \(P \) and every pair \((x, y) \neq (u_0, u_k)\) of distinct vertices of \(P \), \(x \) and \(y \) are adjacent on \(P \) if and only if \(x \) and \(y \) are adjacent in \(G \).

Definition 3 For any two paths \(P \) and \(Q \), the joint of \(P \) and \(Q \) are the common vertex and edge of \(P \) and \(Q \). Paths \(P \) and \(Q \) have \(k \) continuous common segments if the common vertex and edge are \(k \) disjoint paths.

A common segment is trivial if it has only one vertex.
Definition 4 Let P and Q be two paths in G. Call P and Q independent if they have no common internal vertex.

Lemma 1 Let $n \geq 1$ be an integer, and let G be a graph, H be a subgraph of G and $e_i = u_i, v_i$ be a leg of H and $P_i = P_{u_i, w_i}$ be an optimal (G, e_i)-ear, where $1 \leq i \leq n$ and u_i, v_i are the foot of P_i. Then for any leg $e_j = u_j, v_j$ such that $e_j \neq e_i$ and $e_j \not\in E(P_i)$, where $i \in \{1, 2, \ldots, n\}$, there exists an optimal (H, e_j)-ear $P_j = P_{u_j, w_j}$ such that either P_i and P_j are independent for any $P_i, 1 \leq i \leq n$, or P_i and P_j have only one continuous common segment containing w_j for some P_i.

Proof: Let P_j be an optimal (H, e_j)-ear. If P_i and P_j are independent for any i, then we are done. Suppose that P_i and P_j have m continuous common segments for some i, where $m \geq 1$. When $m \geq 2$, we first construct an optimal (H, e_j)-ear P_j^* such that P_i and P_j^* has only one continuous common segment. Let $P_{i_1}, P_{i_2}, \ldots, P_{i_m}$ be the m continuous common segments of P_i and P_j and they appear in P_i in that order. See Figure 1 for details. Furthermore, suppose that x_{i_k} and y_{i_k} are the two ends of the path P_{i_k} and they appear in P_i successively. We say that the following claim holds.

Claim 1: $\ell(y_k P_i x_{k+1}) = \ell(y_k P_j x_{k+1})$ for any $1 \leq k \leq m - 1$.

If not, that is, there exists an integer k such that $\ell(y_k P_i x_{k+1}) \neq \ell(y_k P_j x_{k+1})$. Without loss of generality, we assume $\ell(y_k P_i x_{k+1}) < \ell(y_k P_j x_{k+1})$. Then we shall get a more shorter path H-ear containing e_j by replacing $y_k P_i x_{k+1}$ with $y_k P_j x_{k+1}$, a contradiction. Thus $\ell(y_k P_i x_{k+1}) = \ell(y_k P_j x_{k+1})$ for any k.

Let P_j^* be the path obtained from P_j by replacing $y_k P_j x_{k+1}$ with $y_k P_i x_{k+1}$, and let $P_j^* = P_j^*$ if the continuous common segment of P_i and P_j does not contain w_j. Suppose x and y are the two ends of the common segment such that x and y appeared on P starting from u_i to w_i successively. Similar to Claim 1, $\ell(y P_j w_i) = \ell(y P_i w_i)$. Let P_j^* be the path obtained from P_j by replacing $y P_j w_j$ with $y P_i w_i$. Clearly, P_j^* is our desired optimal $(H, u_j v_j)$-ear.

Lemma 2 For every bridgeless graph G, $\eta(G) \leq \zeta(G)$.

Proof: Suppose that there exists an edge e such that the length $\ell(C)$ of the smallest cycle C containing e is larger than $\zeta(G)$. Then, C is not an isometric cycle since the length of a largest isometric cycle is
Oriented diameter and rainbow connection number of a graph

Thus there exist two vertices u and v on C such that $d_G(u, v) < d_C(u, v)$. Let P be a shortest path between u and v in G. Then a closed trial C' containing e is obtained from the segment of C containing e between u and v by adding P. Clearly, the length $\ell(C')$ is less than $\ell(C)$. We can get a cycle C'' containing e from C'. Thus there exists a cycle C'' containing e with length less than $\ell(C)$, a contradiction. Therefore $\eta(G) \leq \zeta(G)$.

Lemma 3 Let G be a bridgeless graph and u be a center of G. For any $i \leq \text{rad}(G) - 1$ and every leg e of $N_i(u)$, there exists an optimal $(N_i[u], e)$-ear with length at most $\min\{2\text{rad}(G) - i + 1, \eta(G)\}$.

Proof: Let P be an optimal $(N_i[u], e)$-ear. Since e belongs to a cycle with length at most $\eta(G)$, $\ell(P) \leq \eta(G)$. On the other hand, if $\ell(P) \geq 2(\text{rad}(G) - i) + 1$, then the middle vertex of P has distance at least $\text{rad}(G) - i + 1$ from $N_i[u]$, a contradiction.

3 Oriented diameter

At first, we have the following observation.

Observation 1 Let G be a bridgeless graph and H be a bridgeless spanning subgraph of G. Then the oriented radius (resp. diameter) of G is not larger than the oriented radius (resp. diameter) of H.

Proof of Theorem 2 We only need to show that G has an orientation H such that

$$\text{rad}(H) \leq \sum_{i=1}^{\text{rad}(G)} \min\{2i, \eta(G) - 1\} \leq \text{rad}(G)(\eta(G) - 1).$$

Let u be a center of G and let H_0 be the trivial graph with vertex set $\{u\}$. We assert that there exists a subgraph G_i of G such that $N_i[u] \subseteq V(G_i)$ and G_i has an orientation H_i satisfying that $\text{rad}(H_i) \leq \text{ecc}_{H_i}(u) \leq \sum_{j=1}^{2(\text{rad}(G) - j)} \min\{2(\text{rad}(G) - j), \eta(G) - 1\}$.

Basic step: When $i = 1$, we omit the proof since the proof of this step is similar to that of the following induction step.

Induction step: Assume that the above assertion holds for $i - 1$. Next we show that the above assertion also holds for i. For any $v \in N_i(u)$, either $v \in V(H_{i-1})$ or $v \in N_G(V(H_{i-1}))$ since $N_{i-1}[u] \subseteq V(H_{i-1})$. If $N_i(u) \subseteq V(H_{i-1})$, then let $H_i = H_{i-1}$ and we are done. Thus, we suppose $N_i(u) \not\subseteq V(H_{i-1})$ in the following.

Let $X = N_i(u) \setminus V(H_{i-1})$. Pick $x_1 \in X$, let y_1 be a neighbor of x_1 in H_{i-1} and let $P_1 = P_{y_1z_1}$ be an optimal (H_{i-1}, x_1y_1)-ear. We orient P such that P_1 is a directed path. Pick $x_2 \in X$ satisfying that all incident edges of x_2 are not oriented. Let y_2 be a neighbor of x_2 in H_{i-1}. If there exists an optimal (H_{i-1}, x_2y_2)-ear P_2 such that P_1 and P_2 are independent, then we can orient P_2 such that P_2 is a directed path. Otherwise, by Lemma 3 there exists an optimal (H_{i-1}, x_2y_2)-ear $P_2 = P_{y_2z_2}$ such that P_1 and P_2 has only one continuous common segment containing z_2. Clearly, we can orient the edges in $E(P_2) \setminus E(P_1)$ such that P_2 is a directed path. We can pick the vertices of X and oriented optimal H-ears similar to the above method until that for any $x \in X$, at least two incident edges of x are oriented. Let H_i be the graph obtained from H_{i-1} by adding vertices in $V(G) \setminus V(H_{i-1})$, which has at least two new oriented incident edges, and adding the new oriented edges. Clearly, $N_i[u] \subseteq V(H_i) = V(G_i)$.
Now we show that $\text{rad}(H_i) \leq \sum_{j=1}^{i} \min\{2(\text{rad}(G) - i), \eta(G) - 1\}$. It suffices to show that for every vertex x of H_i, $d_{H_i}(H_{i-1}, x) \leq \min\{2(\text{rad}(G) - i), \eta(G) - 1\}$ and $d_{H_i}(x, H_{i-1}) \leq \min\{2(\text{rad}(G) - i), \eta(G) - 1\}$. If $x \in V(H_{i-1})$, then the assertion holds by inductive hypothesis. If $x \notin V(H_{i-1})$, let P be a directed optimal (H_i, e)-ear containing x, where e is some leg of H_{i-1} (such a leg and such an ear exists by the definition of H_i). By Lemma 3, $\ell(P) \leq \min\{2(\text{rad}(G) - i) + 1, \eta(G)\}$. Thus, $d_{H_i}(x, H_{i-1}) \leq \min\{2(\text{rad}(G) - i), \eta(G) - 1\}$ and $d_{H_i}(H_{i-1}, x) \leq \min\{2(\text{rad}(G) - i), \eta(G) - 1\}$. Therefore, $\text{rad}(H_i) \leq \sum_{j=1}^{i} \min\{2(\text{rad}(G) - j), \eta(G) - 1\}$. \hfill \qed

Remark 1 The above theorem is optimal since it implies Chvátal and Thomassen's optimal Theorem\cite{7}.

The following example shows that our result is better than that of Theorem\cite{1}.

Example 1 Let F_3 be a triangle with one of its vertices designated as a root. In order to construct F_r, take two copies of F_{r-1}. Let H_r be the graph obtained from the triangle u_0, u_1, u_2 by identifying the root of first (resp. second) copy of F_{r-1} with u_1 (resp. u_2), and u_0 be the root of F_r. Let G_r be the graph obtained by taking two copies of F_r and identifying their roots. See Figure 2 for details. It is easy to check that G_r has radius r and every edge belongs to a cycle of length $\eta(G) = 3$. By Theorem\cite{1} G_r has an orientation H_r such that $\text{rad}(H_r) \leq r^2 + r$ and $\text{diam}(H_r) \leq 2r^2 + 2r$. But, by Theorem\cite{2} G_r has an orientation H_r such that $\text{rad}(G) \leq 2r$ and $\text{diam}(G) \leq 4r$. On the other hand, it is easy to check that all the strong orientations of G_r has radius $2r$ and diameter $4r$.

![Fig. 2: The graph G_3 which has oriented radius 6 and oriented diameter 12](image-url)

We have the following result for plane graphs.

Theorem 5 Let G be a plane graph. If the length of the boundary of every face is at most k, then G has an oriented H such that $\text{rad}(H) \leq \text{rad}(G)(k-1)$ and $\text{diam}(H) \leq 2\text{rad}(G)(k-1)$.

Since every edge of a maximal plane (resp. outerplane) graph belongs to a cycle with length 3, the following corollary holds.

Corollary 1 Let G be a maximal plane (resp. outerplane) graph. Then there exists an orientation H of G such that $\text{rad}(H) \leq 2\text{rad}(G)$ and $\text{rad}(H) \leq 4\text{rad}(G)$.

A graph G is *edge-transitive* if for any $e_1, e_2 \in E(G)$, there exists an automorphism g such that $g(e_1) = e_2$. We have the following result for edge-transitive graphs.
Theorem 6 Let G be a bridgeless edge-transitive graph. Then G has an orientation H such that $\text{rad}(H) \leq \text{rad}(G)(g(G) - 1)$ and $\text{diam}(H) \leq 2\text{rad}(G)(g(G) - 1)$, where $g(G)$ is the girth of G, that is, the length of a smallest cycle.

For general bipartite graphs, the following theorem holds.

Theorem 7 Let $G = (V_1 \cup V_2, E)$ be a bipartite graph with $|V_1| = n$ and $|V_2| = m$. If $d(x) \geq k > \lfloor m/2 \rfloor$ for any $x \in V_1$, $d(y) \geq r > \lfloor n/2 \rfloor$ for any $y \in V_2$, then there exists an orientation H of G such that $\text{rad}(H) \leq 9$.

Proof: It suffices to show that $\text{rad}(G) \leq 3$ and $\eta(G) \leq 4$ by Theorem 2.

First, we show that $\text{rad}(G) \leq 3$. Fix a vertex x in G, and let y be any vertex different from x in G. If x and y belong to the same part, without loss of generality, say $x, y \in V_1$. Let X and Y be neighborhoods of x and y in V_2, respectively. If $X \cap Y = \emptyset$, then $|V_2| \geq |X| + |Y| \geq 2k > m$, a contradiction. Thus $X \cap Y \neq \emptyset$, that is, there exists a path between x and y of length two. If x and y belong to different parts, without loss of generality, say $x \in V_1, y \in V_2$. Suppose x and y are nonadjacent, otherwise there is nothing to prove. Let X and Y be the neighborhoods of x and y in G, and let X' be the set of neighbors of X except for x in G. If $X' \cap Y = \emptyset$, then $|V_1| \geq 1 + |Y| + |X'| \geq 1 + r + (r - 1) = 2r > n$, a contradiction (Note that $|X'| \geq r - 1$). Thus $X' \cap Y \neq \emptyset$, that is, there exists a path between x and y of length three in G.

Next we show that $\eta(G) \leq 4$. Let xy be any edge in G. Let X be the set of neighbors of x except for y in G, let Y be the set of neighbors of y except for x in G, let X' be the set of neighbors of X except for x in G. If $X' \cap Y = \emptyset$, then $|V_1| \geq 1 + |Y| + |X'| \geq 1 + r + (r - 1) = 2r - 1 > n$, a contradiction (Note that $|X'| \geq r - 1$). Thus $X' \cap Y \neq \emptyset$, that is, there exists a cycle containing xy of length four in G. \qed

Remark 2 The degree condition is optimal. Let m, n be two even numbers with $n, m \geq 2$. Since $K_{n/2, m/2} \cup K_{n/2, m/2}$ is disconnected, the oriented radius (resp. diameter) of $K_{n/2, m/2} \cup K_{n/2, m/2}$ is ∞.

For equal bipartition k-regular graph, the following corollary holds.

Corollary 2 Let $G = (V_1 \cup V_2, E)$ be a k-regular bipartite graph with $|V_1| = |V_2| = n$. If $k > n/2$, then there exists an orientation H of G such that $\text{rad}(H) \leq 9$.

The following theorem holds for general graphs.

Theorem 8 Let G be a graph of order n.

(i) If there exists an integer $k \geq 2$ such that $|N_k(u)| > n/2 - 1$ for every vertex u in G, then G has an orientation H such that $\text{rad}(H) \leq 4k^2$ and $\text{diam}(H) \leq 8k^2$.

(ii) If $\delta(G) > n/2$, then G has an orientation H such that $\text{rad}(H) \leq 4$ and $\text{diam}(H) \leq 8$.

Proof: Since methods of the proofs of (i) and (ii) are similar, we only prove (i). For (i), it suffices to show that $\text{rad}(G) \leq 2k$ and $\eta(G) \leq 2k + 1$ by Theorem 2.

We first show $\text{rad}(G) \leq 2k$. Fix u in G, for every $v \in V(G)$, if $v \in N_k[u]$, then $d(u, v) \leq k$. Suppose $v \notin N_k[u]$, we have $N_k(u) \cap N_k(v) \neq \emptyset$. If not, that is, $N_k(u) \cap N_k(v) = \emptyset$, then $|N_k(u) + |N_k(v)| + 2 > n$ (a contradiction). Thus $d(u, v) \leq 2k$.

Next we show $\eta(G) \leq 2k + 1$. Let $e = uv$ be any edge in G. If $N_k(u) \cap N_k(v) = \emptyset$, then $|V(G)| \geq |N_k(u)| + |N_k(v)| + 2 > n$, a contradiction. Thus $N_k(u) \cap N_k(v) \neq \emptyset$. Pick $w \in N_k(u) \cap N_k(v)$, and let P (resp. Q) be a path between u and w (resp. between v and w). Then e belongs to a close trial $uPwQvu$ of length $2k + 1$. Therefore, e belongs to a cycle of length at most $2k + 1$. □

Remark 3 The above condition is almost optimal since $K_{n/2} \cup K_{n/2}$ is disconnected even n.

Corollary 3 Let G be a graph with minimum degree $\delta(G)$ and girth $g(G)$. If there exists an integer k such that $k \leq g(G)/2$ and $\delta(G)(\delta(G) - 1)^{k-1} > n/2 - 1$, then G has an orientation H such that $rad(H) \leq 4k^2$.

Proof: Let k be an integer such that $k \leq g(G)/2$ and $\delta(G)(\delta(G) - 1)^{k-1} > n/2 - 1$. For any vertex u of G, let $1 \leq i < k$ be any integer and $x, y, z \in N_i(u)$. If x and y have a common neighbor z in $N_{i+1}(u)$, then G has a cycle of length at most $2i < 2k \leq g(G)/2$, a contradiction. Thus x and y has no common neighbor in $N_{i+1}(u)$. Therefore, $|N_i(u)| \geq \delta(G)(\delta(G) - 1)^{k-1} > n/2 - 1$. By Theorem 2 G has an orientation H such that $rad(H) \leq 4k^2$. □

4 Upper bound for rainbow connection number

At first, we have the following observation.

Observation 2 Let G be a graph and H be a spanning subgraph of G. Then $rc(G) \leq rc(H)$.

Proof of Theorem 4 Let u be a center of G and let H_0 be the trivial graph with vertex set $\{u\}$. We assert that there exists a subgraph H_i of G such that $N_i[u] \subseteq V(H_i)$ and $rc(H_i) \leq \sum_{j=1}^{i} \min\{2(rad(G) - j) + 1, \eta(G)\}$.

Basic step: When $i = 1$, we omit the proof since the proof of this step is similar to that of the following induction step.

Induction step: Assume that the above assertion holds for $i - 1$ and c is a $rc(H_{i-1})$-rainbow coloring of H_{i-1}. Next we show that the above assertion holds for i. For any $v \in N_i(u)$, either $v \in V(H_{i-1})$ or $v \in N_G(V(H_{i-1})$ since $N_{i-1}[u] \subseteq V(H_{i-1})$. If $N_i(u) \subseteq V(H_{i-1})$, then let $H_i = H_{i-1}$ and we are done. Thus we suppose $N_i(u) \not\subseteq V(H_{i-1})$ in the following.

Let $C_1 = \{\alpha_1, \alpha_2, \cdots\}$ and $C_2 = \{\beta_1, \beta_2, \cdots\}$ be two pools of colors, none of which are used to color H_{i-1}, and there exists no common color in C_1 and C_2. An edge-coloring of an H-ear $P = (u_0, u_1, \cdots, u_k)$ is a symmetrical coloring if its edges are colored by $\alpha_1, \alpha_2, \cdots, \alpha[k/2], \beta[k/2], \cdots, \beta_2, \beta_1$ in that order or $\beta_1, \beta_2, \cdots, \beta[k/2], \alpha[k/2], \cdots, \alpha_2, \alpha_1$ in that order.

Let $X = N_i(u) \setminus V(H_{i-1})$ and $m = \min\{2(rad(G) - i) + 1, \eta(G)\}$. Pick $x_1 \in X$, y_1 be a neighbor of x_1 in H_{i-1} and P_1 be an optimal (H_{i-1}, x_1y_1)-ear. We can color P symmetrically with colors $\alpha_1, \alpha_2, \cdots, \alpha[k/2\prime], \beta[k/2\prime], \cdots, \beta_2, \beta_1$. Pick $x_2 \in X$ satisfying that all the incident edges of x_2 are not colored. Let y_2 be a neighbor of x_2 in H_{i-1}. If there exists an optimal (H_{i-1}, x_2y_2)-ear P_2 such that P_1 and P_2 are independent, then we can color P_2 symmetrically with colors $\alpha_1, \alpha_2, \cdots, \alpha[k/2\prime], \beta[k/2\prime], \cdots, \beta_2, \beta_1$. Otherwise, by Lemma there exists an optimal (H_{i-1}, x_2y_2)-ear $P_2 = P_2^{\alpha_2\beta_2}$ such that P_1 and P_2 have only one continuous common segment containing z_2, where z_2 is the other foot of P_2. Thus we can color P_2 symmetrically with colors
Oriented diameter and rainbow connection number of a graph

Hence, assume that P is colored from x to y by inductive hypothesis. If exactly one of x and y belongs to $V(H_{i-1})$, say x. Let P be a symmetrical colored H_{i-1}-ear containing y, and y' be a foot of P. There exists a rainbow path Q between x and y' in H_{i-1} by inductive hypothesis. Thus, xQy'/Py is a rainbow path between x and y in H_i.

Suppose none of x and y belongs to H_{i-1}. Let P and Q be symmetrical colored H_{i-1}-ear containing x and y, respectively. Furthermore, let x', x'' be the feet of P and y', y'' be the feet of Q. Without loss of generality, assume that P is colored from x' to x'' by $\alpha_1, \alpha_2, \ldots, \alpha_{\ell(P)/2}, \beta_{\ell(P)/2}, \ldots, \beta_2, \beta_1$ in that order, and Q is colored from y' to y'' by $\alpha_3, \alpha_4, \ldots, \alpha_{\ell(Q)/2}, \beta_{\ell(Q)/2}, \ldots, \beta_2, \beta_1$ in that order. If $\ell(x'Px) \leq \ell(y'Qy)$, let R be a rainbow path between x' and y'' in H_{i-1}. Then $xPx'Ry''Qy$ is a rainbow path between x and y in H_i. Otherwise, $\ell(x'Px) > \ell(y'Qy)$. Let R be a rainbow path between y' and x'' in H_{i-1}. Then $yQy'Rx''Px$ is a rainbow path between x and y in H_i. Thus, there exists a rainbow path between any two distinct vertices in H_i, that is, H_i is $(\sum_{j=1}^{m} \min\{2(\text{rad}(G) - j) + 1, \eta(G)\})$-rainbow connected. \(\Box\) Readers can see 11 for an optimal example. The following example shows that our result is better than that of Theorem 3.

Example 2 Let $r \geq 3$, $k \geq 2r$ be two integers, and $W_k = C_k \vee K_1$ be an wheel, where $V(C_k) = \{u_1, u_2, \ldots, u_k\}$ and $V(K_1) = \{u\}$. Let H be the graph obtained from W_k by inserting $r - 1$ vertices between every edge $u_{i-1}u_i$, $1 \leq i \leq k$. For every edge $e = xy$ of H, add a new vertex v_e and new edges v_ex, v_ey. Denote by G the resulting graph. It is easy to check that $\text{rad}(G) = r$, $\text{diam}(G) = 2r$, $\eta(G) = 3$ and $\zeta(G) = 2r - 1$. By Theorem 3, we have $rc(G) \leq \sum_{i=1}^{r} \min\{2i + 1, \zeta(G)\} \leq r^2 + 2r - 2$. But, by Theorem 4, we have $rc(G) \leq 3r$. On the other hand, $rc(G) \geq 2r$ since $\text{diam}(G) = 2r$.

The remaining results are similar to those in Section 3.

Theorem 9 Let G be a plane graph. If the length of the boundary of every face is at most k, then $rc(G) \leq k \text{rad}(G)$.

Corollary 4 Let G be a maximal plane (resp. outerplane) graph. Then $rc(G) \leq 3\text{rad}(G)$.

Theorem 10 Let G be a bridgeless edge-transitive graph. Then $rc(G) \leq \text{rad}(G)g(G)$, where $g(G)$ is the girth of G.

Theorem 11 Let $G = (V_1 \cup V_2, E)$ be a bipartite graph with $|V_1| = n$ and $|V_2| = m$. If $d(x) \geq k > \lceil m/2 \rceil$ for any $x \in V_1$, $d(y) \geq r > \lceil n/2 \rceil$ for any $y \in V_2$, then $rc(G) \leq 12$.

Remark 4 The degree condition is optimal. Let m, n be two even numbers with $n, m \geq 2$. Since $K_{n/2,m/2} \cup K_{n/2,m/2}$ is disconnected, $rc(K_{n/2,m/2} \cup K_{n/2,m/2}) = \infty$.

Corollary 5 Let $G = (V_1 \cup V_2, E)$ be a k-regular bipartite graph with $|V_1| = |V_2| = n$. If $k > \lceil n/2 \rceil$, then $rc(G) \leq 12$.

The following theorem holds for general graphs.
Theorem 12 Let G be a graph.

(i) If there exists an integer $k \geq 2$ such that $|N_k(u)| > n/2-1$ for every vertex u in G, then $rc(G) \leq 4k^2 + 2k$.

(ii) If $\delta(G) > n/2$, then $rc(G) \leq 6$.

Remark 5 The above condition is almost optimal since $K_{n/2} \cup K_{n/2}$ is disconnected for even n.

Corollary 6 Let G be a graph with minimum degree $\delta(G)$ and girth $g(G)$. If there exists an integer k such that $k < g(G)/2$ and $\delta(G)(\delta(G) - 1)^{k-1} > n/2 - 1$, then $rc(G) \leq 4k^2 + 2k$.

Acknowledgments

The authors are very grateful to the referees for their helpful comments and suggestions.

References

[10] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-91.

