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Let G = (V,E) be a graph. For each e ∈ E(G) and v ∈ V (G), let Le and Lv , respectively, be a list of real numbers.
Let w be a function on V (G) ∪ E(G) such that w(e) ∈ Le for each e ∈ E(G) and w(v) ∈ Lv for each v ∈ V (G),
and let cw be the vertex colouring obtained by cw(v) = w(v) +

∑
e3v w(e). A graph is (k, l)-weight choosable if

there exists a weighting function w for which cw is proper whenever |Lv| ≥ k and |Le| ≥ l for every v ∈ V (G) and
e ∈ E(G).

A sufficient condition for a graph to be (1, l)-weight choosable was developed by Bartnicki, Grytczuk and Niwczyk
(2009), based on the Combinatorial Nullstellensatz, a parameter which they call the monomial index of a graph, and
matrix permanents. This paper extends their method to establish the first general upper bound on the monomial index
of a graph, and thus to obtain an upper bound on l for which every admissible graph is (1, l)-weight choosable. Let
∂2(G) denote the smallest value s such that every induced subgraph of G has vertices at distance 2 whose degrees
sum to at most s. We show that every admissible graph has monomial index at most ∂2(G) and hence that such graphs
are (1, ∂2(G)+1)-weight choosable. While this does not improve the best known result on (1, l)-weight choosability,
we show that the results can be extended to obtain improved bounds for some graph products; for instance, it is shown
that G2Kn is (1, nd+ 3)-weight choosable if G is d-degenerate.
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1 Introduction
A graph G = (V,E) will be simple and loopless unless otherwise stated. An edge k-weighting, w, of
G is an assignment of a number from [k] := {1, 2, . . . , k} to each e ∈ E(G), that is w : E(G) → [k].
Karoński, Łuczak, and Thomason [5] conjecture that, for every graph without a component isomorphic
to K2, there is an edge 3-weighting such that the function S : V (G) → Z given by S(v) =

∑
e3v w(e)

is a proper colouring of V (G) (in other words, any two adjacent vertices have different sums of incident
edge weights). If such a proper colouring S exists, then w is a vertex colouring by sums. Let χeΣ(G) be
the smallest value of k such that a graph G has an edge k-weighting which is a vertex colouring by sums.
A graph G is nice if it contains no component isomorphic to K2. Karoński, Łuczak, and Thomason’s
conjecture (frequently called the “1-2-3 Conjecture”) may be expressed as follows:
∗Email: seamone@iro.umontreal.ca
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1-2-3 Conjecture. If G is a nice graph, then χeΣ(G) ≤ 3.

The best known upper bound on χeΣ(G) is due to Kalkowski, Karoński and Pfender [4], who show that
χeΣ(G) ≤ 5 if G is nice.

In [2], Bartnicki, Grytczuk and Niwczyk consider a list variation of the 1-2-3 Conjecture. Assign to
each edge e ∈ E(G) a list of k real numbers, say Le, and choose a weight w(e) ∈ Le for each e ∈ E(G).
The resulting function w : E(G)→ ∪e∈E(G)Le is called an edge k-list-weighting. Given a graph G, the
smallest k such that any assignment of lists of size k to E(G) permits an edge k-list-weighting which is a
vertex colouring by sums is denoted cheΣ(G) and called the edge weight choosability number of G. The
following, stronger, conjecture is proposed in [2]:

List 1-2-3 Conjecture. If G is a nice graph, then cheΣ(G) ≤ 3.

A similar problem to the List 1-2-3 Conjecture for graphs is solved for digraphs in [2], where a con-
structive method is used to show that cheΣ(D) ≤ 2 for any digraph D. An alternate proof which uses
Alon’s Combinatorial Nullstellensatz [1] may be found in [6].

Another variant of the 1-2-3 Conjecture allows each vertex v ∈ V (G) to receive a weight w(v); the
colour of v is then w(v) +

∑
e3v w(e) rather than

∑
e3v w(e). Such a function w : V ∪E → [k] is called

a total k-weighting. The smallest k for which G has a total k-weighting that is a proper colouring by
sums is denoted χtΣ(G). A similar list generalization as above may be considered; the smallest k such
that the list version holds is denoted chtΣ(G). The following two conjectures are posed in [9] and [10, 14]
respectively:

1-2 Conjecture. If G is any graph, then χtΣ(G) ≤ 2.

List 1-2 Conjecture. If G is any graph, then chtΣ(G) ≤ 2.

Though the 1-2 Conjecture remains open, Kalkowski [3] has shown that a total weighting w of G
which properly colours V (G) by sums always exists with w(v) ∈ {1, 2} and w(e) ∈ {1, 2, 3} for all
v ∈ V (G), e ∈ E(G).

In [14], Wong and Zhu study (k, l)-total list-assignments, which are assignments of lists of size k to
the vertices of a graph and lists of size l to the edges. If any (k, l)-total list-assignment of G permits a
total weighting which is a vertex colouring by sums, then G is (k, l)-weight choosable. Obviously, if a
graph G is (k, l)-weight choosable, then chtΣ(G) ≤ max{k, l}. The List 1-2 Conjecture is equivalent to
the statement that every graph is (2, 2)-choosable. Wong and Zhu [14] further conjecture that every nice
graph is (1, 3)-weight choosable, a strengthening of the List 1-2-3 Conjecture. A recent breakthrough
by Wong and Zhu [13] shows that every graph is (2, 3)-weight choosable and hence chtΣ(G) ≤ 3 for
every graph G. There is a good deal of literature on graph classes which are (k, l)-weight choosable for
small values of k and l (see [2, 8, 10, 11, 12, 14]). Of particular note, it is shown in [8] that every nice
d-degenerate graph is (1, 2d)-weight choosable. However, whether or not there exists a constant l such
that every nice graph is (1, l)-weight choosable remains an open question.

The purpose of this paper is show how the methods used in [2] can be extended to obtain the following
general result. Let G = (V,E) be a nice graph, with E(G) = {e1, . . . , em} and V (G) = {v1, . . . , vn}.
Let ∂2(G) denote the smallest value s such that every induced subgraph of G has vertices at distance
2 whose degrees sum to at most s. Associate with each ei the variable xi, with each vj the variable
xm+j , and let Xvj =

∑
ei3vj xi for each vj . We show that the polynomial

∏
(u,v)∈E(D)(Xv −Xu) has

a monomial term in its expansion with non-zero coefficient for which no exponent exceeds ∂2(G). Based
on the work of [2], this implies that every nice graph is (1, ∂2(G) + 1)-weight choosable.
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The structure of the paper is as follows. In Section 2, we present a Combinatorial Nullstellensatz ap-
proach to the List 1-2-3 and List 1-2 Conjectures, which relies on calculating permanents of matrices
which arise from natural colouring polynomials (one of which is given in the previous paragraph). Sec-
tion 3 contains some intermediary lemmas on matrix permanents and colouring polynomials. Sections 2
and 3 are largely reliant on the results found in [2, 10]; results are presented in near full detail, with
examples, in the interest of keeping the article self-contained. Some results are generalized where nec-
essary. Section 4 contains the main result of this paper, given above. The result that every nice graph is
(1, ∂2(G) + 1)-weight choosable is, unfortunately, weaker than that of Pan and Yang [8], however we are
able to obtain improved bounds for some graph products in Section 5.

2 The permanent method and Alon’s Nullstellensatz
Let G = (V,E) be a graph, with E(G) = {e1, . . . , em} and V (G) = {v1, . . . , vn}. Associate with
each ei the variable xi and with each vj the variable xm+j . Define two more variables for each vj ∈
V (G): Xvj =

∑
ei3vj xi and Yvj = xm+j + Xvj . For an orientation D of G, define the following two

polynomials, where l = m+ n:

PD(x1, . . . , xm) =
∏

(u,v)∈E(D)

(Xv −Xu) (1)

TD(x1, . . . , xl) =
∏

(u,v)∈E(D)

(Yv − Yu). (2)

Let w be an edge weighting of G. By letting xi = w(ei) for 1 ≤ i ≤ m, w is a proper vertex colouring
by sums if and only if PD(w(e1), . . . , w(em)) 6= 0. A similar conclusion can be made about TD if w is a
total weighting of G. This leads us to the problem of determining when the polynomials PD and TD do
not vanish everywhere, i.e., when there exist values of the variables for which the polynomial is non-zero.
Alon’s famed Combinatorial Nullstellensatz gives sufficient conditions to guarantee that a polynomial
does not vanish everywhere.

Combinatorial Nullstellensatz (Alon [1]). Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a
polynomial in F[x1, . . . , xn]. Suppose the total degree of f is

∑n
i=1 ti, where each ti is a nonnegative

integer, and suppose the coefficient of
∏n
i=1 x

ti
i in f is nonzero. If S1, . . . , Sn are subsets of F with

|Si| > ti, then there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.

For a polynomial P ∈ F[x1, . . . , xl] and a monomial term M of P , let h(M) be the largest ex-
ponent of any variable in M . The monomial index of P , denoted mind(P ), is the minimum h(M)
taken over all monomials of P . Define the graph parameters mind(G) := mind(PD) and tmind(G) :=
mind(TD), where D is an orientation of G. Note that, given a graph G and two orientations D and D′,
PD(x1, . . . , xl) = ±PD′(x1, . . . , xl); a similar argument holds for TD. The parameters mind(G) and
tmind(G) are hence well-defined. Note that, for any graph G, tmind(G) ≤ mind(G).

The following lemma is obtained by applying the Combinatorial Nullstellensatz to PD and TD:

Lemma 2.1. Let G be a graph and k a positive integer.

1. (Bartnicki, Grytczuk, Niwczyk [2]) If G is nice and mind(G) ≤ k, then cheΣ(G) ≤ k + 1.
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2. (Przybyło, Woźniak [10]) If tmind(G) ≤ k, then chtΣ(G) ≤ k + 1.

More generally, Wong and Zhu show the following:

Lemma 2.2 (Wong, Zhu [14]). Let G be a nice graph, D an orientation of G, and

M = cxa11 · · ·xamm x
am+1

m+1 · · ·x
al
l

a monomial term of TD(x1, . . . , xl) (equation (2)) with c 6= 0. If max{ai : 1 ≤ i ≤ m} = l and
max{ai : m+ 1 ≤ i ≤ l} = k, then G is (k + 1, l + 1)-weight choosable.

This leads to the following simple corollary:

Corollary 2.3. If G is a nice graph, then G is (1,mind(G) + 1)-weight choosable.

The following proposition allows us to consider only connected graphs.

Proposition 2.4. If G is a graph with connected components G1, G2, . . . , Gk, then

mind(G) = max{mind(Gi) : 1 ≤ i ≤ k}.

In [2], Bartnicki et al. show how one may study the permanent of particular {−1, 0, 1}-matrices in
order to gain insight on mind(G) and tmind(G). Let M(m,n) denote the set of all real valued matrices
with m rows and n columns, and M(m) denote the set of square m ×m matrices. The permanent of a
matrix A ∈M(m), denoted perA, is calculated as follows:

perA =
∑
σ∈Sm

m∏
i=1

ai,σ(i).

The permanent may also be defined for a general matrix A ∈M(m,n) if n ≥ m. Let Qm,n denote the
set of sequences of lengthmwith entries from [n] which contain no repetition of elements; such sequences
are also known as m-permutations from [n]. For example, Q2,3 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1),
(3, 2)}. The permanent of A is defined as follows:

perA =
∑

α∈Qm,n

m∏
i=1

ai,α(i) =

(n
m)∑
i=1

perBi,

where {Bi | 1 ≤ i ≤
(
n
m

)
} is the set of all m×m submatrices of A.

The permanent rank of a matrix A (not necessarily square) is the size of the largest square submatrix
ofA having nonzero permanent. LetA(k) = [AA · · ·A] denote the matrix formed of k consecutive copies
of A. If A has size m× l, then the permanent index of A is the smallest k, if it exists, such that A(k) has
permanent rank m. This parameter is denoted pind(A). If such a k does not exist, then pind(A) := ∞.
Alternately, pind(A) is the smallest k such that a square matrix of size m having nonzero permanent can
be constructed by taking columns from A, each column taken no more than k times.

There are three matrices related to directed graphs which will be of interest:

Definition 2.5. Let G = (V,E) be a graph, V (G) = {v1, . . . , vn}, E(G) = {e1, . . . , em}. For an
orientation D of G, define the matrices AD ∈ M(m), BD ∈ M(m,n), and MD ∈ M(m,m + n) as
follows:
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• AD = (ai,j) where ai,j =

 1 if ej is incident with the head of ei
−1 if ej is incident with the tail of ei
0 otherwise

• BD = (bi,j) where bi,j =

 1 if vj is the head of ei
−1 if vj is the tail of ei
0 otherwise

• MD = (AD | BD).

The following lemmas, which relate the matrices AD, BD, and MD to the polynomials PD and TD,
provide the fundamental link between the graphic polynomials of interest and matrix permanents:

Lemma 2.6 (Bartnicki, Grytczuk, Niwczyk [2]). Let A = (aij) ∈ M(m) have finite permanent index. If
P (x1, . . . , xm) =

∏m
i=1(ai1x1 + . . .+ aimxm), then mind(P ) = pind(AD).

The proof is omitted, but the result follows from the fact that the coefficient of xk11 x
k2
2 · · ·xkmm in the

expansion of P is equal to per (M)
k1!···km! where M is the m ×m matrix where column aj from A appears kj

times. Lemma 2.6 immediately implies the following vital link between the (total) monomial index of a
graph G and the permanent index of AD (respectively, TD) for any orientation D of G:

Lemma 2.7. Let D be an orientation of a graph G.

1. (Bartnicki, Grytczuk, Niwczyk [2]) If G is nice, then mind(G) = pind(AD).

2. (Przybyło, Woźniak [10]) For any graph G, tmind(G) = pind(MD).

Lemmas 2.1 and 2.7 imply that cheΣ(G) ≤ pind(AD) + 1 (if G is nice) and chtΣ(G) ≤ pind(MD) + 1.
We note the following general result of Wong and Zhu [14]. Let G be a graph, D an orientation of G,

and MD the matrix defined above. Suppose a matrix M ∈ M(m) has only columns taken from MD and
has per (M) 6= 0. If no column associated with an edge e ∈ E(G) appears more than l times and no
column associated with a vertex v ∈ V (G) appears more than k times, then G is (k + 1, l + 1)-weight
choosable. However, in light of the theorem in [13] stating that every graph is (2, 3)-weight choosable,
it is now sufficient to consider only (1, l)-weight choosability (and hence to bounding mind(G)) and
(2, 2)-weight choosability (and hence trying to show that tmind(G) = pind(MD) = 1).

In summary, to determine upper bounds on cheΣ(G), chtΣ(G) or values of k and l for which G is (k, l)-
weight choosable, it is sufficient to consider the permanents of matrices obtained by replicating columns
from MD for some orientation D of G. Consider the following illustrative example. Let D be the digraph
in Figure 1 and let G be its underlying simple graph.

The associated polynomial, PD, is

PD(x1, . . . , x6) = (x1 + x4 − x1 − x2 − x3)× (x2 + x5 − x1 − x2 − x3)

× (x1 + x2 + x3 − x3 − x5 − x6)× (x1 + x4 − x4 − x6)

× (x3 + x5 + x6 − x2 − x5)× (x4 + x6 − x3 − x5 − x6)

= (x4 − x2 − x3)× (x5 − x1 − x3)× (x1 + x2 − x5 − x6)

× (x1 − x6)× (x3 + x6 − x2)× (x4 − x3 − x5).
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Fig. 1: A digraph used to illustrate AD , BD , and MD

Note that for each factor f of PD, the coefficients of x1, . . . , x6 are equal to the entries appearing on
the row of AD corresponding to f . We have:

MD = [AD |BD] =



0 −1 −1 1 0 0 −1 1 0 0 0
−1 0 −1 0 1 0 −1 0 1 0 0
1 1 0 0 −1 −1 1 0 0 −1 0
1 0 0 0 0 −1 0 1 0 0 −1
0 −1 1 0 0 1 0 0 −1 1 0
0 0 −1 1 −1 0 0 0 0 −1 1


.

Since perAD = −4 6= 0, we have pind(AD) = 1 (each column from AD is chosen once). By
Lemma 2.7(1), mind(G) = 1, and so G is (1, 2)-weight choosable by Corollary 2.3. Note that no graph is
(1, 1)-weight choosable, so l = 2 is the minimum value for which G is (1, l)-weight choosable. We also
clearly have that cheΣ(G) ≤ 2. Since there are adjacent vertices of equal degree inG, we have χeΣ(G) 6= 1,
implying cheΣ(G) 6= 1 and so cheΣ(G) = 2.

3 Some intermediary results on permanent indices and mono-
mial indices

The major results of this paper are proven by establishing bounds on mind(G) using the permanent method
outlined in the previous section. One important tool is the following lemma, a generalization of a similar
result in [2]:

Lemma 3.1 (Przybyło, Woźniak [10]). LetA be anm×l matrix, and letL be anm×mmatrix where each
column of L is a linear combination of columns of A. Let nj denote the number of columns of L in which
the jth column ofA appears with nonzero coefficient. If perL 6= 0, then pind(A) ≤ max {nj | j = 1, . . . l}.

We will also find the following theorem useful, which gives a method for constructing graphs in a way
that preserves the property of having low monomial index:

Theorem 3.2 (Bartnicki, Grytczuk, Niwczyk [2]). Let G be a simple graph with mind(G) ≤ 2. Let
U be a nonempty subset of V (G). If F is a graph obtained by adding two new vertices u, v to V (G)
and joining them to each vertex of U , and H is a graph obtained from F by joining u and v, then
mind(F ),mind(H) ≤ 2.
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As a consequence, the following graph classes have low monomial index and hence small values of
cheΣ(G) by Corollary 2.1(1):

Corollary 3.3 (Bartnicki, Grytczuk, Niwczyk [2]). If G is a complete graph, a complete bipartite graph,
or tree, then mind(G) ≤ 2.

Proposition 3.4. If G = Cn, then mind(G) ≤ 2.

Proof: Let V (G) = {v1, v2, . . . , vn} andE(G) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. LetD be the orienta-
tion of G with A(D) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}. Consider the colouring polynomial

PD = (x2 − xn)(x3 − x1)(x4 − x2) · · · (xn − xn−2)(x1 − xn−1).

Since each variable appears in exactly two factors of PD, no exponent in the expansion of PD exceeds 2,
and hence mind(G) ≤ 2.

In order to prove our major results in Section 4, the following generalization of Theorem 3.2 is required:

Lemma 3.5. Let G be a graph with finite monomial index mind(G) ≥ 1. Let U be a nonempty subset of
V (G). If F is a graph obtained by adding two new vertices u, v to V (G) and joining them to each vertex of
U , and F ∗ is a graph obtained from F by joining u and v, then mind(F ),mind(F ∗) ≤ max{2,mind(G)}.

The proof which follows is an adaptation of the proof of Theorem 3.2 found in [2]. Given a ma-
trix A with columns a1, a2, . . . , an and a sequence of (not necessarily distinct) column indices K =
(i1, i2, . . . , ik), A(K) is defined to be the matrix A(K) = (ai1 ai2 · · · aik) .

Proof: Let U = {u1, . . . , uk} be the subset of V (G) stated in the theorem. LetEu = {e1, e3, . . . , e2k−1}
and Ev = {e2, e4, . . . , e2k} be the sets of edges incident to the vertices u and v, respectively. Assume
that these edges are oriented toward U , and that for each i = 1, 2, . . . , k the edges e2i−1 and e2i have the
same head.

Let D be an orientation of F , D′ the induced orientation of G, and consider the matrices AD and
AD′ . Let A1, . . . , A2k be the first 2k columns of AD, corresponding to {e1, e2, . . . , e2k}. If we write
A = (A1 · · · A2k), then AD = (A B) where B =

(
X
AD′

)
.

Let Y be the (2k) × (2k) matrix and Z the (|E(F )| − 2k) × (2k) matrix such that A = [ YZ ]. Since
the edges e2i−1 and e2i have the same head for each i = 1, 2, . . . , k, the columns A2i−1 and A2i agree on
Z. Furthermore, Y may be written as a block matrix, where ( 0 1

1 0 ) occupies the diagonals and
(−1 0

0 −1

)
is

everywhere else, as seen in Figure 2.
There exists a matrix of columns from AD′ , with no column used more than mind(G) times, with

nonzero permanent. Let K denote the sequence of edges of G which index this matrix. Consider a new
matrix

M = (M1 M1 M2 M2 · · · Mk Mk B(K)) ,

where Mj = A2j−1 −A2j for j = 1, 2, . . . , k.
The properties of the columns of A outlined above imply that the matrix M can be written as follows:
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Y =



0 1 −1 0 −1 0
1 0 0 −1 · · · 0 −1
−1 0 0 1 −1 0
0 −1 1 0 0 −1

...
. . .

−1 0 −1 0 0 1
0 −1 0 −1 1 0


.

Fig. 2: The block matrix Y

M =
(
R X(K)
0 AD′ (K)

)
, where R has all constant rows:

R =


−1 −1 −1 −1
1 1 1 · · · 1
−1 −1 −1 −1

...
. . .

1 1 1 1

 .

Since perM = perR × perAD′(K), each of perR and perAG(K) are nonzero, and any column of
A appears in the linear combination of at most 2 columns of M , Lemma 3.1 implies that mind(F ) ≤
max{2,mind(G)}.

We now consider F ∗. Let H be an orientation of F ∗ with e0 = uv oriented from v to u. The matrix
AH is precisely AD with a row and column added for e0 (say, as the first row and column). It can be
depicted in block form AH =

(
Y ′ X′

Z′ AG

)
, where Y ′ and Z ′ are the matrices depicted in Figure 3.

Y ′ =



0 1 −1 · · · 1 −1
−1
−1

... Y
−1
−1


, Z ′ =


0
0
... Z
0
0



Fig. 3: The matrices Y ′ and Z′

LetA0, A1, . . . , A2k denote the first 2k+1 columns ofAH , corresponding to the edges e0, e1, . . . , e2k.
Form a new matrix

N = (N0 N0 N1 N2 N2 · · · Nk Nk B(K)) ,

so that N0 = A0 and Nj = A2j−1 − A2j for j = 1, 2, . . . , k. Arguing as before, N =
(
R′ X′(K)
0 AG(K)

)
,
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where R′ is the following square matrix:

R′ =


0 0 2 2 2
−1 −1 −1 −1 · · · −1
−1 −1 1 1 1

...
...

. . .
−1 −1 1 1 1

 .

It is shown in [2] that perR′ 6= 0. Hence perN = perR′ × perAG(K) 6= 0, and since any column of
A appears in the linear combination of at most 2 columns of N , Lemma 3.1 implies thats mind(H) ≤
max{2,mind(G)}.

4 A general bound for a graph’s monomial index
Armed with the Combinatorial Nullstellensatz and the permanent method, we may now proceed with our
main results.

Recall that a graph G is d-degenerate if every induced subgraph of G has a vertex of degree at most
d. If G and H are graphs, we write H ≤i G to denote that H is an induced subgraph of G. The
degeneracy of a graph G, which we denote by ∂(G), is the smallest d for which G is d-degenerate; that
is ∂(G) = max{δ(H)|H ≤i G}. We extend the notion of degeneracy to pairs of vertices at a given
distance. Given an integer r ≥ 1, let δr(G) denote the minimum value of d(u) + d(v) for two vertices
u, v ∈ V (G) at distance exactly r in G. The r-degeneracy of G, denoted ∂r(G), is

∂r(G) = max{δr(H)|H ≤i G}.

If no induced subgraph of G has vertices at distance exactly r (for example, G = Kn and r ≥ 2), then we
adopt the convention that ∂r(G) = 2∆(G).

We now show that mind(G) is at most ∂2(G). The result is achieved by carefully orienting the edges of
a graph and applying the lemmas from the previous sections to show that our desired matrix has non-zero
permanent.

Theorem 4.1. If G is a nice graph, then mind(G) ≤ ∂2(G).

Proof: We may assume that G is connected, since Proposition 2.4 states that mind(G) is at most the
largest monomial index of its components. If G is a tree, cycle, or complete graph, then mind(G) ≤ 2
by Corollary 3.3 and Proposition 3.4, and hence the theorem holds for the following graphs: P3, K3, P4,
K1,3, C4, and K4. If G is isomorphic to K3 with a leaf or C4 with a chord, then one may check that the
theorem holds for G by straightforward computation of the associated colouring polynomial PD for any
orientation D. Hence, the theorem holds for any connected graph on 3 or 4 vertices.

We proceed now by induction on |V (G)|. Let G be a connected graph on at least 5 vertices, and for any
graph H with |V (H)| < |V (G)|, assume that mind(H) ≤ ∂2(H).

If G is a complete graph, then the theorem holds by Corollary 3.3. Assume that G is not complete.
There exist u, v, w ∈ V (G) such that the induced subgraph G[{u, v, w}] is a path of length 2 (or, uvw is
an induced 2-path). Choose this 2-path such that d(u) + d(w) is minimum (and, hence, d(u) + d(w) ≤
∂2(G)). The ultimate goal will be to apply an inductive argument to G − {u,w}, however we must
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concern ourselves with whether or not this subgraph of G is nice. To this end, we define the following
sets of edges:

F = the edges of those components in G− {u,w} isomorphic to K2

Eu = {e ∈ E(G) | e 3 u, e 6= uv}
Ew = {e ∈ E(G) | e 3 w, e 6= vw}
Ev = {e ∈ E(G) | e 3 v, e 6= uv, vw}
E∗ = E(G) \ (Eu ∪ Ev ∪ Ew ∪ {uv, vw})

The path uvw and the sets of edges Eu, Ev, Ew are shown in Figure 4.

Eu

Ev

Ew

v

u w

Fig. 4: The induced 2-path uvw in G

Case 1: Ev ∩ F 6= ∅
If Ev ∩ F 6= ∅, then there can be only one edge in this intersection, otherwise the connected
component containing v in G − {u,w} would have two or more edges. Since uv, vw ∈ E(G),
it follows that NG(v) = {u,w, x} for some vertex x ∈ V (G). Since {v, x} induces a graph
isomorphic to K2 in G− {u,w}, we have that NG(x) ⊆ {u, v, w}.
If x is adjacent to both u and w, then v and x are adjacent twins. Suppose that G \ {v, x} is not
nice; we will show that this contradicts our choice of uvw which minimizes dG(u) = dG(w).
If G is not nice, then u, w, or both u and w are adjacent to exactly one vertex in G other than
v and x; without loss of generality, suppose that uy ∈ E(G), y 6= v, x. Since y /∈ NG(x),
the vertices y, u, x induce a 2-path; furthermore, dG(y) + dG(x) = 1 + 3 = 4. This contracts
our choice of uvw, since d(u) + d(w) ≥ 3 + 2 = 5. Thus, G − {v, x} is a nice graph,
and so, by Lemma 3.5, mind(G) ≤ max{2,mind(G − {v, x})}. By the induction hypothesis,
mind(G− {v, x}) ≤ ∂2(G− {v, x}), and so

mind(G) ≤ max{2,mind(G− {v, x})} ≤ max{2, ∂2(G− {v, x})} ≤ ∂2(G).

We may now assume that x is not adjacent to at least one of u and w. If w /∈ NG(x), then
both uvw and xvw are induced 2-paths in G. By the minimality of d(u) + d(w), we must have
that d(u) ≤ d(x). If u is adjacent to x, then d(x) = 2 and, since u is adjacent to v as well,
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d(u) = 2 and NG(u) = {v, x}. Otherwise, if u is not adjacent to x, then dG(u) = dG(x) = 1
andNG(u) = {v}. In either case, u and x are twins. IfG−{u, x} is not nice, then the only edge
not incident to u or x is the edge vw, contradicting our choice of G with |V (G)| ≥ 5. Assume
that G − {u, x} is nice. By Lemma 3.5, mind(G) ≤ max{2,mind(G − {u, x})}, and by the
induction hypothesis, mind(G− {u, x}) ≤ ∂2(G− {u, x})). Thus,

mind(G) ≤ max{2,mind(G− {u, x})} ≤ max{2, ∂2(G− {u, x})} ≤ ∂2(G).

If u /∈ NG(x) and w ∈ NG(x), then the exact same argument holds as for u ∈ NG(x) and
w /∈ NG(x). Having considered all possible neighbourhoods of x, we conclude that if Ev ∩ F
is nonempty, then mind(G) ≤ ∂2(G).

Case 2: Ev ∩ F = ∅
Suppose thatEv∩F = ∅. The argument proceeds as follows: after choosing a “good” orientation
D ofG, we will construct a matrix whose columns are linear combinations ofAD with no column
of AD being used more than ∂2(G) times and with nonzero permanent. The result then follows
by Lemma 3.1.

Let D be an orientation of G where the edges of Eu ∪ {uv} and Ev are oriented toward u
and v, respectively, and the edges of Ew ∪ {vw} are oriented away from w; see Figure 5. Let

Eu

Ev

Ew

v

u w

Fig. 5: An orientation D of a graph G with an induced 2-path uvw

cuv and cvw be the columns of AD associated with the edges uv and vw, respectively, and let
c = cuv − cvw; see Figure 6.

We must still concern ourselves with the possibility that deleting u and w from G gives a graph
which is not nice. If a component of G − {u,w} is isomorphic to K2, then one vertex of this
component must be adjacent to either u or w in G. Let F = {f1, . . . , fk} be the set of edges
belonging to the k connected components of G − {u,w} that are isomorphic to K2. For each
fi ∈ F , let ei be an edge from Eu or Ew to which fi is adjacent. Let F denote this collection of
edges from Eu ∪Ew, and let Fu = {e : e ∈ Eu ∩F} and Fw = {e : e ∈ Ew ∩F}. Each edge
fi ∈ F will be oriented away from its shared endpoint with ei.

Let H = G − {u,w} − F and D(H) be the corresponding sub-digraph of D. Since we have
removed all components isomorphic to K2, H is nice. Since H has fewer vertices than G, by
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cuv cvw · · ·
uv 0 −1
vw 1 0

1 0

Eu

...
...

1 0

0 −1

Ew

...
... · · ·

0 −1

1 1

Ev

...
...

1 1

0 0

E∗
...

...
0 0



=⇒ c =



1
1

1
...
1

1
...
1

0
...
0

0
...
0



Fig. 6: An operation on two columns of AD

the induction hypothesis, mind(H) ≤ ∂2(H). Hence, there exists a matrix LH consisting of
columns of AD(H), none repeated more than ∂2(H) times, with per (LH) 6= 0. Let K denote
the sequence of edges which indexes the columns of LH . For an m × n matrix A, recall that
A(k) is the m × kn matrix consisting of k consecutive copies of A (see page 176). Let LG be
the following block matrix:

LG =
(
c(d(u)+d(w))

∣∣∣ AD(F )
∣∣∣ AD(K)

)
=

Eu∪Ew∪{uv,vw} Jd(u)+d(w) K1 X1

F 0 K2 X2

E(H) 0 0 LH

,
where the blocks are as follows:

• Jd(u)+d(w) is the (d(u) + d(w))× (d(u) + d(w)) all 1’s matrix.

• K =
(
K1

K2

)
having entries depending on whether the column is indexed by ei ∈ Fu or

ei ∈ Fw. If the column is indexed by ei ∈ Fu, then the column will have (i) 1 in each row
indexed by the other edges from Eu, (ii) 1 in the row indexed by uv, (iii) −1 in the row
indexed by fi, and (iv) 0 in all other entries. Otherwise, the entries follow the same pattern
with the signs swapped. Since the column associated with ei has only one non-zero entry
in the rows indexed by F , K2 is diagonal with |Fu| entries being−1 and |Fw| entries being
1.

• X =
(
X1

X2

)
, the (|E(G)| − |E(H)|) × |E(H)| submatrix of AD(K) whose rows are in-

dexed by E(G) \ E(H); and

• LH , is the matrix with per (LH) 6= 0 defined above.
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Since Jd(u)+d(w), K2, and LH are all square matrices,

per (LG) = per
(
Jd(u)+d(w)

)
· per (K2) · per (LH)

= (d(u) + d(w))! · (−1)
|Fu| (1)

|Fw| · per (LH) 6= 0.

Since the sets {uv, vw}, F , and E(H) are pairwise disjoint, no column is used more than
max{d(u) + d(w), 1,mind(H)} times. Lemma 3.1 implies that pind(AD) ≤ max{d(u) +
d(w), 1,mind(H)}. Since pind(AD) = mind(G) (Lemma 2.7.1) and mind(H) ≤ ∂2(H) by
induction,

mind(G) ≤ max{d(u) + d(w), 1,mind(H)} ≤ max{∂2(G), 1, ∂2(H)} ≤ ∂2(G).

We immediately obtain the following result by Corollary 2.3:

Corollary 4.2. If G is a nice graph, then it is (1, ∂2(G) + 1)-weight choosable.

It is not hard to see that, if G is d-degenerate, then 2d ≤ ∂2(G) ≤ ∆(G) + d, and so Corollary 4.2
does not improve upon the constructive result of Pan and Yang [8] that every nice d-degenerate graph is
(1, 2d)-weight choosable. However, we hope that the extension of the algebraic methods established by
Bartnicki et al given in this section will serve as motivation for subsequent improvements. In particular,
the proof relied on finding a “good” induced subgraph whose columns had cancellation properties that
could be exploited in calculating the permanent index of the matrix AD. It is conceivable that a more
clever choice of induced subgraph might yield a better result than that given in Theorem 4.1.

5 Monomial indices of graph products
We now consider some classes of graphs where we can improve upon the result on Theorem 4.1, in
particular the cartesian product of two graphs. The following decomposition lemma on mind(G) provides
an approach for such graphs:

Lemma 5.1. Let G be a graph, and let H be an induced subgraph of G containing a 2-factor. Let X be a
minimal edge cut separating V (H) from V (G)\V (H). If the components ofG−H−X are C1, . . . , Ck,
then mind(G) ≤ max{mind(H) + |X|,mind(C1), . . . ,mind(Ck)}.

Proof: Let |V (H)| = v and F = {e1, . . . , ev} be a 2-factor of H . Let D be an orientation of G such
that the cycles of F are directed. Define the column vector c =

∑v
i=1 ci where ci is the column of AD

corresponding to ei. For each e ∈ E(H) \ F there are two edges of F incident to each of the head and
tail of e, and for each e ∈ F there is one edge of F incident to each of the head and tail of e. Hence, the
entries of c are nonzero in the rows indexed by the edges of X and 0 in all other entries.

There exists a matrix LG−X consisting of columns of AG−X with no column of AD repeated more
than mind(G − X) times and per (LG−X) 6= 0. Let K denote the sequence of edges of G − X which
index AG−X . Consider the following matrix:

L =
(
c(|X|) AD(K)

)
=

(
M N
0 LG−X

)
,
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where (M N) is indexed by X , each row of M is constant, and every entry of M is nonzero. Any
column indexed by e ∈ E(G) \ F is used at most mind(G − X) times in the construction of L,
and any edge from F is used at most |X| + mind(H) times. Clearly, per (L) = per (M)per (LG −
X) 6= 0, and hence pind(AD) ≤ max{|X| + mind(H),mind(G − X)}. Since mind(G − X) =
max{mind(C1), . . . ,mind(Ck),mind(H)} by Proposition 2.4 and mind(G) = pind(AD) by Lemma 2.7(1),
the result follows.

Recall that the Cartesian product of two graphs G and H , denoted by G2H , is defined as the graph
having vertex set V (G) × V (H) where two vertices (u, u′) and (v, v′) are adjacent if and only if either
u = v and u′ is adjacent to v′ in H or u′ = v′ and u is adjacent to v in G. Some results on χeΣ(G)
for Cartesian products of graphs are given in [7]; for instance, if G and H are regular and bipartite, then
χeΣ(Kn2 H), χeΣ(Ct2 H), and χeΣ(G2 H) are at most 2 for n ≥ 4, and t ≥ 4, t 6= 5. Lemma 5.1 may
be used to bound cheΣ(G2H) for many more graphsG andH . Note that, for the graphG2H and vertex
v ∈ V (G), the subgraph induced by the set of vertices {(v, x) : x ∈ V (H)} is denoted (v,H).

Theorem 5.2. Let H be a regular graph on n ≥ 3 vertices which contains a 2-factor. If G is a d-
degenerate graph, then mind(G2H) ≤ nd+ mind(H).

Proof: We may assume that G is connected. The proof of (1) is by induction on |V (G)|; the statement is
true when G is a single vertex, since d = 0 and cheΣ(H) ≤ mind(H) + 1 is guaranteed by Lemma 2.1.

Suppose |V (G)| ≥ 2. Let v ∈ V (G) have degree at most d, and let X be the minimal edge cut for
(v,H). Since |X| = n · dG(v) and G− v is d-degenerate, Lemma 5.1 implies that

mind(G2H) ≤ max{mind(H) + ndG(v),mind((G2H)−X)}
≤ max{mind(H) + nd,mind((G2H)− (v,H)}
≤ max{mind(H) + nd,mind((G− v)2H)}
≤ max{mind(H) + nd, nd+ mind(H)}
≤ mind(H) + nd.

Corollary 5.3. Let H be a regular graph on n ≥ 3 vertices which contains a 2-factor. If G is a d-
degenerate graph, then (G2H) is (1, nd+ mind(H) + 1)-weight choosable.

Since mind(Kn) is at most 2 by Corollary 3.3, the following corollary is obtained:

Corollary 5.4. For any integer n ≥ 3 and any d-degenerate graph G, the graph G2Kn is (1, nd + 3)-
weight choosable.

Recall that Pan and Yang [8] showed that every nice d-degenerate graph is (1, 2d)-weight choosable.
Since G2Kn is d(n − 1) degenerate, where d is the degeneracy of G, Corollary 5.4 represents an im-
provement for these graphs.
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