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We study properties of infinite permutations generated by fixed points of some uniform binary morphisms, and find a
precise formula for their complexity.
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1 Introduction
A D0L word ω is an infinite word on a finite alphabet Σ which is a fixed point of a morphism ϕ : Σ∗ −→
Σ∗, i.e., ω = lim

n→∞
ϕn(a) for a ∈ Σ. The class of D0L words has been extensively studied and contains

famous words such as the cube-free Thue-Morse word and a square-free word on the three-letter alphabet.
The subword complexity C(n) of a word ω is the number of distinct words of length n which occur in
ω. This function on infinite words has been studied in numerous papers; see, for instance, the survey
Cassaigne and Nicolas (2010). The subword complexity of D0L words is well studied. For instance, in
Cassaigne (1997), a general method for calculating the subword complexity of D0L words was developed,
and in Frid (1998), the subword complexity of marked uniform D0L words was found. The subword
complexity of the Thue-Morse word was found in Brlek (1989), Luca and Varricchio (1989), and later in
Avgustinovich (1994).

In this paper we study infinite permutations generated by infinite D0L words. The notion of an infinite
permutation was introduced in Fon-Der-Flaass and Frid (2007), where periodic properties and low com-
plexity of permutations were investigated. Similarly to the definition of subword complexity of infinite
words, we can introduce the factor complexity of a permutation as the number of its distinct subper-
mutations of a given length. Another complexity function called maximal pattern complexity of infinite
permutations was investigated in Avgustinovich et al. (2011).

The notion of a permutation generated by an infinite non-periodic word was introduced by Makarov
(2006). In Makarov (2009) the same author calculated the factor complexity of permutations generated
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by the well-known family of Sturmian words. Widmer (2011) calculated the factor complexity of the
permutation generated by the Thue-Morse word.

In this paper we find a more general formula for the factor complexity of permutations generated by
fixed points of binary uniform morphisms from a wide class. In particular, since the Thue-Morse word
belongs to this class, we obtain an alternative way to compute the factor complexity of the Thue-Morse
permutation.

This paper is the extended and modified version of initial conference paper Valyuzhenich (2011). We
added proofs. Also we solve recurrent relations from Valyuzhenich (2011) and find the exact formula for
the permutation complexity. We calculate the permutation complexity for a wider class of morphisms.

In Section 2 we introduce basic definitions to be used below. In Section 3 we give the main ideas of
our proof. In Section 4, we introduce the class of morphisms Ql for which the main theorem of this paper
stated in Section 8 is valid. In Sections 5 – 7 we state some auxiliary statements needed to state and prove
the main theorem. In Section 9 we give an alternative proof of the formula for the factor complexity of
the Thue-Morse permutation.

2 Basic definitions
Let Σ be a finite alphabet. Everywhere below we will use only the two-letter alphabet Σ = {0, 1}.

An infinite word over the alphabet Σ is a word of the form ω = ω1ω2ω3 . . . , where ωi ∈ Σ. A (finite)
word u is called a subword or factor of a (finite or infinite) word v if v = s1us2 for some words s1 and
s2 which may be empty. The length of a finite word u is denoted by |u|. The set of all finite subwords of
the word ω is denoted by F (ω).

A mapping h : Σ∗ −→ Σ∗ is called a morphism if h(xy) = h(x)h(y) for any words x, y ∈ Σ∗. We
say that ω is a fixed point of a morphism ϕ if ϕ(ω) = ω. Clearly, every morphism is uniquely determined
by the images of letters, which are called blocks. A morphism is called l–uniform if its blocks are of the
same length l.

We say that a morphism ϕ : Σ∗ −→ Σ∗ is marked if its blocks are of the form ϕ(ai) = bixici, where
xi is an arbitrary word, bi and ci are symbols of the alphabet Σ, and all bi (as well as all ci) are distinct.
In what follows, we will consider only binary l–uniform marked morphisms.

We define ϕi;j(v) as the word obtained from ϕ(v) by erasing i symbols to the left and j symbols to
the right where 0 ≤ i < l and 0 ≤ j < l. An interpretation of a word u ∈ Σ∗ under a morphism ϕ is a
triple s = 〈v, i, j〉, where v = v1 . . . vk is a word over the alphabet Σ, i and j are nonnegative integers
such that 0 ≤ i < |ϕ(v1)| and 0 ≤ j < |ϕ(vk)|, and u = ϕi;j(v). In addition, if v is a subword of
ω = ϕ(ω), then s is called an interpretation on ω. The word v is called an ancestor of the word u. In
what follows we shall consider only interpretations on ω. We say that (u1, u2) is a synchronization point
(see Cassaigne (1994)) of u ∈ F (ω) if u = u1u2 and ∀v1, v2 ∈ Σ∗,∀s ∈ F (ω) ∃s1, s2 ∈ F (ω) such that
[v1uv2 = ϕ(s) ⇒ (s = s1s2, v1u1 = ϕ(s1), u2v2 = ϕ(s2))]. A fixed point ω = ϕ(ω) of the morphism
ϕ is called circular (see Cassaigne (1994)) with synchronization delay Lω, if Lω is an integer such that
any subword v of word ω of length at least Lω contains at least one synchronization point.

Remark 1 If ϕ is marked, then circularity of a word ω = ϕ(ω) means that any of its subwords u with
|u| ≥ Lω admits a unique interpretation on ω: as we know a synchronization point, we can reconstruct
every block of this interpretation from its first (or last) symbol. Moreover for marked morphisms, this
means the uniqueness of the partition of the word u with |u| ≥ Lω into blocks.
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An occurrence of a word u ∈ Σ∗ in the word ω is a pair (u,m) such that u = ωm+1ωm+2 . . . ωm+n.
It is easy to see that a word can have many different occurrences. Let ω = ϕ(ω). An occurrence (v, p)
of a word v of length k is called the ancestor of an occurrence (u,m) of the word u if there exists an
interpretation 〈v, i, j〉 of u such that m = pl + i.

Remark 2 Let ϕ be a marked morphism. Then by Remark 1 circularity of a word ω = ϕ(ω) means that
any of its subwords u with |u| ≥ Lω admits a unique interpretation 〈v, i, j〉 on ω. So if u is a subword of
ω with |u| ≥ Lω, then interpretations of all occurrences of u are the same and equal to 〈v, i, j〉.

Now we introduce the main object of this paper. Let AN be the set of all sequences of pairwise dis-
tinct reals defined on N = {0, 1, 2, . . .}. Define an equivalence relation ∼ on AN as follows: let a, b be
sequences from AN, where a = {as}s∈N and b = {bs}s∈N; then a ∼ b if and only if for all s, r ∈ N
the inequalities as < ar and bs < br hold or do not hold simultaneously. An equivalence class from
AN/∼ is called an (N)-permutation, or a one-sided infinite permutation. If a permutation α is realized by
a sequence of reals a, that is, if the sequence a belongs to the class α, we denote α = a. Similarly, we
can consider a Z-permutation, or an S-permutation, defined on an arbitrary subset S of Z. In particular, a
{1, . . . , n}-permutation always has a representative with all values in {1, . . . , n}, i. e., can be identified
with a usual permutation from Sn. In what follows the notation x = x1 . . . xn, where xi ∈ {1, . . . , n},
xi 6= xj for i 6= j, means that the sequence x1, . . . , xn is a representative of the permutation x, that is,
that x = x1 . . . xn.

Let ω be an infinite nonperiodic word over the alphabet Σ. A word ω corresponds to the binary real
number Rω(i) = 0, ωiωi+1 . . . =

∑
k≥0 ωi+k2−(k+1). We will say that the infinite permutation αω is

generated by ω if it is realized by the sequence of αi = Rω(i).
Since ω is a non-periodic word, all Rω(i) are distinct, and the definition above is correct.
We define a function γ : R2 \ {(a, a)|a ∈ R} → {<,>}, which for two different real numbers reveals

their relation: γ(a, b) = < if and only if a < b. We say that a permutation π = π1 . . . πn is a subpermu-
tation or factor of length n of an infinite permutation αω if γ(πs, πt) = γ(αi+s, αi+t) for 1 ≤ s < t ≤ n
and for a fixed positive integer i. In this case we write that π = αi+1 . . . αi+n.

We define the set Perm(n) as the set of all subpermutations of αω of length n:

Perm(n) = {αi+1 . . . αi+n|i ≥ 0}.

Now we define the permutation complexity of a word ω (or equivalently, the factor complexity of the
induced permutation αω) as λ(n) = |Perm(n)|. We say that an occurrence (u,m) of a word u of
length n generates a permutation π = π(u,m) if αm+1 . . . αm+n = π. A subword u of the word ω
generates a permutation π if there is an occurrence (u,m) of this word which generates π. The number
of permutations generated by u is denoted by f(u).

3 General scheme
The main idea of the proof is that we calculate

∑
|u|=n f(u). We note that

∑
|u|=n f(u) is the number of

permutations, each of them generated by at least one occurrence of some subword of length n of word ω.
It is clear that some permutations can be calculated several times. But in Makarov (2006) it was proved
that two distinct subwords u1 and u2 of word ω can generate the same permutations if and only if u1 = v0
and u2 = v1 up to a relabeling of u1 and u2. Recall that a subword v of the word ω is called special (in
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ω) if v0 and v1 are also subwords of ω. The set of all the special words of length n is denoted by B(n).
Thus permutation complexity of ω is ∑

|u|=n

f(u)−
∑

b∈B(n−1)

g(b),

where g(v) is the number of common permutations generated by some occurrences of words v0 and v1.
After we prove that we can express f(u) through f(u′), where u′ is the ancestor of u. We also show that
we can express g(v) through g(v′), where v′ is the ancestor of v and v is a special word. So we reduce the
calculation of

∑
|u|=n f(u) and

∑
b∈B(n−1) g(b) to the calculation of

∑
|u|=k f(u) and

∑
b∈B(k−1) g(b),

where k is a sufficiently small number.

4 Class Ql

We say that a l–uniform marked binary morphism ϕ such that ϕ(0) starts with 0 belongs to the class Ql if
it satisfies the following properties (we assume that l ≥ 2):

Properties.

1. If ϕ(0) = 0u0x for some word x, then 0u1 is not a subword of ϕ(0) and ϕ(1) and 0u is not a suffix
of ϕ(0) and ϕ(1).

2. If ϕ(1) = 1u1x for some word x, then 1u0 is not a subword of ϕ(0) and ϕ(1) and 1u is not a suffix
of ϕ(0) and ϕ(1).

In Frid (1998) the criterion of circularity of marked uniform morphisms was obtained. According to an
easy corollary of that criterion Frid (2000), all nonperiodic fixed points of l–uniform binary morphisms
with ω1 = 0 are circular, except for the case when ϕ(1) = 1l. So ω = lim

n→∞
ϕn(0) of any morphism ϕ

which belongs to the class Ql is circular because ϕ(1) 6= 1l(if ϕ(1) = 1l, then we obtain a contradiction
with Property 2 in the definition of Ql).

Everywhere below the word ϕ(0) will be called the block of the first type, and ϕ(1) is called the block
of the second type.

Example. Each morphism ϕ(0) = 012n01n, ϕ(1) = 102n10n for n ≥ 2 belongs to Ql, whereas the
morphism ϕ(0) = 01011, ϕ(1) = 10000 does not belong to Ql.

Consider a fixed point ω = ϕ(ω) of a morphism ϕ ∈ Ql. The partition of ω into blocks which are the
images of its symbols is called correct.

Let u and v be two words such that |u| = |v|. We say that u > v (or v < u) if u = u11u2 and
v = u10v2 for some words u1, u2 and v2.

Lemma 1 Let ω be a fixed point of the morphism ϕ, where ϕ ∈ Ql. Then the following statements are
true:

1. Let ωi = ωj = 0 and i ≡ 1 (mod l), j 6≡ 1 (mod l). Then Rω(i) > Rω(j).

2. Let ωi = ωj = 1 and i ≡ 1 (mod l), j 6≡ 1 (mod l). Then Rω(i) < Rω(j).

To prove Lemma 1, we prove several auxiliary assertions.
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Proposition 1 Let ϕ ∈ Ql. Then the following statements are true:

1. If 0u is a prefix of ϕ(0) and 0v is a subword of ϕ(0) or ϕ(1) with |u| = |v|, then v < u or v = u.

2. If 1u is a prefix of ϕ(1) and 1v is a subword of ϕ(0) or ϕ(1) with |u| = |v|, then v > u or v = u.

Proof: The two cases are symmetric, so we shall prove the first one. Let v > u. Hence v = u11v2 and
u = u10u2 for some words u1, u2 and v2. So 0u10 is a prefix of ϕ(0) and 0u11 is a subword of ϕ(0) or
ϕ(1). It contradicts with Property 1 of the definition of Ql. 2

Proposition 2 Let ω be a some binary nonperiodic word. Let Rω(i) = 0, xu . . . and Rω(j) = 0, xv . . .
for some finite words x, u and v such that u > v. Then Rω(i) > Rω(j).

Proof: Since u > v, we have u = u11u2 and v = u10v2 for some words u1, u2 and v2. So

γ(Rω(i), Rω(j)) = γ(0, xu11 . . . ; 0, xu10 . . .) => .

2

PROOF OF LEMMA 1. The two cases are symmetric, so we shall prove the first one. Since ωi = 0 and
i ≡ 1 (mod l), ωi lies in block ϕ(0) in the correct partition of ω into blocks. Let ωj lie in block ϕ(c)
in the correct partition of ω into blocks for some c ∈ {0, 1}. There exist words u, u′, x and y such that
ϕ(0) = 0uy, ϕ(c) = xωju

′ and |u| = |u′|.
Proposition 1 implies that u′ < u or u′ = u. Consider the case when u′ < u. Then we have

γ(Rω(i), Rω(j)) = γ(0, ωiu . . . ; 0, ωju
′ . . .) =>

due to Proposition 2.
Consider the case when u = u′. Then ϕ(c) = xωju. Let ϕ(0) = 0uav for some letter a and word v.

Since 0u is a suffix of ϕ(c), by Property 1 of the definition of Ql we have that a = 1. So ϕ(0) = 0u1v. If
ωj+|u|+1 = 0, then

γ(Rω(i), Rω(j)) = γ(0, ωiu1 . . . ; 0, ωju0 . . .) => .

Consider the case when ωj+|u|+1 = 1. Since ϕ(c) = xωju, we have j + |u| + 1 ≡ 1 (mod l) and
ωj+|u|+1 lies in block ϕ(1) in the correct partition ω into blocks. Let ϕ(1) = 1v′bs, where v′ and s are
some words and b is a letter such that |v| = |v′|. Hence |s| = |u|. By Proposition 1 we have v′ < v or
v = v′. If v′ < v, then

γ(Rω(i), Rω(j)) = γ(0, ωiu1v . . . ; 0, ωju1v′ . . .) =>

due to Proposition 2. So we can assume that v = v′. Since 1v is a suffix of ϕ(0), by Property 2 of the
definition of Ql we have that b = 0. If ωi+l = 1, then

γ(Rω(i), Rω(j)) = γ(0, ωiu1v1 . . . ; 0, ωju1v0 . . .) => .

So we can assume that ωi+l = 0. Since i ≡ 1 (mod l), we have i+ l ≡ 1 (mod l) and ωi+l lies in block
ϕ(0) in the correct partition ω into blocks. By Proposition 1 we have s < u or s = u. If s < u, then

γ(Rω(i), Rω(j)) = γ(0, ωiu1v0u . . . ; 0, ωju1v0s . . .) =>
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due to Proposition 2. So we can assume that s = u. If ωj+|u|+l+1 = 0, then

γ(Rω(i), Rω(j)) = γ(0, ωiu1v0u1 . . . ; 0, ωju1v0u0 . . .) => .

So we can assume that ωj+|u|+l+1 = 1.
Continuing the procedure, we obtain that either Rω(i) > Rω(j), or ω = ω1 . . . ωi−1ϕ(0)ϕ(0).... The

second case is impossible because word ω is nonperiodic.

Lemma 2 Let ω be a fixed point of the morphism ϕ, where ϕ ∈ Ql. Let ωi = ωj , where i ≡ i′ (mod l),
j ≡ j′ (mod l) and 0 ≤ i′, j′ ≤ l − 1. If i′ 6= j′, or if ωi and ωj lie in blocks of different types in the
correct partition of ω into blocks, then the relation γ(Rω(i), Rω(j)) is uniquely defined by i′, j′ and the
types of respective blocks.

Proof: Let ωi and ωj lie in blocks of different types in the correct partition of ω and i′ = j′. Without loss
of generality, we assume that ωi lies in ϕ(0) and ωj lies in ϕ(1). Then ϕ(0) = xωiy and ϕ(1) = x′ωjy

′

where |y| = |y′|. Since the last symbols of y and y′ are different, we have y = zav and y′ = zbv′ where
a and b are different symbols. Hence we obtain that

γ(Rω(i), Rω(j)) = γ(0, ωiza . . ., 0, ωjzb . . .) = γ(a, b).

In all other cases we have i′ 6= j′. Without loss of generality, we assume that i′ < j′. Let T1 = xωiy
and T2 = x′ωjy

′ be blocks which contain ωi and ωj . Then there are two cases. In the first case we have
y = y′′z where |y′′| = |y′| and y′′ 6= y′. Hence we obtain that y′′ = gag′′, y′ = gbg′ where g, g′, g′′ are
some words, a and b are different symbols. Hence we obtain that

γ(Rω(i), Rω(j)) = γ(0, ωiga . . ., 0, ωjgb . . .) = γ(a, b).

In the second case we have y = y′z. Assume first that z = 0z′ for some word z′. If ωj+l−j′+1 = 0,
then Lemma 1 implies that Rω(i + |y′| + 1) < Rω(j + l − j′ + 1), because in this case ωj+l−j′+1 = 0
and j + l − j′ + 1 ≡ 1 (mod l). If ωj+l−j′+1 = 1, then Rω(i + |y′| + 1) < Rω(j + l − j′ + 1). In
addition, we have that

γ(Rω(i), Rω(j)) = γ(0, ωiy
′0 . . ., 0, ωjy

′0 . . .) = γ(Rω(i+ |y′|+ 1), Rω(j + l − j′ + 1)).

Thus, in this case the inequality Rω(i) < Rω(j) always holds.
It remains to consider the case z = 1z′. If ωj+l−j′+1 = 1, then Lemma 1 implies thatRω(i+|y′|+1) >

Rω(j+ l−j′+1), because in this case ωj+l−j′+1 = 1 and j+ l−j′+1 ≡ 1 (mod l). If ωj+l−j′+1 = 0,
then Rω(i+ |y′|+ 1) > Rω(j + l − j′ + 1). In addition, we have that

γ(Rω(i), Rω(j)) = γ(0, ωiy
′1 . . ., 0, ωjy

′1 . . .) = γ(Rω(i+ |y′|+ 1), Rω(j + l − j′ + 1)).

Thus, in this case the inequality Rω(i) > Rω(j) always holds. 2

Lemma 3 Let (u,m1) and (u,m2) be two occurrences of a subword u of length n ≥ Lω , (u′,m′1) and
(u′,m′2) be their ancestors. Then for 1 ≤ t < s ≤ n either

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s))
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or m1 + t = (m′1 + t′ − 1)l + r, m1 + s = (m′1 + s′ − 1)l + r, m2 + t = (m′2 + t′ − 1)l + r,
m2 + s = (m′2 + s′ − 1)l + r for some 1 ≤ r ≤ l and

ωm′
1+t′ = ωm′

1+s′ = ωm′
2+t′ = ωm′

2+s′ .

Proof: Let 1 ≤ t < s ≤ n. Consider relations γ(Rω(m1+t), Rω(m1+s)) and γ(Rω(m2+t), Rω(m2+
s)). If ωm1+t 6= ωm1+s and ωm2+t 6= ωm2+s, then

γ(Rω(m1 + t), Rω(m1 + s)) = γ(ωm1+t, ωm1+s)

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(ωm2+t, ωm2+s).

So
γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s)).

Consider the case when ωm1+t = ωm1+s and ωm2+t = ωm2+s. Let u1 = ωm1+1 . . . ωm1+n and u2 =
ωm2+1 . . . ωm2+n. Since |u1| = |u2| ≥ Lω , by Remark 1 words u1 and u2 have the same partitions in
the correct partition of ω. Hence ωm1+t, ωm1+s, ωm2+t and ωm2+s lie in blocks ϕ(ωm′

1+t′), ϕ(ωm′
1+s′),

ϕ(ωm′
2+t′) and ϕ(ωm′

2+s′) in the correct partition of ω for some 1 ≤ t′ < s′ ≤ |u′|. Moreover ωm1+t

and ωm2+t occur in blocks ϕ(ωm′
1+t′) and ϕ(ωm′

2+t′) at the same positions. Analogously ωm1+s and
ωm2+s occur in blocks ϕ(ωm′

1+s′) and ϕ(ωm′
2+s′) at the same positions. So m1 + t ≡ m2 + t (mod l)

and m1 + s ≡ m2 + s (mod l). Moreover ωm′
1+t′ = ωm′

2+t′ and ωm′
1+s′ = ωm′

2+s′ .
Let

ωm′
1+t′ = ωm′

2+t′ = a

and
ωm′

1+s′ = ωm′
2+s′ = b.

If a 6= b, then ωm1+t and ωm1+s (as ωm2+t and ωm2+s) lie in blocks of different types in the correct
partition of ω into blocks. Since m1 + t ≡ m2 + t (mod l) and m1 + s ≡ m2 + s (mod l), Lemma 2
implies that

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s)).

If a = b and s 6≡ t (mod l), then m1 + t 6≡ m1 + s (mod l), m2 + t 6≡ m2 + s (mod l) and Lemma 2
also implies that

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s)).

It remains to consider the case when a = b and s ≡ t (mod l). Then

ωm′
1+t′ = ωm′

1+s′ = ωm′
2+t′ = ωm′

2+s′ .

Moreover since s ≡ t (mod l), we have m1 + t = (m′1 + t′ − 1)l + r, m1 + s = (m′1 + s′ − 1)l + r,
m2 + t = (m′2 + t′ − 1)l + r and m2 + s = (m′2 + s′ − 1)l + r for some 1 ≤ r ≤ l. 2

Lemma 4 Let ωi = ωj and Rω(i) < Rω(j). Then the inequalities Rω((i− 1)l+ r) < Rω((j − 1)l+ r)
hold for all 1 ≤ r ≤ l.
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Proof: Since ωi = ωj , we obtain that ϕ(ωi) = ϕ(ωj). Hence we have that the equality ω(i−1)l+r =
ω(j−1)l+r holds for all 1 ≤ r ≤ l. Since Rω(i) < Rω(j) then there exists a finite binary word x such that
Rω(i) = 0, ωix0 . . . and Rω(j) = 0, ωjx1 . . .. Hence we have

Rω((i− 1)l + r) = 0, ω(i−1)l+r . . . ωilϕ(x)0 . . .

and
Rω((j − 1)l + r) = 0, ω(j−1)l+r . . . ωjlϕ(x)1 . . . .

Consequently we obtain that Rω((i− 1)l + r) < Rω((j − 1)l + r). The lemma is proved. 2

Lemma 5 Let (v0,m1) and (v1,m2) be some occurrences of words v0 and v1 with |v| = n ≥ Lω , and
let (v′0,m′1) and (v′1,m′2) be their ancestors with |v′| = k. Then the following statements are true:

1. If m1 + t 6≡ 1 (mod l) and m2 + t 6≡ 1 (mod l), then

γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1))

for 1 ≤ t < n+ 1.

2. If m1 + t = (m′1 + t′ − 1)l + 1 and m2 + t = (m′2 + t′ − 1)l + 1 for 1 ≤ t′ < k + 1 and
1 ≤ t < n+ 1, then

γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1))

if and only if

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) = γ(Rω(m′2 + t′), Rω(m′2 + k + 1)).

Proof: Let 1 ≤ t < n+ 1. Let v1 = ωm1+1 . . . ωm1+n and v2 = ωm2+1 . . . ωm2+n. Since |v1| = |v2| ≥
Lω , by Remark 1 words v1 and v2 have the same partitions in the correct partition of ω. Hence ωm1+t and
ωm2+t lie in blocks ϕ(ωm′

1+t′) and ϕ(ωm′
2+t′) in the correct partition of ω for some 1 ≤ t′ ≤ k. Moreover

ωm1+t and ωm2+t occur in blocks ϕ(ωm′
1+t′) and ϕ(ωm′

2+t′) at the same positions. So m1 + t ≡ m2 + t
(mod l). Since v is a special word, v has the interpretation 〈v′, i, 0〉, where 0 ≤ i < l. Hence the last
blocks of partitions of v1 and v2 in the correct partition of ω are complete. So m1 + n+ 1 ≡ 1 (mod l)
and m2 + n + 1 ≡ 1 (mod l). Since ωm1+n+1 = 0 and ωm2+n+1 = 1, we have that ωm1+n+1 and
ωm2+n+1 are the first symbols of blocks ϕ(ωm′

1+k+1) = ϕ(0) and ϕ(ωm′
2+k+1) = ϕ(1) in the correct

partition of ω. Hence m1 + n + 1 = (m′1 + k)l + 1, m2 + n + 1 = (m′2 + k)l + 1 and ωm′
1+k+1 = 0,

ωm′
2+k+1 = 1.

Consider the case when m1 + t 6≡ 1 (mod l) and m2 + t 6≡ 1 (mod l). Assume that

ωm1+t = ωm2+t = 0

(the other case is similar). Recall that ωm1+n+1 = 0. Since m1 + t 6≡ 1 (mod l) and m1 + n + 1 ≡ 1
(mod l), we have that Rω(m1 + t) < Rω(m1 + n + 1) due to Lemma 1. Since ωm2+t = 0 and
ωm2+n+1 = 1, we have that

γ(Rω(m2 + t), Rω(m2 + n+ 1)) = γ(0, 0 . . . ; 0, 1 . . .) =< .
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So
γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1)).

Consider the case when m1 + t ≡ 1 (mod l) and m2 + t ≡ 1 (mod l). As we note above ωm1+t and
ωm2+t lie in blocks ϕ(ωm′

1+t′) and ϕ(ωm′
2+t′) in the correct partition of ω for some 1 ≤ t′ < k + 1.

Hence m1 + t = (m′1 + t′ − 1)l + 1 and m2 + t = (m′2 + t′ − 1)l + 1. Assume that

ωm1+t = ωm2+t = 0

(the case when ωm1+t = ωm2+t = 1 is similar). Since ϕ(0) starts with 0 and ϕ(1) starts with 1, we have
that ωm′

1+t′ = ωm′
2+t′ = 0. Recall that ωm2+n+1 = ωm′

2+k+1 = 1. Then

γ(Rω(m2 + t), Rω(m2 + n+ 1)) = γ(Rω(m′2 + t′), Rω(m′2 + k + 1)).

Lemma 4 implies that

γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m′1 + t′), Rω(m′1 + k + 1)).

So
γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1))

if and only if

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) = γ(Rω(m′2 + t′), Rω(m′2 + k + 1)).

2

5 Conjugacy of permutations
In this section we introduce the concept of conjugate permutations. Let z = z1z2 . . . zk be a permutation
of length k, where zi ∈ {1, 2, . . . , k}.

An element of the permutation z is the number zi, where 1 ≤ i ≤ k.
We will say that two permutations x = x1x2 . . . xk and y = y1y2 . . . yk are conjugate if they differ

only in relations of extreme elements, i.e γ(x1, xk) 6= γ(y1, yk), but γ(xi, xj) = γ(yi, yj) for all other
i, j. We will denote this conjugacy by x ∼ y.

Example. There are exactly two pairs of conjugate permutations among the permutations of length 3:
132 ∼ 231 and 213 ∼ 312.

Lemma 6 Let x be a finite permutation and x = x1 . . . xk. Then a permutation y such that x ∼ y exists
if and only if |x1 − xk| = 1.

Proof: Let us prove the necessity. Let y be a permutation such that x ∼ y. Let us prove that |x1−xk| = 1.
If it is not true, then there exists 1 < i < k such that min(x1, xk) < xi < max(x1, xk). Since x ∼ y, we
obtain that γ(x1, xi) = γ(y1, yi) and γ(xi, xk) = γ(yi, yk). Hence γ(x1, xk) = γ(y1, yk). It contradicts
with x ∼ y.

Let us prove the sufficiency. Let |x1 − xk| = 1. We construct a permutation y as follows: let y1 = xk,
yk = x1, y2 = x2, y3 = x3 . . . , yk−1 = xk−1. Since |x1 − xk| = 1, we obtain that γ(xi, xj) = γ(yi, yj)
for all i, j except i = 1, j = k. On the other hand, we have by construction that γ(x1, xk) 6= γ(y1, yk),
that is x ∼ y. 2
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Lemma 7 Let (u,m1) and (u,m2) be two occurrences of a subword u of length n ≥ Lω , and (u′,m′1)
and (u′,m′2) be their ancestors with |u′| = k. Then the following statements are true:

1. If π(u,m1) 6= π(u,m2), then π(u′,m′1) 6= π(u′,m′2).

2. If π(u,m1) ∼ π(u,m2), then π(u′,m′1) ∼ π(u′,m′2) and n = (k − 1)l + 1.

3. If π(u′,m′1) 6= π(u′,m′2) and π(u′,m′1) � π(u′,m′2), then π(u,m1) 6= π(u,m2) and π(u,m1) �
π(u,m2).

4. If n = (k − 1)l + 1 and π(u′,m′1) ∼ π(u′,m′2), then π(u,m1) ∼ π(u,m2).

5. If n < (k − 1)l + 1 and π(u′,m′1) ∼ π(u′,m′2), then π(u,m1) = π(u,m2).

6. If n > (k − 1)l + 1 and π(u′,m′1) ∼ π(u′,m′2), then π(u,m1) 6= π(u,m2).

Proof: Let u have the interpretation 〈u′, i, j〉, where 0 ≤ i < l, 0 ≤ j < l. It is unique since |u| ≥ Lω .
1. Consider 1 ≤ t < s ≤ n. Lemma 3 implies that either

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s))

or m1 + t = (m′1 + t′ − 1)l + r, m1 + s = (m′1 + s′ − 1)l + r, m2 + t = (m′2 + t′ − 1)l + r,
m2 + s = (m′2 + s′ − 1)l + r for some 1 ≤ r ≤ l and

ωm′
1+t′ = ωm′

1+s′ = ωm′
2+t′ = ωm′

2+s′ .

Consider the second case. Then Lemma 4 implies that

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m′1 + t′), Rω(m′1 + s′))

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(Rω(m′2 + t′), Rω(m′2 + s′)).

Since π(u,m1) 6= π(u,m2), we obtain that

γ(Rω(m1 + t), Rω(m1 + s)) 6= γ(Rω(m2 + t), Rω(m2 + s))

for some 1 ≤ t < s ≤ n. Then we have

γ(Rω(m′1 + t′), Rω(m′1 + s′)) 6= γ(Rω(m′2 + t′), Rω(m′2 + s′))

for the corresponding t′ and s′. Hence we prove that π(u′,m′1) 6= π(u′,m′2).
2. Since (u′,m′1) is the ancestor of (u,m1), we obtain that m1 + 1 = m′1l + i + 1 and m1 + n =

(m′1 + k)l − j. So n = kl − i− j. Since π(u,m1) ∼ π(u,m2), we have

γ(Rω(m1 + 1), Rω(m1 + n)) 6= γ(Rω(m2 + 1), Rω(m2 + n)).

Hence Lemma 3 implies that m1 + 1 = m′1l + r, m1 + n = (m′1 + k − 1)l + r, m2 + 1 = m′2l + r,
m2 + n = (m′2 + k − 1)l + r for some 1 ≤ r ≤ l and

ωm′
1+1 = ωm′

1+k = ωm′
2+1 = ωm′

2+k.
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Hence r = i+ 1 = l − j and n = kl − j − i = (k − 1)l + 1. Lemma 4 implies that

γ(Rω(m1 + 1), Rω(m1 + n)) = γ(Rω(m′1 + 1), Rω(m′1 + k))

and
γ(Rω(m2 + 1), Rω(m2 + n)) = γ(Rω(m′2 + 1), Rω(m′2 + k)).

So
γ(Rω(m′1 + 1), Rω(m′1 + k)) 6= γ(Rω(m′2 + 1), Rω(m′2 + k)).

Since π(u,m1) ∼ π(u,m2), all other relations between elements of π(u,m1) are equal to those of
π(u,m2). If ωm′

1+t′ 6= ωm′
1+s′ for some 1 ≤ t′ < s′ ≤ k, then it is clear that

γ(Rω(m′1 + t′), Rω(m′1 + s′)) = γ(Rω(m′2 + t′), Rω(m′2 + s′)).

By Lemma 4, the same equality holds when ωm′
1+t′ = ωm′

1+s′ for some 1 ≤ t′ < s′ ≤ k with t′ 6= 1 or
s′ 6= k. Since

γ(Rω(m′1 + 1), Rω(m′1 + k)) 6= γ(Rω(m′2 + 1), Rω(m′2 + k)),

we have proved that π(u′,m′1) ∼ π(u′,m′2).
3. Since π(u′,m′1) 6= π(u′,m′2) and π(u′,m′1) � π(u′,m′2), we obtain that

γ(Rω(m′1 + t′), Rω(m′1 + s′)) 6= γ(Rω(m′2 + t′), Rω(m′2 + s′))

for some 1 ≤ t′ < s′ ≤ k with t′ 6= 1 or s′ 6= k. Without loss of generality suppose that s′ < k: say
Rω(m′1 + t′) < Rω(m′1 + s′) and Rω(m′2 + t′) > Rω(m′2 + s′). Since

ωm′
1+t′ = u′t′ = ωm′

2+t′

and
ωm′

1+s′ = u′s′ = ωm′
2+s′ ,

we obtain ωm′
1+t′ = ωm′

1+s′ and ωm′
2+t′ = ωm′

2+s′ .
Then Lemma 4 implies that Rω((m′1 + t′)l) < Rω((m′1 + s′)l) and Rω((m′2 + t′)l) > Rω((m′2 +

s′)l). Since s′l < n, we obtain that ω(m′
1+s′)l and ω(m′

2+s′)l are not the last symbols of the words
ωm1+1 . . . ωm1+n and ωm2+1 . . . ωm2+n, so π(u,m1) 6= π(u,m2) and π(u,m1) � π(u,m2).

4. Assume that

γ(Rω(m1 + t), Rω(m1 + s)) 6= γ(Rω(m2 + t), Rω(m2 + s))

for some 1 ≤ t < s ≤ n. Let us prove that t = 1 and s = n. Lemma 3 implies that m1 + t =
(m′1 +t′−1)l+r,m1 +s = (m′1 +s′−1)l+r, m2 +t = (m′2 +t′−1)l+r, m2 +s = (m′2 +s′−1)l+r
for some 1 ≤ r ≤ l and

ωm′
1+t′ = ωm′

1+s′ = ωm′
2+t′ = ωm′

2+s′ .

Hence
γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m′1 + t′), Rω(m′1 + s′))

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(Rω(m′2 + t′), Rω(m′2 + s′))
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due to Lemma 4. So

γ(Rω(m′1 + t′), Rω(m′1 + s′)) 6= γ(Rω(m′2 + t′), Rω(m′2 + s′)).

Since π(u′,m′1) ∼ π(u′,m′2), we see that t′ = 1 and s′ = k. Hence s− t = (s′− t′)l = (k−1)l = n−1.
So t = 1 and s = n.

Let us prove
γ(Rω(m1 + 1), Rω(m1 + n)) 6= γ(Rω(m2 + 1), Rω(m2 + n)).

Since (u′,m′1) is the ancestor of (u,m1), we obtain that m1 + 1 = m′1l + i + 1 for some integer i.
Analogously we obtainm2+1 = m′2l+i+1. Since n = (k−1)l+1, we havem1+n = (m′1+k−1)l+i+1
and m2 +n = (m′2 + k− 1)l+ i+ 1 for the same i by Remark 2 as n ≥ Lω . Then Lemma 4 implies that

γ(Rω(m1 + 1), Rω(m1 + n)) = γ(Rω(m′1 + 1), Rω(m′1 + k))

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(Rω(m′2 + 1), Rω(m′2 + k)).

So
γ(Rω(m1 + 1), Rω(m1 + n)) 6= γ(Rω(m2 + 1), Rω(m2 + n)).

Thus π(u,m1) ∼ π(u,m2).
5. Since u has the interpretation 〈u′, i, j〉, u is obtained from ϕ(u′) by erasing i symbols to the left and

j symbols to the right. So |u| = |u′|l − i− j = kl − i− j. Hence 0 ≤ n+ j − (k − 1)l − 1 < l. Let

u1 = ωm1+n+1 . . . ωm1+(k−1)l+1

and
u2 = ωm2+n+1 . . . ωm2+(k−1)l+1

(since n < (k − 1)l + 1, the definition of words u1 and u2 is correct). Then words uu1 and uu2 are
obtained from ϕ(u′) by erasing i symbols to the left and n+ j− (k−1)l−1 symbols to the right. So uu1
and uu2 have the interpretation 〈u′, i, n+ j − (k − 1)l − 1〉 and u1 = u2. Then (u′,m′1) and (u′,m′2)
are the ancestors of occurrences (uu1,m1) and (uu2,m2). Since |uu1| = |uu2| = (|u′| − 1)l + 1, Case
4 of this Lemma implies that π(uu1,m1) ∼ π(uu2,m2). Hence π(uu1,m1) and π(uu2,m2) differ only
in relations of extreme elements and π(u,m1) = π(u,m2).

6. Consider prefixes u1 = ωm1+1 . . . ωm1+(k−1)l+1 and u2 = ωm2+1 . . . ωm2+(k−1)l+1 of u. Since u
has the interpretation 〈u′, i, j〉, u is obtained from ϕ(u′) by erasing i symbols to the left and j symbols to
the right. So |u| = |u′|l − i − j = kl − i − j. Hence 0 ≤ n+ j − (k − 1)l − 1 < l. Then words u1
and u2 are obtained from ϕ(u′) by erasing i symbols to the left and n+ j − (k − 1)l − 1 symbols to the
right. So u1 and u2 have the interpretation 〈u′, i, n+ j − (k − 1)l − 1〉. So (u′,m′1) and (u′,m′2) are the
ancestors of occurrences (u1,m1) and (u2,m2), and |u1| = |u2| = (|u′| − 1)l + 1. Then Case 4 of this
Lemma implies that π(u1,m1) ∼ π(u2,m2). Hence we have

γ(Rω(m1 + 1), Rω(m1 + (k − 1)l + 1)) 6= γ(Rω(m2 + 1), Rω(m2 + (k − 1)l + 1)).

Thus we prove that π(u,m1) 6= π(u,m2).
2
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6 Algorithm for finding f(u)
Let u be a subword of of length n of ω and n ≥ Lω . The number of permutations generated by u is
denoted by f(u). In this section, we calculate

∑
|u|=n f(u).

Proposition 3 Let ϕ ∈ Ql and ω = ϕ(ω). Then Lω ≤ l2 + 1.

Proof: Since ϕ is a marked uniform morphism, it is sufficient to prove the uniqueness of the partition
of the word u with |u| ≥ l2 + 1 into blocks. Let word u have two distinct partitions into blocks, that is
u = s1ϕ(x)p1 = s2ϕ(y)p2, where x and y are some words, s1 and s2 are suffixes of ϕ(a) and ϕ(c) for
a, c ∈ {0, 1}, p1 and p2 are prefixes of ϕ(b) and ϕ(d) for b, d ∈ {0, 1}. Let us prove that |u| ≤ l2. Let
x = x1...xt and y = y1...yh. Without loss of generality, we assume that |s2| < |s1|. Then s1 = s2eu for
some word u and letter e. Let e = 0 (the case when e = 1 is similar). Then 0u is a suffix of ϕ(a) and 0u
is a prefix of ϕ(y1). So y1 = 0. Hence by Property 1 in the definition of Ql we have that ϕ(0) = 0u1v for
some word v. Then ϕ(x1) = 1v.... So x1 = 1. Hence by the Property 1 in the definition of Ql we have
that ϕ(1) = 1v0u′. Then ϕ(y2) = 0... and y2 = 0. So ϕ(y2) = 0u1v. Hence u′ = u and ϕ(1) = 1v0u.
Continuing the procedure, we obtain that a = x1 = x2 = ... = xt = b = 1. Then word axb = 0t+2 is a
subword of ω. By the definition of Ql we have that 0l+1 and 1l+1 are not subwords of ω. So t ≤ l − 2.
Then |u| = |s1|+ |p1|+ tl ≤ l2 (|s1| ≤ l and |p1| ≤ l since s1 and p1 are subwords of ϕ(a) and ϕ(b)). 2

Thus we can take Lω = l2 + 1. In what follows we assume that Lω = l2 + 1. Let n ≥ Lω . Then
for n there exists a unique pair of numbers k(n) and s(n) such that s(n) > 0, k(n) ∈ {l, ..., l2 − 1}
and k(n)ls(n) < n ≤ (k(n) + 1)ls(n). The number n − k(n)ls(n) is denoted by r(n). We note that
n = k(n)ls(n) + r(n) and r(n) ∈ [1; ls(n)].

For an arbitrary subword u of the word ω we define the set Nu of all pairs of conjugate permutations,
and Mu as the set of all remaining permutations generated by u as subword of ω. The set of all permu-
tations generated by u is denoted by Hu. We note that |Hu| = f(u). The cardinality of the set Mu is
denoted by mu, and the cardinality of the set Nu is denoted by nu. So we have f(u) = mu + 2nu.

Let µ(n) =
∑
|u|=n(mu + nu) and χ(n) =

∑
|u|=n f(u). The main theorem of this section follows:

Theorem 1 Let n ≥ Lω and ϕ ∈ Ql. Then∑
|u|=n

f(u) = (r(n)− 1)µ(k(n) + 2) + (ls(n) − r(n) + 1)χ(k(n) + 1).

Let u be a subword of the word ω of length n ≥ Lω , and u′ be the ancestor of u. Let Iu be the set of
integer such that for each π ∈ Hu there exists a unique integer m ∈ Iu such that π = π(u,m). Now we
define two important maps which will be used in what follows.

For each permutation π of Hu, consider the occurrence (u,m) such that π = π(u,m) and m ∈ Iu (m
is uniquely defined due to the definition of Iu). Then we can define a map Ψu : Hu → Hu′ by the rule
Ψu(π) = π′, where (u′,m′) is the ancestor of the occurrence (u,m) and π′ = π(u′,m′).

For each permutation π′ ofHu′ , consider the occurrence (u′,m′) such that π′ = π(u′,m′) andm′ ∈ Iu′

(m′ is uniquely defined due to the definition of Iu′ ). Then we can define a map Λu : Hu′ → Hu by the
rule Λu(π′) = π, where (u′,m′) is the ancestor of the occurrence (u,m) and π = π(u,m).

Lemma 8 Let u be a word of length |u| = xl + r ≥ Lω for 1 ≤ r ≤ l, and u′ be the ancestor of u of
length x+ 2. Then f(u) = mu′ + nu′ .



108 Alexandr Valyuzhenich

Proof: Let us prove that mu′ + nu′ ≤ |Hu|. For any word v we define the set Pv which contains all
permutations of Mv and one permutation of each pair of Nv . It is clear that |Pv| = mv + nv . Consider
the restriction of the map Λu to the set Pu′ . Let π′1 = π(u′,m′1) and π′2 = π(u′,m′2) be two different
elements of Pu′ . Then π′1 � π′2, since otherwise (π′1, π

′
2) ∈ Nu′ and it contradicts with the definition of

Pu′ . Hence Case 3 of Lemma 7 implies that Λu(π′1) 6= Λu(π′2). Hence Λu is an injective map from Pu′

to Hu and mu′ + nu′ = |Pu′ | ≤ |Hu|.
Let us prove that |Hu| ≤ mu′ + nu′ . Consider the map Ψu : Hu → Hu′ defined above. Let π1 =

π(u,m1) and π2 = π(u,m2) be two different elements of Hu. Then Ψu(π1) 6= Ψu(π2) due to Case 1 of
Lemma 7. Since (x+ 1)l+ 1 > xl+ r, we have that |u| < (|u′|−1)l+ 1. Then Ψu(π1) � Ψu(π2), since
otherwise Case 5 of Lemma 7 would imply that π1 = π2. Thus we have proved that Ψu is an injective
map and the image Ψu[Hu] of Hu does not contain conjugate permutations. Since the cardinality of
any subset of Hu′ which does not contain conjugate permutations is at most mu′ + nu′ , we obtain that
|Hu| ≤ mu′ + nu′ .

Combining the inequalities proven above, we obtain that

f(u) = |Hu| = mu′ + nu′ .

The lemma is proved. 2

Lemma 9 Let u be a word with |u| = xl + r ≥ Lω , u′ be the ancestor of u and |u′| = x + 1. Then the
following statements are true:

1. f(u) = f(u′).

2. If r = 1, then mu + nu = mu′ + nu′ .

Proof: 1. Consider the map Ψu : Hu → Hu′ defined above. Let π1 = π(u,m1) and π2 = π(u,m2)
be two different elements of Hu. Then Ψu(π1) 6= Ψu(π2) due to Case 1 of Lemma 7. Hence Ψu is an
injective map and

f(u) = |Hu| ≤ |Hu′ | = f(u′).

Let us prove that f(u) ≥ f(u′). Consider the map Λu : Hu′ → Hu defined above. Let π′1 = π(u′,m′1)
and π′2 = π(u′,m′2) be two different elements of Hu′ . Since xl + 1 ≤ xl + r, we have that |u| ≥
(|u′| − 1)l + 1. If π′1 � π′2, then Case 3 of Lemma 7 implies that Λu(π′1) 6= Λu(π′2). If π′1 ∼ π′2, then
Cases 4 and 6 of Lemma 7 imply that Λu(π′1) 6= Λu(π′2). Hence Λu is an injective map and

f(u′) = |Hu′ | ≤ |Hu| = f(u).

So f(u) = f(u′).
2. Since r = 1, we have |u| = (|u′| − 1)l + 1. Let us prove that nu ≤ nu′ . Consider a pair

(π1, π2) ∈ Nu. Then the pair (Ψu(π1),Ψu(π2)) ∈ Nu′ due to Case 2 of Lemma 7. Moreover, two
different pairs (π1, π2) ∈ Nu and (π3, π4) ∈ Nu correspond to two different pairs (Ψu(π1),Ψu(π2)) and
(Ψu(π3),Ψu(π4)) due to Case 1 of Lemma 7. Hence nu ≤ nu′ .

Let us prove that nu ≥ nu′ . Consider a pair (π′1, π
′
2) ∈ Nu′ . Then the pair (Λu(π′1),Λu(π′2)) ∈ Nu due

to Case 4 of Lemma 7. Moreover, two different pairs (π′1, π
′
2) ∈ Nu′ and (π′3, π

′
4) ∈ Nu′ correspond to

two different pairs (Λu(π′1),Λu(π′2)) and (Λu(π′3),Λu(π′4)) due to Case 3 of Lemma 7. Hence nu ≥ nu′ .
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Combining the inequalities proven above, we obtain that nu = nu′ . Moreover f(u) = f(u′) due to
Case 1 of this Lemma. So

mu + nu = f(u)− nu = f(u′)− nu′ = mu′ + nu′ .

2

Recall that ϕi;j(v) is the word obtained from ϕ(v) by erasing i symbols to the left and j symbols to the
right where 0 ≤ i < l and 0 ≤ j < l. The set of all subwords of ω of length n is denoted by Fω(n).

Lemma 10 Let n = xl + r ≥ Lω , where 1 ≤ r ≤ l. Then the following statements are true:

1. χ(n) = (r − 1)µ(x+ 2) + (l − r + 1)χ(x+ 1).

2. µ(n) = χ(n) for r > 1 and µ(xl + 1) = lµ(x+ 1).

Proof: Since n ≥ Lω , each word u ∈ Fω(n) has a unique interpretation 〈v, i, j〉, where 0 ≤ i < l,
0 ≤ j < l and v is the ancestor of u. By the definition of interpretation we have |u| = |v|l− i− j. Hence
i+ j ≡ l − r (mod l). So |v| = x+ 2 with i+ j = 2l − r or |v| = x+ 1 with i+ j = l − r. 2

Let
A1 = {ϕi;j(v)|v ∈ Fω(x+ 2), i+ j = 2l − r}

and
A2 = {ϕi;j(v)|v ∈ Fω(x+ 1), i+ j = l − r}.

Let us prove the following assertion:

Proposition 4 1. Fω(n) = A1

⋃
A2 and A1

⋂
A2 = ∅.

2. Fω(n) = A2 for r = 1.

Proof: Let us prove that A1

⋂
A2 = ∅. Let u ∈ A1

⋂
A2. Then u has interpretations with |v| = x + 2

and |v| = x+ 1. So u has two different interpretations. It contradicts with |u| ≥ Lω . So A1

⋂
A2 = ∅.

Let us prove that A1

⋃
A2 ⊆ Fω(n). Let v be a subword of ω. Since ω is a fixed point of morphism ϕ,

ϕ(v) is a subword of ω. By the definition of ϕi;j(v) we have that ϕi;j(v) is a subword of ϕ(v). So ϕi;j(v)
is a subword of ω. Let u ∈ A1. Then u = ϕi;j(v) for some subword v of length x+ 2 and i+ j = 2l− r.
Then

|u| = |v|l − i− j = (x+ 2)l − 2l + r = xl + r.

Since ϕi;j(v) is a subword of ω and |u| = xl + r = n, we obtain that u ∈ Fω(n). Let u ∈ A2. Then
u = ϕi;j(v) for some subword v of length x+ 1 and i+ j = l − r. Then

|u| = |v|l − i− j = (x+ 1)l − l + r = xl + r.

Since ϕi;j(v) is a subword of ω and |u| = xl+r = n, we obtain that u ∈ Fω(n). ThusA1

⋃
A2 ⊆ Fω(n).

Let us prove that Fω(n) ⊆ A1

⋃
A2. Let u ∈ Fω(n). Then u has unique interpretation 〈v, i, j〉, where

0 ≤ i < l, 0 ≤ j < l and v is the ancestor of u. Then u = ϕi;j(v) due to the definition of ϕi;j(v) and as
we proved above |v| = x + 2 or |v| = x + 1. Hence u ∈ A1 or u ∈ A2. Thus Fω(n) ⊆ A1

⋃
A2 and

Fω(n) = A1

⋃
A2.
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It remains to consider the case when r = 1. Since 0 ≤ i < l and 0 ≤ j < l, we have i + j < 2l − 1.
Then A1 = ∅ due to the definition of A1. So Fω(n) = A2 for r = 1 due to Case 1 of this Proposition. 2

Proof of Lemma 10:
1. We have Fω(n) = A1

⋃
A2 due to Proposition 4. Then

χ(n) =
∑
|u|=n

f(u) =
∑
u∈A1

f(u) +
∑
u∈A2

f(u).

Let u = ϕi;j(v) ∈ A1. Then v is the ancestor of u, |u| = n = xl + r and |v| = x + 2. Then Lemma 8
implies that f(u) = mv + nv . So∑
u∈A1

f(u) =
∑

|v|=x+2,i+j=2l−r

f(ϕi;j(v)) =
∑
|v|=x+2

(r−1)(mv+nv) = (r−1)
∑
|v|=x+2

(mv+nv) = (r−1)µ(x+2).

If u = ϕi;j(v) ∈ A2, then v is the ancestor of u, |u| = n = xl + r and |v| = x + 1. Then Lemma 9
implies that f(u) = f(v). So∑
u∈A2

f(u) =
∑

|v|=x+1,i+j=l−r

f(ϕi;j(v)) =
∑
|v|=x+1

(l−r+1)f(v) = (l−r+1)
∑
|v|=x+1

f(v) = (l−r+1)χ(x+1).

Thus χ(n) = (r − 1)µ(x+ 2) + (l − r + 1)χ(x+ 1).
2. Let r > 1. Consider an arbitrary word u of length n. Let nu > 0. Then due to Case 2 of Lemma 7,

the existence of two conjugate permutations π(u,m1) and π(u,m2) would imply that |u| = (|u′|−1)l+1,
so that nu = 0. Thus

µ(n) =
∑
|u|=n

(mu + nu) =
∑
|u|=n

f(u) = χ(n)

for r > 1.
Consider the case when r = 1. We have Fω(n) = A2 by Proposition 4. Then

µ(n) =
∑
|u|=n

(mu + nu) =
∑
u∈A2

(mu + nu).

Let u = ϕi;j(v) ∈ A2. Then v is the ancestor of u, |u| = n = xl + r and |v| = x + 1. Then Lemma 9
implies that mu + nu = mv + nv . So∑
u∈A2

(mu +nu) =
∑

|v|=x+1,i+j=l−1

f(ϕi;j(v)) =
∑
|v|=x+1

l(mv +nv) = l
∑
|v|=x+1

(mv +nv) = lµ(x+1).

2

Lemma 11 Let n ≥ Lω . Then µ(n) = χ(n) for r(n) > 1 and µ(n) = µ(k(n) + 1)ls(n) for r(n) = 1.

Proof: Let us prove by the induction on s(n) that µ(n) = χ(n) for r(n) > 1. For s(n) = 1 it is true due
to Case 2 of Lemma 10. Let us prove the induction step. Let n = xl + r0 for r0 ∈ [1, l]. If r0 > 1, then
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µ(n) = χ(n) due to Case 2 of Lemma 10. Consider the case when r0 = 1. Then n = xl+ 1 and we have
µ(xl + 1) = lµ(x+ 1) due to Case 2 of Lemma 10. Since

k(n)ls(n) + 2 ≤ n ≤ (k(n) + 1)ls(n),

we have
k(n)ls(n)−1 +

1

l
≤ x ≤ (k(n) + 1)ls(n)−1 − 1

l
.

Hence
k(n)ls(n)−1 + 1 ≤ x ≤ (k(n) + 1)ls(n)−1 − 1.

So x + 1 = k(n)ls(n)−1 + r′ and r′ ∈ [2, ls(n)−1]. Then by the induction assumption we have that
µ(x + 1) = χ(x + 1). Hence µ(xl + 1) = lχ(x + 1). Since χ(xl + 1) = lχ(x + 1) due to Case 1 of
Lemma 10, we obtain that µ(xl + 1) = χ(xl + 1).

Let us prove by the induction on s(n) that

µ(n) = µ(k(n) + 1)ls(n)

for r(n) = 1. For s(n) = 1 it is true due to Case 2 of Lemma 10. Let us prove the induction step. We
have n = xl + 1 for some x. Then µ(xl + 1) = lµ(x + 1) due to Case 2 of Lemma 10. Moreover
x+ 1 = k(n)ls(n)−1 + 1. Then by the induction assumption we have that

µ(x+ 1) = µ(k(n) + 1)ls(n)−1.

Hence
µ(n) = µ(k(n) + 1)ls(n).

2

Proof of Theorem 1:
Let us prove Theorem 1 by the induction on s(n). For s(n) = 1 it is true due to Case 1 of Lemma 10.

Let us prove the induction step. Let n = xl + r0 for r0 ∈ [1, l]. Since

k(n)ls(n) + 1 ≤ n ≤ (k(n) + 1)ls(n),

we have
k(n)ls(n)−1 +

1− l
l
≤ x ≤ (k(n) + 1)ls(n)−1 − 1

l
.

Hence
k(n)ls(n)−1 ≤ x ≤ (k(n) + 1)ls(n)−1 − 1.

Hence x+1 ∈ [k(n)ls(n)−1 + 1, (k(n) + 1)ls(n)−1] and x+2 ∈ [k(n)ls(n)−1 + 2, (k(n) + 1)ls(n)−1 + 1].
If x + 2 ∈ [k(n)ls(n)−1 + 2, (k(n) + 1)ls(n)−1], then µ(x + 2) = χ(x + 2) due to Lemma 11. By
Lemma 10 we have

χ(n) = (r0 − 1)µ(x+ 2) + (l − r0 + 1)χ(x+ 1).

Since µ(x+ 2) = χ(x+ 2), we have that

χ(n) = (r0 − 1)χ(x+ 2) + (l − r0 + 1)χ(x+ 1).
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By the induction assumption we have

χ(x+ 2) = (x+ 1− k(n)ls(n)−1)µ(k(n) + 2) + ((k(n) + 1)ls(n)−1 − x− 1)χ(k(n) + 1)

and
χ(x+ 1) = (x− k(n)ls(n)−1)µ(k(n) + 2) + ((k(n) + 1)ls(n)−1 − x)χ(k(n) + 1).

So χ(n) = (r0− 1)χ(x+ 2) + (l− r0 + 1)χ(x+ 1) = (xl+ r0− k(n)ls(n)− 1)µ(k(n) + 2) + ((k(n) +
1)ls(n) − xl − r0 + 1)χ(k(n) + 1) = (r(n)− 1)µ(k + 2) + (ls(n) − r(n) + 1)χ(k + 1).

It remains to consider the case when x+ 2 = (k(n) + 1)ls(n)−1 + 1. Then we have

µ(x+ 2) = µ(k(n) + 2)ls(n)−1

due to Lemma 11. By the induction assumption we have

χ(x+ 1) = (x− k(n)ls(n)−1)µ(k(n) + 2) + ((k(n) + 1)ls(n)−1 − x)χ(k(n) + 1).

Since x = (k(n) + 1)ls(n)−1 − 1, we have

χ(x+ 1) = (ls(n)−1 − 1)µ(k(n) + 2) + χ(k(n) + 1).

So

χ(n) = (r0−1)µ(x+2)+(l−r0+1)χ(x+1) = (ls(n)−l+r0−1)µ(k(n)+2)+(l−r0+1)χ(k(n)+1).

Since r(n) = n− k(n)ls(n) = xl + r0 − k(n)ls(n) = ls(n) − l + r0, we have

χ(n) = (r(n)− 1)µ((n)k + 2) + (ls(n) − r(n) + 1)χ(k(n) + 1).

2

7 Special words
Recall that a subword v of the word ω is called special (in ω) if v0 and v1 are also subwords of ω. The set
of all the special words of length n is denoted by B(n). Note that the unique interpretation of any special
word v of length at least Lω is equal to 〈v′, i, 0〉. Indeed, if j > 0, then v is uniquely completed to the
right to a full block, and thus only one of the words v0 and v1 is a subword of ω.

Consider a special word v. Let a be the first letter of v and b = {0, 1} \ a. Then vb cannot generate
conjugate permutations. Let Gv = Hva ∩Hvb. The cardinality of Gv is denoted by g(v). So g(v) is the
number of common permutations generated by words v0 and v1. Let Kv be the set and kv be the number
of permutations ofMva which also belong toHvb. Let Tv be the set and tv be the number of permutations
of Mva each of which is conjugate to some permutation of Hvb. Let Rv be the set and rv be the number
of permutations of Hva \Mva which also belong to Hvb. Thus if (π1, π2) ∈ Nva and π1 ∈ Rv , then π2
is conjugate to some permutation of Hvb.

Let α(n) =
∑

z∈B(n) g(z) and β(n) =
∑

z∈B(n)(kz + tz + rz).
The main theorem of this section is:
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Theorem 2 Let n ≥ Lω and ϕ ∈ Ql. Then
∑

v∈B(n) g(v) = β(k(n) + 1) for r(n) < ls(n) and∑
v∈B(n) g(v) = α(k(n) + 1) for r(n) = ls(n).

To prove Theorem 2, we prove several auxiliary assertions. Consider the following Lemma (Lemma 1
from Makarov (2006)).

Lemma 12 Let u = u1 . . . un and v = v1 . . . vn be two subwords of any infinite binary word such that
ui 6= vi for some 1 ≤ i ≤ n− 1. Then u and v do not generate equal permutations.

So, two words can generate equal permutations only if they are v0 and v1 for some special word v.
Since the sum

∑
|u|=n f(u) can be calculated as it is shown above, it remains to consider what happens

with words v0 and v1 for all special words v.

Lemma 13 Let (v0,m1) and (v1,m2) be some occurrences of words v0 and v1 with |v| = n ≥ Lω ,
(v′0,m′1) and (v′1,m′2) be the ancestors of occurrences of (v0,m1) and (v1,m2) with |v′| = k, where
π(v′0,m′1) = π(v′1,m′2). Then π(v0,m1) = π(v1,m2).

Proof: It is clear that (v′,m′1) and (v′,m′2) are the ancestors of occurrences (v,m1) and (v,m2). Note
that π(v,m1) = π(v,m2) since otherwise π(v′,m′1) 6= π(v′,m′2) due to Case 1 of Lemma 7 and
π(v′0,m′1) 6= π(v′1,m′2).

Consider 1 ≤ t < n + 1 and the relations between the element number t and the last element of
permutations π(v0,m1) and π(v1,m2). Lemma 5 implies that inequality

γ(Rω(m1 + t), Rω(m1 + n+ 1)) 6= γ(Rω(m2 + t), Rω(m2 + n+ 1))

may hold only if

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) 6= γ(Rω(m′2 + t′), Rω(m′2 + k + 1))

which is impossible since π(v′0,m′1) = π(v′1,m′2). Hence

γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1))

for any 1 ≤ t < n+ 1. Thus we have proved that π(v0,m1) = π(v1,m2). 2

Lemma 14 Let (v0,m1) and (v1,m2) be some occurrences of words v0 and v1 with |v| = n ≥ Lω ,
(v′0,m′1) and (v′1,m′2) be the ancestors of (v0,m1) and (v1,m2) with |v′| = k where π(v′0,m′1) 6=
π(v′1,m′2) and π(v′0,m′1) � π(v′1,m′2). Then π(v0,m1) 6= π(v1,m2) and π(v0,m1) � π(v1,m2).

Proof: Since v is a special word, we obtain that words v0 and v1 have the interpretations 〈v′0, i, l − 1〉
and 〈v′1, i, l − 1〉, where 0 ≤ i < l. Since π(v′0,m′1) 6= π(v′1,m′2) and π(v′0,m′1) � π(v′1,m′2), we
obtain that two cases are possible.

In the first case

γ(Rω(m′1 + t′), Rω(m′1 + s′)) 6= γ(Rω(m′2 + t′), Rω(m′2 + s′))

for some 1 ≤ t′ < s′ < k + 1. Then π(v′,m′1) 6= π(v′,m′2). If π(v′,m′1) � π(v′,m′2), then π(v,m1) 6=
π(v,m2) due to Case 3 of Lemma 7. If π(v′,m′1) ∼ π(v′,m′2), then π(v,m1) 6= π(v,m2) due to Case 4
or 6 of Lemma 7 since |v| ≥ (|v′| − 1)l + 1. Hence π(v0,m1) 6= π(v1,m2) and π(v0,m1) � π(v1,m2).
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In the second case

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) 6= γ(Rω(m′2 + t′), Rω(m′2 + k + 1))

for some 1 < t′ < k + 1. Then Lemma 5 implies that

γ(Rω((m′1 + t′ − 1)l + 1), Rω((m′1 + k)l + 1)) 6= γ(Rω((m′2 + t′ − 1)l + 1), Rω((m′2 + k)l + 1)).

Since t′ > 1, we obtain that the symbols ω(m′
1+t′−1)l+1 and ω(m′

2+t′−1)l+1 are not the first symbols of
words ωm1+1 . . . ωm1+n+1 and ωm2+1 . . . ωm2+n+1. Thus we have proved that π(v0,m1) 6= π(v1,m2)
and π(v0,m1) � π(v1,m2). 2

Lemma 15 Let (v0,m1) and (v1,m2) be some occurrences of words v0 and v1 with |v| = n ≥ Lω ,
(v′0,m′1) and (v′1,m′2) be the ancestors of (v0,m1) and (v1,m2) with |v′| = k . Then the following
statements are true:

1. If π(v′0,m′1) ∼ π(v′1,m′2) and |v| = l|v′|, then π(v0,m1) ∼ π(v1,m2).

2. If π(v0,m1) ∼ π(v1,m2), then π(v′0,m′1) ∼ π(v′1,m′2) and |v| = l|v′|.

3. If π(v′0,m′1) ∼ π(v′1,m′2) and |v| < l|v′|, then π(v0,m1) = π(v1,m2).

Proof: Since v is a special word, we obtain that words v0 and v1 have the interpretations 〈v′0, i, l − 1〉
and 〈v′1, i, l − 1〉, where 0 ≤ i < l.

First let us prove the first and third statements. Since π(v′0,m′1) ∼ π(v′1,m′2), by the definition
of ∼ we have that π(v′,m′1) = π(v′,m′2). It is clear that (v′,m′1) and (v′,m′2) are the ancestors of
occurrences (v,m1) and (v,m2). Note that π(v,m1) = π(v,m2) since otherwise π(v′,m′1) 6= π(v′,m′2)
due to Case 1 of Lemma 7.

Consider 1 ≤ t < n+ 1. Then Lemma 5 implies that either

γ(Rω(m1 + t), Rω(m1 + n+ 1)) = γ(Rω(m2 + t), Rω(m2 + n+ 1)),

or m1 + t = (m′1 + t′ − 1)l + 1, m2 + t = (m′2 + t′ − 1)l + 1 for some t′ and

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) 6= γ(Rω(m′2 + t′), Rω(m′2 + k + 1)).

Consider the second case. Then since π(v′0,m′1) ∼ π(v′1,m′2), we have

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) = γ(Rω(m′2 + t′), Rω(m′2 + k + 1))

for 1 < t′ < k + 1.
Consider the case of t′ = 1. Then m1 + t = m′1l + 1 and m2 + t = m′2l + 1. It is possible only if

|v| = l|v′|. So if |v| < l|v′|, then π(v0,m1) = π(v1,m2). If |v| = l|v′|, then

γ(Rω(m1 + t), Rω(m1 + n+ 1)) 6= γ(Rω(m2 + t), Rω(m2 + n+ 1))

due to Lemma 5 and π(v0,m1) ∼ π(v1,m2).
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Now let us prove the second statement. We have π(v0,m1) ∼ π(v1,m2). Hence we obtain that

γ(Rω(m′1l + i+ 1), Rω((m′1 + k)l + 1)) 6= γ(Rω(m′2l + i+ 1), Rω((m′2 + k)l + 1)).

Lemma 5 implies that m′1l + i+ 1 ≡ 1 (mod l) or m′2l + i+ 1 ≡ 1 (mod l). Then i = 0 and n = kl.
Since π(v0,m1) ∼ π(v1,m2), we obtain π(v,m1) = π(v,m2). It is clear that (v′,m′1) and (v′,m′2)

are the ancestors of occurrences (v,m1) and (v,m2). Since n = kl, we have |v| > (|v′| − 1)l + 1.
Then π(v′,m′1) = π(v′,m′2) since otherwise either π(v,m1) 6= π(v,m2) due to Case 3 of Lemma 7, or
π(v,m1) 6= π(v,m2) due to Case 6 of Lemma 7. Hence we obtain that

γ(Rω(m′1 + t′), Rω(m′1 + s′)) = γ(Rω(m′2 + t′), Rω(m′2 + s′))

for 1 ≤ t′ < s′ < k + 1.
It remains to consider the case s′ = k + 1. Since π(v0,m1) ∼ π(v1,m2), we have that π(v0,m1) and

π(v1,m2) differ only in relations of extreme elements. Then Lemma 5 implies that

γ(Rω(m′1 + t′), Rω(m′1 + k + 1)) = γ(Rω(m′2 + t′), Rω(m′2 + k + 1))

for 2 ≤ t′ < k + 1. In addition,

γ(Rω(m1l + 1), Rω((m1 + k)l + 1)) 6= γ(Rω(m1l + 1), Rω((m1 + k)l + 1)).

Hence Lemma 5 implies that

γ(Rω(m′1 + 1), Rω(m′1 + k + 1)) 6= γ(Rω(m′2 + t), Rω(m′2 + k + 1)).

Thus we have proved that π(v′0,m′1) ∼ π(v′1,m′2) and n = kl. 2

Lemma 16 Let v be a special word with the ancestor v′ with |v| ≥ Lω , and |v| < l|v′|. Then g(v) =
kv′ + tv′ + rv′ .

Proof: Due to Case 2 of Lemma 15, the existence of two conjugate permutations π(v0,m1) and π(v1,m2)
would imply that |v| = |v′|l, so we have tv = rv = 0.

Let us prove that kv ≤ kv′ + tv′ + rv′ . Let a be the first letter of v and b = {0, 1} \ a. For each
permutation τ of Kv , consider occurrences (va,m1) and (vb,m2) of words va and vb such that τ =
π(va,m1) = π(vb,m2). Then either π(v′a,m′1) = π(v′b,m′2), or π(v′a,m′1) ∼ π(v′b,m′2) due to
Lemma 14. If π(v′a,m′1) = π(v′b,m′2), then

Ψva(τ) = τ ′ ∈ (Mv′a ∪Hv′a \Mv′a) ∩Hv′b = Kv′ ∪Rv′ .

If π(v′a,m′1) ∼ π(v′b,m′2), then either Ψva(τ) = τ ′ ∈ Tv′ , or Ψva(τ) = τ ′ ∼ τ ′′ = π(v′a,m′3)
and τ ′′ ∈ Rv′ . Let τ3 = π(va,m3) and τ4 = π(va,m4) be two different elements of Kv . Then
Ψva(τ3) 6= Ψva(τ4) due to Case 1 of Lemma 7 and Ψva(τ3) � Ψva(τ4) due to Case 5 of Lemma 7.
Hence Ψva is an injective map from Kv to Hv′a and Ψva[Kv] does not contain conjugate permutations.
Hence

kv = |Kv| ≤ kv′ + tv′ + rv′ .
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Let us prove that kv′ + tv′ + rv′ ≤ kv . Let a be the first letter of v′ and b = {0, 1} \ a. For each
permutation τ ′ of Kv′ ∪ Tv′ ∪ Rv′ consider arbitrary occurrences (v′a,m′1) and (v′b,m′2) of words v′a
and v′b such that τ ′ = π(v′a,m′1) and either π(v′a,m′1) = π(v′b,m′2), or π(v′a,m′1) ∼ π(v′b,m′2).
Hence π(va,m1) = π(vb,m2) due to Lemma 13 or Case 3 of Lemma 15. So Λva(τ ′) = τ ∈ Kv or
Λva(τ ′) = τ ∈ Rv . But we have already proved that Rv = ∅, so Λva(τ ′) ∈ Kv . Let τ ′1 and τ ′2 be two
different elements of Kv′ ∪ Tv′ ∪Rv′ . Then by the definition of Kv , Tv and Rv we have τ ′1 � τ ′2. Hence
Case 3 of Lemma 7 implies that Λva(τ ′1) 6= Λva(τ ′2). Hence Λva is an injective map from Kv′ ∪Tv′ ∪Rv′

to Kv and
kv′ + tv′ + rv′ = |Kv′ ∪ Tv′ ∪Rv′ | ≤ |Kv| = kv.

Combining the inequalities proven above, we obtain that kv = kv′ + tv′ + rv′ . Since by definition
g(v) = kv + rv , and as rv = 0 we have g(v) = kv′ + tv′ + rv′ . 2

Lemma 17 Let v be a special word with the ancestor v′ with |v| ≥ Lω , and |v| = l|v′|. Then g(v) =
g(v′).

Proof: Since |v| = l|v′|, we obtain that v and v′ have the same first symbol a.
Let us prove g(v′) ≤ g(v). For each permutation τ ′ of Gv′ , consider arbitrary occurrences (v′a,m′1)

and (v′b,m′2) of words v′a and v′b such that τ ′ = π(v′a,m′1) = π(v′b,m′2). Let Λva(τ ′) = τ . By
Lemma 13 we have π(va,m1) = π(vb,m2). So τ ∈ Gv . Let τ ′3 and τ ′4 be two different elements of Gv′ .
Since vb does not generate conjugate permutations, we have τ ′3 � τ ′4. Hence Case 3 of Lemma 7 implies
that Λva(τ ′3) 6= Λva(τ ′4). Hence Λva is an injective map from Gv′ to Gv and

g(v′) = |Gv′ | ≤ |Gv| = g(v).

Let us prove g(v) ≤ g(v′). For each permutation τ of Gv , consider arbitrary occurrences (va,m1) and
(vb,m2) of words va and vb such that τ = π(va,m1) = π(vb,m2). Let Ψva(τ) = τ ′. Let us prove
that τ ′ ∈ Gv′ . If π(v′a,m′1) ∼ π(v′b,m′2), then π(va,m1) ∼ π(vb,m2) due to Case 1 of Lemma 15.
So π(v′a,m′1) = π(v′b,m′2) due to Lemma 14 and Ψva(τ) = τ ′ ∈ Gv′ . Let τ3 and τ4 be two different
elements of Gv . Hence Case 1 of Lemma 7 implies that Ψva(τ3) 6= Ψva(τ4). Hence Ψva is an injective
map from Gv to Gv′ and

g(v) = |Gv| ≤ |Gv′ | = g(v′).

2

Lemma 18 Let v be a special word with the ancestor v′ such that |v| ≥ Lω , and |v| = l|v′|. Then
kv + tv + rv = kv′ + tv′ + rv′ .

Proof: Since |v| = l|v′|, we obtain that v and v′ have the same first symbol a. Let b = {0, 1} \ a.
Let us prove that tv′ ≤ tv . For each permutation τ ′ of Tv′ , consider arbitrary occurrences (v′a,m′1)

and (v′b,m′2) of words v′a and v′b such that τ ′ = π(v′a,m′1) ∼ π(v′b,m′2). Let Λva(τ ′) = τ . Let us
prove that τ ∈ Tv . Indeed, Case 1 of Lemma 15 implies that π(va,m1) ∼ π(vb,m2). Hence we have that
either τ ∈ Tv or τ ∼ τ1 and τ1 ∈ Rv . Consider the second case. Then there exists an occurrence (va,m3)
such that π(va,m1) ∼ π(va,m3). Hence Case 2 of Lemma 7 implies that π(v′a,m′1) ∼ π(v′a,m′3). It
contradicts with that τ ′ = π(v′a,m′1) ∈ Tv′ . Let τ ′3 and τ ′4 be two different elements of Tv′ . Then by
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definition of Tv′ we have τ ′3 � τ ′4. Hence Case 3 of Lemma 7 implies that Λva(τ ′3) 6= Λva(τ ′4). Hence
Λva is an injective map from Tv′ to Tv and

tv′ = |Tv′ | ≤ |Tv| = tv.

Let us prove that tv ≤ tv′ . For each permutation τ of Tv , consider arbitrary occurrences (va,m1) and
(vb,m2) of words va and vb such that τ = π(va,m1) ∼ π(vb,m2). Let Ψva(τ) = τ ′. Let us prove
that τ ′ ∈ Tv′ . Indeed, due to Case 2 of Lemma 15 we have π(v′a,m′1) ∼ π(v′b,m′2). Hence we have
either Ψva(τ) = τ ′ ∈ Tv′ , or τ ′ ∼ τ ′′ and τ ′′ ∈ Rv′ . Consider the second case. Then there exists
an occurrence (v′a,m′3) such that π(v′a,m′1) ∼ π(v′a,m′3). Hence Case 4 of Lemma 7 implies that
π(va,m1) ∼ π(vb,m3). It contradicts with τ ∈ Tv . Let τ3 and τ4 be two different elements of Tv . Hence
Case 1 of Lemma 7 implies that Ψva(τ3) 6= Ψva(τ4). Hence Ψva is an injective map from Tv to Tv′ and

tv = |Tv| ≤ |Tv′ | = tv′ .

So tv = tv′ . By Lemma 17 we have g(v) = g(v′). Since g(v) = kv + rv and g(v′) = kv′ + rv′ , we
have

kv + tv + rv = kv′ + tv′ + rv′ .

2

Lemma 19 Let n = xl + r ≥ Lω , where 1 ≤ r ≤ l. Then the following statements are true:

1. α(n) = β(x+ 1) for r < l and α((x+ 1)l) = α(x+ 1).

2. β(n) = α(n) for r < l and β((x+ 1)l) = β(x+ 1).

Proof: Let u ∈ B(n). Since u is a special word with |u| ≥ Lω , u has unique interpretation 〈v, i, 0〉,
where 0 ≤ i < l and v is the ancestor of u. By the definition of interpretation we have |u| = |v|l − i.
Hence i ≡ l − r (mod l). So |v| = x+ 1 and i = l − r. 2

Let B1 = {ϕl−r;0(v)|v ∈ B(x+ 1)}. Let us prove the following assertion:

Proposition 5 B(n) = B1.

Proof: Let us prove that B1 ⊆ B(n). Let v ∈ B(x+ 1). Then v0 and v1 are subwords of ω. Since ω is a
fixed point of morphism ϕ, ϕ(v0) and ϕ(v1) are a subwords of ω. Since

ϕ(v0) = ϕ(v)ϕ(0) = ϕ(v)0...

and
ϕ(v1) = ϕ(v)ϕ(1) = ϕ(v)1...,

words ϕ(v)0 and ϕ(v)1 are subwords of ω. By the definition of ϕi;j(v) we have that ϕl−r;0(v) is a suffix
of ϕ(v). So ϕl−r;0(v)0 and ϕl−r;0(v)1 are subwords of ω. Let u = ϕl−r;0(v). Then

|u| = |v|l − l + r = xl + r.
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Since ϕl−r;0(v)0 and ϕl−r;0(v)1 are subwords of ω and |u| = xl + r = n, we obtain that u ∈ B(n).
Thus B1 ⊆ B(n).

Let us prove that B(n) ⊆ B1. Let u ∈ B(n). As we proved above, u has unique interpretation
〈v, l − r, 0〉, where v is the ancestor of u and |v| = x + 1. Then u0 and u1 have interpretations 〈v0, l −
r, l−1〉 and 〈v1, l− r, l−1〉. So v0 and v1 are ancestors of u0 and u1. Hence v ∈ B(x+ 1). Since u has
interpretation 〈v, l − r, 0〉, u = ϕl−r;0(v) due to the definition of ϕi;j(v). So u ∈ B1 due to the definition
of B1. Thus B(n) ⊆ B1 and B(n) = B1.

2

Proof of Lemma 19:
1. Let r < l. We have B(n) = B1 due to Proposition 5. Then

α(n) =
∑

u∈B(n)

g(u) =
∑
u∈B1

g(u).

Let u = ϕl−r;0(v) ∈ B1. Then v is the ancestor of u, |u| = n = xl+ r and |v| = x+ 1. Then Lemma 16
implies that g(u) = kv + tv + rv . So∑

u∈B1

g(v) =
∑

v∈B(x+1)

g(ϕl−r;0(v)) =
∑

v∈B(x+1)

(kv + tv + rv) = β(x+ 1).

Thus α(n) = β(x+ 1).
Let r = l. We have B(n) = B1 due to Proposition 5. Then

α(n) =
∑

u∈B(n)

g(u) =
∑
u∈B1

g(u).

Let u = ϕ0;0(v) ∈ B1. Then v is the ancestor of u, |u| = n = (x+ 1)l and |v| = x+ 1. Then Lemma 17
implies that g(u) = g(v). So∑

u∈B1

g(u) =
∑

v∈B(x+1)

g(ϕ0;0(v)) =
∑

v∈B(x+1)

g(v) = α(x+ 1).

Thus α((x+ 1)l) = α(x+ 1).
2. Let r < l. Consider an arbitrary special word v of length n. Assume that tv > 0. Then due to Case 2

of Lemma 15, the existence of two conjugate permutations π(v0,m1) and π(v1,m2) would imply that
|v| = |v′|l. It contradicts with r < l. So∑

z∈B(n)

(kz + tz + rz) =
∑

z∈B(n)

(kz + rz) =
∑

z∈B(n)

g(z).

Thus β(n) = α(n) for r < l.
Let r = l. We have B(n) = B1 due to Proposition 5. Then

β(n) =
∑

u∈B(n)

(ku + tu + ru) =
∑
u∈B1

(ku + tu + ru).
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Let u = ϕ0;0(v) ∈ B1. Then v is the ancestor of u, |u| = n = (x+ 1)l and |v| = x+ 1. Then Lemma 18
implies that ku + tu + ru = kv + tv + rv . So∑

u∈B1

(ku + tu + ru) =
∑

v∈B(x+1)

(ku + tu + ru) =
∑

v∈B(x+1)

(kv + tv + rv) = β(x+ 1).

Thus β((x+ 1)l) = β(x+ 1). 2

Lemma 20 Let n ≥ Lω . Then β(n) = α(n) for r(n) < ls(n) and β(n) = β(k(n) + 1) for r(n) = ls(n).

Proof: Let us prove by the induction on s(n) that β(n) = α(n) for r(n) < ls(n). For s(n) = 1 it is true
due to Case 2 of Lemma 19. Let us prove the induction step. Let n = xl + r0 for r0 ∈ [1, l]. If r0 < l,
then β(n) = α(n) due to Case 2 of Lemma 19. Consider the case when r0 = l. Then n = (x + 1)l and
we have β((x+ 1)l) = β(x+ 1) due to Case 2 of Lemma 19. Since

k(n)ls(n) + 1 ≤ n ≤ (k(n) + 1)ls(n) − 1,

we have x + 1 ∈ [k(n)ls(n)−1 + 1, (k(n) + 1)ls(n)−1 − 1]. Then by the induction assumption we have
that β(x+ 1) = α(x+ 1). Hence β((x+ 1)l) = α(x+ 1). Since α((x+ 1)l) = α(x+ 1) due to Case 1
of Lemma 19, we obtain that β((x+ 1)l) = α((x+ 1)l).

Let us prove by the induction on s(n) that β((k(n) + 1)ls(n)) = β(k(n) + 1). For s(n) = 0 it is true.
Let us prove the induction step. We have β(xl) = β(x) due to Case 2 of Lemma 19. By the induction
assumption we have that β((k(n)+1)ls(n)−1) = β(k(n)+1). Hence β((k(n)+1)ls(n)) = β(k(n)+1).

2

Proof of Theorem 2:
Let us prove that α((k(n) + 1)ls(n)) = α(k(n) + 1) by the induction on s(n). For s(n) = 1 it is true

due to Case 1 of Lemma 19. Let us prove the induction step. We have

α((k(n) + 1)ls(n)) = α((k(n) + 1)ls(n)−1)

due to Lemma 19. By the induction assumption we have α((k(n) + 1)ls(n)−1) = α(k(n) + 1). So

α(n) = α(k(n) + 1)

for r(n) = ls(n).
Let us prove that α(n) = β(k(n) + 1) for r(n) < ls(n). For s(n) = 1 it is true due to Case 1 of

Lemma 19. Let us prove the induction step. Let n = xl + r0 for r0 ∈ [1, l]. Consider the case when
r0 < l. Since

k(n)ls(n) + 1 ≤ n ≤ (k(n) + 1)ls(n) − 1,

we have
k(n)ls(n)−1 +

1− l
l
≤ x ≤ (k(n) + 1)ls(n)−1 − 2

l
.

Hence
k(n)ls(n)−1 ≤ x ≤ (k(n) + 1)ls(n)−1 − 1.
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Hence x+1 ∈ [k(n)ls(n)−1 + 1, (k(n) + 1)ls(n)−1]. If x+1 ∈ [k(n)ls(n)−1 + 1, (k(n) + 1)ls(n)−1 − 1],
then β(x+1) = α(x+1) due to Lemma 20. We have α(n) = β(x+1) due to Case 1 of Lemma 19. Hence
α(n) = α(x+1). By the induction assumption we have α(x+1) = β(k(n)+1). So α(n) = β(k(n)+1).
It remains to consider the case when x+ 1 = (k(n) + 1)ls(n)−1. Then we have β(x+ 1) = β(k(n) + 1)
due to Lemma 20. Hence α(n) = β(x+ 1) = β(k(n) + 1).

Consider the case when r0 = l. Then n = (x + 1)l and we have α(n) = α(x + 1) due to Lemma 19.
Since

k(n)ls(n) + 1 ≤ n ≤ (k(n) + 1)ls(n) − 1,

we have
k(n)ls(n)−1 + 1 ≤ x+ 1 ≤ (k(n) + 1)ls(n)−1 − 1.

Then α(x+ 1) = β(k(n) + 1) due to the induction assumption. So α(n) = β(k(n) + 1). 2

8 Computing the permutation complexity
In this section we state the main theorem of this article. Let n ≥ Lω . Then for n there exists a unique pair
of numbers k(n) and s(n) such that

s(n) > 0, k(n) ∈ {l, ..., l2 − 1}

and
k(n)ls(n) < n ≤ (k(n) + 1)ls(n).

The number n− k(n)ls(n) is denoted by r(n). We note that n = k(n)ls(n) + r(n) and r(n) ∈ [1; ls(n)].
Recall that µ(n) =

∑
|u|=n(mu + nu), χ(n) =

∑
|u|=n f(u), α(n) =

∑
z∈B(n) g(z) and β(n) =∑

z∈B(n)(kz + tz + rz).

Theorem 3 Let ω be a fixed point of the morphism ϕ, where ϕ ∈ Ql and n ≥ Lω . Then the permutation
complexity of ω is calculated as follows:

λ(n) = (r(n)− 1)µ(k(n) + 2) + (ls(n) − r(n) + 1)χ(k(n) + 1)− β(k(n) + 1)

for r(n) > 1 and
λ(n) = ls(n)χ(k(n) + 1)− α(k(n))

for r(n) = 1.

Proof: We note that
∑
|u|=n f(u) is the number of permutations, each of them is generated by at least one

occurrence of some subword of word ω of length n. It is clear that some permutations can be calculated
several times. But Lemma 12 implies that two distinct subwords u1 and u2 of word ω can generate the
same permutations if and only if u1 = v0 and u2 = v1 up to a relabeling of u1 and u2. Hence only g(v)
permutations are calculated two times in the sum

∑
|u|=n f(u). Thus

λ(n) =
∑
|u|=n

f(u)−
∑

b∈B(n−1)

g(b).

Combining Theorem 1 and 2 we prove the main theorem.
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2

Now for the calculation of λ(n) it remains to compute µ(k(n) + 2), χ(k(n) + 1), β(k(n) + 1) and
α(k(n)) for k(n) ∈ {l, ..., l2 − 1}. Thus it is sufficient to find the setHu(the set of permutations generated
by u) for any subword u of ω with |u| ∈ {l + 1, ..., l2 + 1}.

Proposition 6 Let ϕ ∈ Ql and ω = ϕ(ω). Then ω is l2 + 1–free.

Proof: Let us prove that vl
2+1 is not subword of ω by the induction on |v|. If |v| = 1, then v is some

letter, i.e, al
2+1 is the subword of ω for some a ∈ {0, 1}. Since l2 + 1 > 2l − 1, we have that ϕ(b) is the

subword al
2+1 for some b ∈ {0, 1}. Hence ϕ(b) = al and we obtain contradiction (otherwise Properties

in the definition of Ql do not hold).
Let us prove the induction step. Assume that vl

2+1 is a subword of ω. Let v1 = v2 = . . . = vl2+1 = v.
Since |v| ≥ 2 and 2l2 ≥ l2 + 1, we obtain that words v1v2 . . . vl2 and v2v3 . . . vl2+1 have the same
partitions into blocks. From this partitions we have that v1 = s1ϕ(x)s2, where x is a some word, s1 is
the suffix of ϕ(a) and s2 is the prefix of ϕ(b) for a, b ∈ {0, 1}. Since v1v2 . . . vl2 and v2 . . . vl2+1 have
the same partitions into blocks, we have that v2 = s1ϕ(x)s2. Moreover s2s1 = ϕ(c) for some c ∈ {0, 1}.
Continuing the procedure, we obtain that

v1 = v2 = . . .= vl2+1 = s1ϕ(x)s2.

So
vl

2+1 = v1 . . . vl2+1 = s1ϕ(x)s2s1ϕ(x)s2...s1ϕ(x)s2

is the subword of ω. Then (cx)l
2+1 also is the subword of ω. Since |cx| < |v|, we obtain a contradiction.

2

We find Hu by Algorithm 1:
Algorithm 1.
1. We consider all occurrences (u,m) of word u in word ϕ5(0).
2. Let 1 ≤ i < j ≤ |u|. Since ω is l2 + 1–free, we have that words ωm+i...ωm+i+(j−i)l2−1 and

ωm+j ...ωm+j+(j−i)l2−1 are distinct. Let

ui = ωm+i...ωm+i+(|u|−1)l2−1

and
uj = ωm+j ...ωm+j+(|u|−1)l2−1.

Then ui 6= uj . Since
Rω(m+ i) = 0, ui...

and
Rω(m+ j) = 0, uj ...,

we obtain that Rω(m+ i) > Rω(m+ j) if and only if ui > uj due to Proposition 2. So if we know word

ωm+1...ωm+(|u|−1)(l2+1),

then we can find relation γ(Rω(m+ i), Rω(m+ j)). Thus we find permutation π(u,m).
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Proposition 7 Let (u,m1) and (u,m2) be some occurrences of u such that m1 ≡ m2 (mod l), (u′,m′1)
and (u′,m′2) be ancestors of (u,m1) and (u,m2). Then if π(u′,m′1) = π(u′,m′2), then π(u,m1) =
π(u,m2).

Proof: Consider relations γ(Rω(m1 + t), Rω(m1 + s)) and γ(Rω(m2 + t), Rω(m2 + s)) for 1 ≤ t <
s ≤ |u|. If ωm1+t 6= ωm1+s, then ωm2+t 6= ωm2+s. Hence

γ(Rω(m1 + t), Rω(m1 + s)) = γ(ωm1+t, ωm1+s)

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(ωm2+t, ωm2+s).

So
γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s)).

Consider the case when ωm1+t = ωm1+s and ωm2+t = ωm2+s. Let u1 = ωm1+1 . . . ωm1+n and
u2 = ωm2+1 . . . ωm2+n. Since (u′,m′1) and (u′,m′2) are ancestors of (u,m1) and (u,m2) and m1 ≡ m2

(mod l), words u1 and u2 have the same partitions in the correct partition of ω. Hence ωm1+t, ωm1+s,
ωm2+t and ωm2+s lie in blocks ϕ(ωm′

1+t′), ϕ(ωm′
1+s′), ϕ(ωm′

2+t′) and ϕ(ωm′
2+s′) in the correct partition

of ω for some 1 ≤ t′ < s′ ≤ |u′|. Moreover ωm′
1+t′ = ωm′

2+t′ and ωm′
1+s′ = ωm′

2+s′ . Let

ωm′
1+t′ = ωm′

2+t′ = a

and
ωm′

1+s′ = ωm′
2+s′ = b.

Sincem1 ≡ m2 (mod l), we havem1+t ≡ m2 + t (mod l) andm1+s ≡ m2 + s (mod l). Applying
Lemma 2 to (u,m1) and (u,m2), we obtain that

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s))

in the case when a 6= b or s 6≡ t (mod l). In the case when a = b and s ≡ t (mod l) we have

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m′1 + t′), Rω(m′1 + s′))

and
γ(Rω(m2 + t), Rω(m2 + s)) = γ(Rω(m′2 + t′), Rω(m′2 + s′)).

Since π(u′,m′1) = π(u′,m′2), we have

γ(Rω(m1 + t), Rω(m1 + s)) = γ(Rω(m2 + t), Rω(m2 + s))

and π(u,m1) = π(u,m2). 2

Lemma 21 1. Let (u,m1) and (u,m2) be two occurrences of u of length at most 2. Then π(u,m1) =
π(u,m2).

2. ϕ3(0) contains all subwords of word ω of length 2.
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3. Let π ∈ Hu and |u| ≤ l + 1. Then there exists an occurrence (u,m) of u such that π(u,m) = π
and (u,m) is an occurrence of u in ϕ4(0).

4. Let π ∈ Hu and |u| ∈ {l + 1, ..., l2 + 1}. Then there exists an occurrence (u,m) of u such that
π(u,m) = π and (u,m) is an occurrence of u in ϕ5(0).

Proof:
1. The case when |u| = 1 is an obvious because π(u,m) = 1 for any occurrence (u,m). Consider the

case when |u| = 2. Let u = ab. If a 6= b, then γ(R(m + 1), R(m + 2)) = γ(a, b) for any occurrence
(u,m). Thus we have π(u,m1) = π(u,m2) for a 6= b.

Consider the case when a = b. Let a = 0 (the case when a = 1 is similar). Let us prove that
γ(R(m + 1), R(m + 2)) =< for any occurrence (u,m). Let t be the minimal number such that ωt = 1
and t > m+ 1 (it exists because word ω is nonperiodic). Then

γ(Rω(m+ 1), Rω(m+ 2)) = γ(0, 0t−m−1 . . . , 0, 0t−m−21 . . .) =< .

So π(u,m) = 12 for any occurrence (u,m). Thus π(u,m1) = π(u,m2).
2. Since ϕ ∈ Ql, we have that ϕ is a marked morphism and ϕ(0) starts with 0. Since ϕ is a marked

morphism, ϕ(1) starts with 1. Let ϕ(0) = 0k1... for k > 1 or ϕ(0) = 0l. If ϕ(0) = 0k1..., then 0u1
is a subword of ϕ(0) and 0u0 is a prefix of ϕ(0) for empty word u. It contradicts with Property 1 in the
definition of Ql. If ϕ(0) = 0l, then 0u is a suffix of ϕ(0) and 0u0 is a prefix of ϕ(0) for empty word u. It
contradicts with Property 1 in the definition of Ql. Thus ϕ(0) starts with 01. Analogously one can obtain
that ϕ(1) starts with 10. Since 01 is a subword of ϕ(0), ϕ(01) is a subword of ϕ2(0). But we have

ϕ(01) = ϕ(0)ϕ(1) = 01...10....

So 01 and 10 are subwords of ϕ2(0). Let ϕ(0) = 0xa and ϕ(1) = 1yb for some words x, y and letters a
and b. Since ϕ is a marked morphism, a 6= b. Consider the case when a = 1 and b = 0. Then

ϕ(01) = ϕ(0)ϕ(1) = ...11...

and
ϕ(10) = ϕ(0)ϕ(1) = ...00....

So 00 and 11 are subwords of ϕ3(0).
It remains to consider the case when a = 0 and b = 1. Let word aa be a subword of ω. Let i be the

minimal number such that ωiωi+1 = aa. Let u = ωiωi+1. If u lies in block ϕ(c) for some c ∈ {0, 1}
in the correct partition of ω into blocks, then u is a subword of ϕ(c). Then ϕ2(c) = ϕ(c)... and u is a
subword of ϕ2(c). Since c is a subword of ϕ(0), u is a subword of ϕ3(0). It remains the case when ωi

and ωi+1 lie in blocks ϕ(ωj) and ϕ(ωj+1) in the correct partition of ω into blocks. Then ϕ(ωj) ends with
a and ϕ(ωj+1) starts with a. Hence ωj = ωj+1 = a. So ωjωj+1 = aa and j < i. It contradicts with the
minimality of i. Thus if aa is a subword of ω, then aa is a subword of ϕ3(0).

3. Let |u| = k. Since π ∈ Hu, there exists some occurrence (u,m1) of u such that π(u,m1) = π.
Let (u′m1

,m′1) be the ancestor of (u,m1). Since |u| ≤ l + 1, we have that either ωm1+1 . . . ωm1+k = sp,
where s is a suffix of ϕ(ωi), p is a prefix of ϕ(ωi+1) for some i, or ωm1+1 . . . ωm1+k is a subword of
ϕ(ωi) for some i. Consider the first case. Then m1 = il − |s|. Let ωi = a and ωi+1 = b. Then
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u′m1
= ab due to the definition of the ancestor of occurrence. Since ϕ3(0) contain all subwords of word ω

of length 2, there exists m′ such that ωm′+1ωm′+2 = ab and ωm′+1ωm′+2 is a subword of ϕ3(0). Since
ω = ϕ(ω), we have ω(m′+1)l−|s| . . . ω(m′+1)l−|s|+k−1 = sp. Thus (ab,m′) is the ancestor of (u,m) due
to the definition of the ancestor of occurrence, where m = (m′ + 1)l− |s|. Moreover m ≡ m1 (mod l).
We have π(ab,m′) = π(ab,m′1) due to Case 1 of this lemma. Since m ≡ m1 (mod l), Proposition 7
implies that π(u,m) = π(u,m1). The case when ωm1+1 . . . ωm1+k is a subword of ϕ(ωi) for some i is
similar. Since (u′m1

,m′) is an occurrence of u′m1
in ϕ3(0), (u,m) is an occurrence of u in ϕ4(0).

4. Since π ∈ Hu, there exists some occurrence (u,m1) of u such that π(u,m1) = π. Let (u′m1
,m′1) be

the ancestor of (u,m1). Since |u| ≤ l2 + 1, we have that |u′m1
| ≤ l + 1. Then there exists an occurrence

(u′m1
,m′) of u′m1

in ϕ4(0) such that π(u′m1
,m′) = π(u′m1

,m′1) due to Case 3 of this Lemma. Let m =
m′l + r, where r is the residue of m1 modulo l. Since ω = ϕ(ω), we have ωm′l+r . . . ωm′l+r+|u|−1 =
u. Thus (u′m1

,m′) is the ancestor of (u,m) due to the definition of the ancestor of occurrence. Then
Proposition 7 implies that π(u,m) = π(u,m1). Since (u′m1

,m′) is an occurrence of u′m1
in ϕ4(0),

(u,m) is an occurrence of u in ϕ5(0). 2

The correctness of Algorithm 1. By Lemma 21 we have that for any permutation π from the set Hu

there exists an occurrence (u,m) of word u such that π = π(u,m) and ωm+1ωm+2...ωm+|u| is a subword
of ϕ5(0). Thus Algorithm 1 is correct.

9 Permutation complexity of the Thue-Morse Word
Widmer (2011) calculated the factor complexity of the permutation generated by the Thue-Morse word.
In this section, we present an alternative proof for his formula. Recall that Thue-Morse word is a fixed
point ω = ϕ(ω) of morphism ϕ(0) = 01, ϕ(1) = 10. In what follows in this section ω is the Thue-Morse
word.

As we note in previous section for the calculation of λ(n) it is sufficient to find the set Hu for any
subword u of ω with |u| ∈ {l + 1, ..., l2 + 1}. Since for Thue-Morse word l = 2, it is sufficient to find
the set Hu for any subword u of ω with |u| ∈ {3, 4, 5}. It can be found by Algorithm 1. We consider in
detail Algorithm 1 for words 010 and 01100. We consider word

ϕ5(0) = 011010 01100︸ ︷︷ ︸
(u,6)

101101001 01100︸ ︷︷ ︸
(u,20)

1101001.

An word 010 has two occurrences in ϕ5(0). It is (010, 3) and (010, 10). Now we find π(010, 3) and
π(010, 10).

Permutation π(010, 3).
We have ω4...ω13 = 0100110010. Hence Rω(4) = 0, 0100110010 . . ., Rω(5) = 0, 100110010 . . . and
Rω(6) = 0, 00110010 . . .. So Rω(6) < Rω(4) < Rω(5). Thus π(010, 3) = 231.

Permutation π(010, 10).
We have ω11...ω20 = 0101101001. Hence Rω(11) = 0, 0101101001 . . ., Rω(12) = 0, 101101001 . . .
and Rω(13) = 0, 01101001 . . .. So Rω(12) < Rω(14) < Rω(13). So π(010, 10) = 132.

An word 01100 has two occurrences inϕ5(0). It is (01100, 6) and (01100, 20). Now we find π(01100, 6)
and π(01100, 20).
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Permutation π(01100, 6).
We have ω7...ω26 = 01100101101001011001. HenceRω(7) = 0, 01100101101001011001 . . .,Rω(8) =
0, 1100101101001011001 . . .,Rω(9) = 0, 100101101001011001 . . .,Rω(10) = 0, 00101101001011001 . . .
and Rω(11) = 0, 0101101001011001 . . .. So π(01100, 6) = 35412.

Permutation π(01100, 20).
We have ω21...ω40 = 01100110100110010110. HenceRω(21) = 0, 01100110100110010110 . . .,Rω(22) =
0, 1100110100110010110 . . .,Rω(23) = 0, 100110100110010110 . . .,Rω(24) = 0, 00110100110010110 . . .
and Rω(25) = 0, 0110100110010110 . . .. So π(01100, 20) = 25413.

Thus we obtain that H01100 = {25413, 35412}.
For other subwords u of ω with |u| ∈ {3, 4, 5} we analogously find Hu by the Algorithm 1.

Subpermutations of length 3.
Fω(3) = {001, 010, 011, 100, 101, 110}. We have H001 = {123}, H010 = {132, 231}, H011 = {132},
H100 = {312}, H101 = {213, 312} and H110 = {321}. Thus χ(3) =

∑
|u|=3 f(u) =

∑
|u|=3 |Hu| = 8.

We have Bω(2) = {01, 10}. Since H010 = {132, 231} and H011 = {132}, we have g(01) = 1. Since
H100 = {312} and H101 = {213, 312}, we have g(10) = 1. So

α(2) =
∑

v∈B(2)

g(v) = 2.

Subpermutations of length 4.
Fω(4) = {0101, 0110, 1001, 1010, 1011, 1100, 1101, 0010, 0011, 0100}. We have H0101 = {1324},
H0110 = {2431}, H1001 = {3124}, H1010 = {4231}, H1011 = {3142}, H1100 = {4312}, H1101 =
{4312}, H0010 = {1243}, H0011 = {1243} and H0100 = {2413}. Hence mu = 1 and nu = 0 for
arbitrary subword u of ω of length 4. So

µ(4) =
∑
|u|=4

(mu + nu) = 10

and
χ(4) =

∑
|u|=4

f(u) = 10.

We haveBω(3) = {001, 010, 101, 110}. SinceH0010 = {1243} andH0011 = {1243}, we have g(001) =
k001 = 1 and t001 = r001 = 0. Since H0100 = {2413} and H0101 = {1324}, we have g(010) = k010 =
t010 = r010 = 0. Since H1010 = {4231} and H1011 = {3142}, we have g(101) = k101 = t101 = r101 =
0. Since H1100 = {4312} and H1101 = {4312}, we have g(110) = k110 = 1 and t110 = r110 = 0. So

α(3) =
∑

v∈B(3)

g(v) = 2

and
β(3) =

∑
v∈B(3)

(kv + tv + rv) = 2.
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Subpermutations of length 5.
Fω(5) = {01011, 10110, 01100, 11001, 01101, 11010, 10010, 00101, 10011, 00110, 10100, 01001}.

We haveH01011 = {14253},H10110 = {42531},H01100 = {25413, 35412},H11001 = {43125, 53124},
H01101 = {25413},H11010 = {54321},H10010 = {41253},H00101 = {12435},H10011 = {31254, 41253},
H00110 = {13542, 23541}, H10100 = {52413} and H01001 = {24135}. Hence m01100 = m10011 = 0,
n01100 = n10011 = 1 and mu = 1, nu = 0 for other subwords u of ω of length 5. So

µ(5) =
∑
|u|=5

(mu + nu) = 12.

We have Bω(4) = {0110, 1001}. Since H01100 = {25413, 35412} and H01101 = {25413}, we have
k0110 = t0110 = 0 and r0110 = 1. Since H10010 = {41253} and H10011 = {31254, 41253}, we have
k1001 = t1001 = 0 and r1001 = 1. So

β(4) =
∑

v∈B(4)

(kv + tv + rv) = 2.

Thus if n ≥ 5 and n ∈ [2s+1 + 1, 3 · 2s], then k(n) = 2, s(n) = s and we have

λ(n) = (r(n)− 1)µ(4) + (2s − r(n) + 1)χ(3)− β(3)

for r > 1 and
λ(n) = 2sχ(3)− α(2)

for r = 1 due to Theorem 3. So in this case

λ(n) = 10(r(n)− 1) + 8(2s − r(n) + 1)− 2 = 2(2s+2 + r(n)− 2)

for r(n) > 1 and
λ(n) = 8 · 2s − 2 = 2(2s+2 − 1)

for r(n) = 1.
For 3 · 2s + 1 ≤ n ≤ 2s+2 we have k(n) = 3, s(n) = s and Theorem 3 implies that

λ(n) = (r(n)− 1)µ(5) + (2s − r(n) + 1)χ(4)− β(4)

for r > 1 and
λ(n) = 2sχ(4)− α(3)

for r(n) = 1. So in this case

λ(n) = 12(r(n)− 1) + 10(2s − r(n) + 1)− 2 = 2(2s+2 + (2s + r(n))− 2)

for r(n) > 1 and
λ(n) = 10 · 2s − 2 = 2(2s+2 + 2s − 1)

for r(n) = 1.
Thus the formula for the permutation complexity of the Thue-Morse word is

λ(n) =
∑
|u|=n

f(u)−
∑

b∈B(n−1)

g(b) = 2k+2 + 2b− 2− 2 = 2(2k+1 + b− 2)

for n = 2k + b ≥ 6, where 0 < b ≤ 2k.
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10 Concluding remark
In this section we describe marked l–uniform binary morphisms for which we can apply our approach
and calculate the permutation complexity of their fixed points. We note that Lemma 1 and Lemma 2 are
key for our approach. Actually, if a marked l–uniform morphism satisfies Lemma 1 and Lemma 2, then
we can calculate the permutation complexity of its fixed point. So to apply our method we need that
the morphism satisfies Lemma 1 and Lemma 2. Let us prove that for all marked l–uniform morphisms
Lemma 1 holds only if it belong to the class Ql.

Let ϕ be a marked l–uniform morphisms. Let us prove that if ϕ 6∈ Ql, then Lemma 1 does not hold for
ϕ. Recall that the partition of ω into blocks which are the images of its symbols is called correct.

Suppose that the first property in the definition of Ql does not hold for ϕ. There are two cases. In the
first case ϕ(0) = 0u0x for some word x and 0u1 is a subword of ϕ(0) or ϕ(1). Let 0u1 be a subword
of ϕ(a), where a ∈ {0, 1}. Then ϕ(a) = z0u1y for some word z and y. It is clear that the correct
partition of ω contains at least one block ϕ(a). Let ωj lie in block ϕ(a) in the correct partition of ω and
j ≡ |z|+ 1 (mod l). Then Rω(j) = 0, 0u1y . . .. Moreover we have j 6≡ 1 (mod l). It is clear that the
correct partition of ω contains at least one block ϕ(0). Let ωi lie in block ϕ(0) in the correct partition of
ω and i ≡ 1 (mod l). Then Rω(i) = 0, 0u0 . . .. Then

γ(Rω(i), Rω(j)) = γ(0, 0u0 . . . , 0, 0u1 . . .) =<

and Lemma 1 does not hold for morphism ϕ.
In the second case ϕ(0) = 0u0x for some word x and 0u is a suffix of ϕ(0) or ϕ(1). Let 0u be a

suffix of ϕ(b), where b ∈ {0, 1}. Then ϕ(b) = z0u for some word z. Let ωj lie in block ϕ(b) which
is followed by ϕ(c) for some c ∈ {0, 1} in the correct partition of ω and j ≡ |z|+ 1 (mod l). Then
Rω(j) = 0, 0uc . . .. Moreover we have j 6≡ 1 (mod l). Let ωi lie in block ϕ(0) in the correct partition
of ω and i ≡ 1 (mod l). Then Rω(i) = 0, 0u0 . . .. Then

γ(Rω(i), Rω(j)) = γ(Rω(i+ |u|+ 1), Rω(j + |u|+ 1)).

If c = 1, then γ(Rω(i+ |u|+ 1), Rω(j + |u|+ 1)) =< and Lemma 1 does not hold for morphism ϕ. If
c = 0, then inequalitiesRω(i+|u|+1) < Rω(j+|u|+1) andRω(i) > Rω(j) do not hold simultaneously.
So Lemma 1 does not hold for Rω(i) and Rω(j) or Rω(i+ |u|+ 1) and Rω(j + |u|+ 1). The case when
the second property in the definition of Ql does not hold for ϕ is similar.

Thus in a sense class Ql is optimal in the class of marked l–uniform morphisms for our approach.
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