An efficient certificateless aggregate signature scheme for vehicular ad-hoc networks
Avleen Kaur Malhi, Shalini Batra

To cite this version:

HAL Id: hal-01196850
https://hal.inria.fr/hal-01196850
Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An Efficient Certificateless Aggregate Signature Scheme for Vehicular Ad-Hoc Networks

Avleen Kaur Malhi∗ Shalini Batra†

Computer Science & Engineering Dep., Thapar University, Patiala, Punjab, India

The state-of-the-art telecommunication technologies have widely been adapted for sensing the traffic related information and collection of it. Vehicular Ad-Hoc Networks (VANETs) have emerged as a novel technology for revolutionizing the driving experiences of human. The most effective and widely recognized way for mutual authentication among entities in VANETs is digital signature scheme. The new and attractive paradigm which eliminates the use of certificates in public key cryptography and solves the key escrow problem in identity based cryptography is certificateless cryptography. A new certificateless aggregate signature scheme is proposed in the paper for VANETs with constant pairing computations. Assuming the hardness of computational Diffie-Hellman Problem, the scheme is proved to be existentially unforgeable in the random oracle model against adaptive chosen-message attacks.

Keywords: VANETs, Certificateless Cryptography, Certificateless Aggregate Signature Scheme, Random Oracle Model

1 Introduction

Vehicular Ad-Hoc Networks have attracted comprehensive consideration in last few years for their assurance in enhancing driving safety and revolutionizing the transportation systems. Fundamentally, VANET security design should assure the security primitives of authentication, privacy, non-repudiation, integrity, availability, and in some peculiar application scenarios, confidentiality, to defend the network against intruders. Authentication ensures that a message is trustable by correctly identifying the sender of the message. Privacy is an important factor for the public acceptance and successful deployment of VANETs. It is attained by employing the pseudonymous approach in the communication among entities. The vehicle should not be able to relate the messages with its sender to ensure the private communication but at the same time; there should be mechanism termed as non-repudiation, to track the vehicles by law enforcement authorities, in case the vehicle transmits the wrong information in the network. Integrity requirements demand that the information from the sender to the receiver must not be altered or dropped. The availability ensures that the wireless channel has to be available so that approaching vehicles can still receive the warning messages in safety applications like post-crash warning. Confidentiality requires that

∗Email: avleemalhi@hotmail.com
†Email: sbatra@thapar.edu
the information flowing from sender to receiver should not be eavesdropped. A well recognized resolution is to sign each message with a digital signature.

Al-Riyami and Paterson (2003) invented the concept of Certificateless Public Key Cryptography (CL-PKC) which uses a third party called Key Generation Center (KGC) to generate the partial private key for an entity which is then combined with the secret key chosen by entity for the generation of full private key. Then, the user uses the public parameters of KGC and the secret key to compute the public key. The concept of partial private keys is introduced in CL-PKC as if the full private key is generated by the KGC as in Identity Based Cryptography, Baek et al. (2007), then KGC will have the full access on the private key of users and may abuse the capabilities of the network. The notion of partial private key was given in CL-PKC to ensure high security of the network. CL-PKC is considered to be well suited for VANETs in perspective of limited bandwidth and the dynamic nature of such networks. The Certificateless Signature Scheme presented by Al-Riyami and Paterson (2003) can not be used in VANETs as it employs more computational cost in signature generation and verification processes but the high mobility of vehicles in the networks puts an urgent need to reduce the computational time as much as possible to support the reliable message delivery in the highly dynamic vehicular ad-hoc networks. So, this paper majorly focuses on designing of the CLS Scheme with less computational cost but at the same time, the security of the network is also not compromised. In this paper, the Aggregate Certificateless Signature Scheme is proposed as aggregate signatures have the advantage of verifying all the signatures received from the other vehicles in an aggregate manner and reduces the signature verification time drastically because a lot of time will be consumed if the message signatures are verified independently leading to drop of important messages without being verified. Thus, the aggregate signatures enhance the network efficiency by verifying the more message signatures in a stipulated time leading to reduction in the message drop.

2 Related Work

Many security frameworks have been proposed so far to achieve the desired properties of vehicular ad hoc networks. Huang et al. (2005) proposed a security model for common certificateless signature scheme. An ID based ring signature scheme was adopted by Gamage et al. (2006) by modifying ring signature scheme with enhanced privacy, to achieve signer ambiguity for fulfilling the privacy requirement in VANET applications. However the ring signature scheme is not viable in context of VANET applications, due to unconditional privacy, resulting in requirement of non-repudiation unattainable. The schemes based on group signature are proposed in Lin et al. (2007); Lu et al. (2008); Studer et al. (2009), where the signer privacy is conditional on the group manager as the group manager possess the group master key. All these schemes have the problem of identity escrow, as a group manager can arbitrarily disclose the identity of any group member. Moreover, due to limitation of group formation, these group signature schemes are not feasible in highly mobile networks such as VANETs. An ID-based security framework for VANETs was put forward by Kamat et al. (2006, 2008) by providing authentication, non-repudiation, and privacy but it is restricted by the strong dependence on the infrastructure for short-lived pseudonym generation after each message, which renders the signalling overhead overwhelming. A user privacy preserving scheme was proposed by Sun et al. (2007) by adopting pseudonyms approach where traceability was provided simultaneously.

The first certificateless encryption scheme was given by Shamir (1985) who had given the formal proof for his scheme. Boneh et al. (2003) firstly introduced the concept of aggregate signatures. Many aggregate signature schemes have been proposed, Bagherzandi and Jarecki (2010); Boldyreva et al. (2007);
An Efficient Certificateless Aggregate Signature Scheme for Vehicular Ad-Hoc Networks

Since Boneh et al.'s scheme is proposed, the concept of aggregate signatures can be much efficiently used with ID-based signatures and certificateless signatures as certificateless cryptography does not pose a constraint of certificate overhead. The security model of CL Signature Schemes was given by Huang et al. (2005), but the ability of adversaries are not fully caught in CL-PKC by this model as the Certificateless scheme which is secure in this model may be insecure in actual practice. The more generic way to construct CL Signature Schemes was put forward by Yum and Lee (2004) which was proved insecure by [Hu et al.] (2006) and presented a new one. In addition, the security model of CLS schemes was developed by [Hu et al.] (2006). A new CLS scheme was propounded by [Liu et al.] (2007) which was proven secure in standard model. [Huang et al.] (2007) presented the two new constructions of the security models of certificateless signature schemes. Choi et al. (2007) presented two new efficient constructions of Certificateless Signature Schemes but Boneh et al. (2003) proved their security in weak adversary model. Du and Wen (2009) had given a new very efficient short CLS scheme with few mistakes in their security proof. A very efficient CLAS scheme was presented by [Zhang and Zhang] (2009) which is secure in the random oracle model. Certificateless signcryption scheme was proposed by Miao et al. (2013) but signcryption has high computational overhead in highly dynamic networks such as VANETs. The certificateless threshold signature scheme was given by Xiong et al. (2013) where the signing power was distributed among the multiple signers which is not a viable solution in VANETs. A certificateless two party authenticated key agreement protocol was proposed by He et al. (2012) but the two party communication is not viable in large scale vehicular ad-hoc networks. So far, very little attention has been devoted for the design of such Certificateless Signature Schemes for specific application scenarios such as VANETs.

2.1 Our Contribution

In this paper, a formal security model of CLS Schemes is presented and a new Certificateless Aggregate Signature Scheme for vehicular ad-hoc networks is adduced which provides the security requirements of integrity, authenticity, privacy and non-repudiation. The authenticity and integrity are provided itself by the digital signatures. Privacy is achieved by the issuance of short term identifiers called pseudonyms by the road side infrastructures which prevents the tracking of vehicles but at the same time, provides the non-repudiation as the authorities can link the pseudonyms with the actual identity of the entity. Aggregate signatures have the advantage of verifying all the signatures together leading to reduction in computation time. Assuming the hardness of computational Diffie-Hellman problem over groups in bilinear maps, the proposed CLAS scheme is proven secure in random oracle model. [Bellare and Rogaway] (1993).

The rest of the paper is organized as follows. Section 3 gives the preliminaries including bilinear maps, modelling CLAS scheme and the security model of CLS scheme. The setup and the new certificateless signature scheme for VANETs are given in Section 4 and the security proof is shown in Section 5. Finally, the proposed certificateless aggregate signature scheme and the security proof is presented in Section 6. The efficiency of the proposed scheme is in Section 7 and finally, Section 8 concludes the paper.
3 Preliminaries

In this section, the overview of bilinear maps is presented along with the CLAS modelling and adversarial model for CLS schemes.

3.1 Bilinear Maps

Let a cyclic additive group G_1 be of prime order q having a generator point P. Let a cyclic multiplicative group G_2 be of the same order q. The map $e : G_1 \times G_1 \rightarrow G_2$ is considered as a bilinear pairing if the following properties are satisfied:

1. Bilinearity: For any $P, X, Y \in G_1$, $e(P, X + Y) = e(P, X)e(P, Y)$ and for any $a, b \in \mathbb{Z}_q^*$, $e(aP, bP) = e(P, P)^{ab} = e(abP, P) = e(P, abP)$

2. Non-degenerate: $e(P, P) \neq 1_{G_2}$

3. Computability: There exists $P, R \in G_1$, an efficient algorithm should exist to compute $e(P, R)$ for all $P, R \in G_1$.

The proposed certificateless signature scheme’s security depends on the hardness of the Computational Diffie-Hellman (CDH) problem in the group.

Computational Diffie-Hellman (CDH) problem: Let cyclic group G_1 with order q has a generator P, and given two points, aP and bP for unknown $a, b \in \mathbb{Z}_q^*$, then to compute abP is computationally infeasible.

3.2 Modelling Certificateless Aggregate Signature Scheme

- **Setup**: It takes security parameter 1^ℓ as input, then it generates and publishes a list of system parameters as params.

- **PartialKeyGen**: This algorithm is performed by KGC once for each vehicle as it enters the region of new RTA (Regional Transportation Authority). It takes the inputs params, masterkey and identity ID_i to generate the partial private key pp_i.

- **UserKeyGen**: The algorithm is run by user that takes the user identity ID_i as input and selects a random $x_i \in \mathbb{Z}_q^*$, to output the secret key as x_i and public key as P_i.

- **Sign**: The algorithm is run by the user with inputs as params, Identity ID_i, secret key x_i, partial private key pp_i, public key P_i and message m_k to produce the output as signature σ_{ik} on message m_k generated by user with identity ID_i.

- **Aggregate**: The aggregate signature generator runs this algorithm by aggregating the signatures of n users $\{U_1, ..., U_n\}$ with public keys $\{P_1, ..., P_n\}$, messages $\{M_1, ..., M_n\}$ and signatures $\{\sigma_1, ..., \sigma_n\}$ to generate the aggregate signature σ as output.

- **AggregateVerify**: This algorithm takes as input an aggregate signature σ which is signed by n users $\{U_1, ..., U_n\}$ with public keys $\{P_1, ..., P_n\}$ on messages $\{M_1, ..., M_n\}$. It outputs true if the aggregate signature is valid or false otherwise.
3.3 Adversarial Model of Certificateless Signature Schemes

This section reviews the adversarial model of Certificateless Signature Scheme. Two types of adversaries are considered in Certificateless Cryptography namely, Type I and Type II adversary. Let A_1 denote a Type I attacker and A_2 denote a Type II attacker. Two games are considered, “Game I” where challenger C interacts with adversary A_1 and “Game II” where C interacts with adversary A_2. The master key of KGC cannot be accessed by adversary A_1, but the public key of any entity can be replaced by A_1 with the value chosen by it whereas the master key of KGC can be accessed by the adversary A_2 but A_2 cannot perform public key replacement. The Certificateless Signature Scheme is existentially unforgeable against the adaptive chosen message attack, if the both adversaries A_1 and A_2 have negligible success probability. The following six oracles can be accessed by the adversaries.

- **RevealPartialKey**: The adversary requests the partial private key of any vehicle with identity ID_i. The challenger C searches the list L and returns the partial key pp_i corresponding to the ID_i. If not found, ⊥ is returned.

- **RevealSecretKey**: The adversary requests the secret key of a vehicle with identity ID_i. The challenger responds with the corresponding secret key x_i if the entry exists in the list L. Otherwise, it outputs ⊥.

- **RevealPublicKey**: The adversary can request the public key of the vehicle with identity ID_i. The challenger responds with the public key P_i. If the entry corresponding to ID_i does not exist, ⊥ is returned.

- **RevealPseudonym**: The adversary makes a request for the pseudonym of the vehicle with ID_i. The challenger searches the list L and responds with PS_j if the entry exists, otherwise it returns ⊥.

- **ReplacePublicKey**: On input an identity ID_i, the adversary may replace the public key P_i of the vehicle with the public key of its own choice, say P'_i. If the list L does not contain the entry corresponding to ID_i, then nothing is done.

- **Sign**: On input a message $m_i \in \{0, 1\}^*$, the adversary can request the signature corresponding to the identity ID_i. A valid signature σ_i is returned if the entry corresponding to the ID_i exists in the list L. If the public key corresponding to ID_i has been replaced with P'_i, then the challenger C returns the valid signature with the new public key P'_i and secret key x'_i. If the list L does not contain the entry corresponding to ID_i, then a symbol ⊥ is returned.

Game I (for A_1 adversary): In this game, adversary A_1 interacts with the challenger C.

Phase I-1: The Setup algorithm is run by challenger C, which takes the input security parameter ℓ to generate the master key and system parameter list $params$. The parameter list $params$ is sent by challenger C to the adversary A_1 while keeps the master key as secret to itself.

Phase I-2: The polynomially bounded number of oracle-query operations are performed by the adversary A_1. The adversary A_1 can make **RevealPartialKey**, **RevealSecretKey**, **RevealPublicKey**, **RevealPseudonym**, **ReplacePublicKey** and **Sign** queries onto oracle during this stage of simulation.
Phase I-3: Finally, A_1 outputs a message and signature pair $< m^*_i, \sigma^*_i >$ corresponding to the identity ID^*_i with a public key P^*_i.

Now, A_1 wins Game I if;

- σ^*_i is a valid signature on message m^*_i with identity ID^*_i and public key P^*_i.
- The identity ID^*_i has not queried partial private key pp^*_i during $RevealPartialKey$ queries. Moreover, oracle $Sign$ has never been queried with ID^*_i and m^*_i.

Game II (for A_2 adversary): In this game, adversary A_2 interacts with the challenger C.

Phase II-1: The $Setup$ algorithm is run by challenger C, which takes the input security parameter ℓ for the generation of the master key and system parameter list $params$. The parameter list $params$ and the master key both are sent by challenger C to the adversary A_2.

Phase II-2: The polynomially bounded number of oracle-query operations are performed by the adversary A_2. The adversary A_2 can make $RevealSecretKey$, $RevealPublicKey$, $RevealPseudonym$ and $Sign$ queries onto oracle during this stage of simulation. The oracle $RevealPartialKey$ is no longer needed by A_2 as A_2 has the access to the master key.

Phase II-3: Finally, A_2 outputs a message and signature pair $< m^*_i, \sigma^*_i >$ corresponding to the identity ID^*_i with a public key P^*_i.

Now, A_2 wins Game II if;

- σ^*_i is a valid signature on message m^*_i with identity ID^*_i and public key P^*_i.
- The identity ID^*_i has not queried secret key x^*_i during $RevealSecretKey$ queries. Moreover, oracle $Sign$ has never been queried with ID^*_i and m^*_i.

Definition 1: A Certificateless Signature scheme is existentially unforgeable under adaptively chosen message attack if the success probability $\text{suc_{A_2}(}\ell\text{)}$ of any probabilistic polynomial time (PPT) adversary A_2 in any of the above two games is negligible.

4 New Efficient Certificateless Signature Scheme for VANETs

Here, an efficient certificateless signature scheme based on bilinear pairings is presented. The proposed certificateless signature scheme comprises the following seven algorithms.

Setup

There is one Key Generation Center (KGC) located in the region under one Regional Transportation Authority (RTA). The input is a security parameter ℓ^* where $\ell \in \mathbb{N}$, firstly a cyclic additive group \mathbb{G}_1 of prime order q is chosen by KGC. And finally, the cyclic multiplicative group \mathbb{G}_2 of the same prime order q is chosen. The bilinear pairing $e : \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2$ is defined by it. Choose a generator point of the group \mathbb{G}_1 as $P \in \mathbb{G}_1$. A master key $s \in \mathbb{Z}_q^*$ is uniformly selected and the public key of KGC as $P_{pub} = s \cdot P$ is selected. The two distinct hash functions $H_2 : \{0,1\}^* \rightarrow \mathbb{Z}_q^*$ and $H_1 : \{0,1\}^* \rightarrow \mathbb{Z}_q^*$ are chosen. The message space is defined as $\mathcal{M} = \{0,1\}^*$. Each RSU in the region under RTA sets $y_i \in \mathbb{Z}_q^*$ as the secret key of RSU_i and $P_{rsu} = y_i \cdot P$ as the public key of RSU_i. The public keys of all the RSUs $P_{rsu1}, P_{rsu2}, P_{rsu3}, \ldots, P_{rsun}$ under the region of RTA are sent to the KGC and published under $params$ list. The system parameter list is defined as $params = \{ \mathbb{G}_1, \mathbb{G}_2, e, P, P_{pub}, H_2, H_1, P_{rsu1}, P_{rsu2}, P_{rsu3}, \ldots, P_{rsun} \}$.
Registration
This algorithm is run by RTA to register the vehicle with Identity ID_i. RTA maps the relationship between ID_i and Q_{ID_i} as the actual identity of the vehicle ID_i is concealed and Q_{ID_i} is only used as the identity by the vehicle for all communications. Whenever the law enforcement authorities want to trace the vehicle for liability issues, then RTA can reveal the actual identity of the vehicle. When the vehicle enters the region of another RTA, then the vehicle again registers its ID_i to get the new pseudo identity.

- Choose the distinct hash function $H_1 : \{0,1\}^* \rightarrow G_1$.
- The vehicle’s identity space is $ID_i \in \{0,1\}^*$. The vehicle with identity ID_i registers itself with RTA (Regional Transportation Authority) as $Q_{ID_i} = H_1(ID_i) \in G_1$.
- The RTA sends the Q_{ID_i} to the vehicle.

PartialKeyGen
In the region under single RTA, there is single KGC and partial private key is generated once for each vehicle under the region of one RTA. All the RSUs in the region are directly under the control of RTA of that region. It is assumed that the KGC and RTA do not collude as both of these are different authorities and RTA does not have any authority over KGC. It implies that the KGC and RSUs do not collude with each other.

- KGC runs this algorithm, and takes the inputs parameter list $params$, master key s and $Q_{ID_i} \in G_1$.
- KGC then generates the partial private key of the vehicle as $pp_i = s.Q_{ID_i}$ by using the identity Q_{ID_i}.

It can be seen that the partial private key pp_i of vehicle is a signature on Q_{ID_i} with the public/private key pair (P_{pub}, s) and the correctness of the signature is checked by vehicle by checking whether $e(pp_i, P) = e(Q_{ID_i}, P_{pub})$ which can be verified as

\[e(pp_i, P) = e(s.Q_{ID_i}, P) = e(Q_{ID_i}, s.P) = e(Q_{ID_i}, P_{pub}) \]

UserKeyGen
This algorithm is used to generate the secret as well as public keys of the vehicles for vehicular communications in VANETs.

- The vehicle updates the secret and public key each time it enters the region of new RTA as it gets the new pseudo identity Q_{ID_i}.
- The vehicle and RSU takes as input $params$, to generate the secret and public keys. The vehicle with identity Q_{ID_i} selects $x_i \in \mathbb{Z}_q^*$ at random and sets x_i as the secret key of vehicle and sets the public key of vehicle as $P_i = x_i.P$.

PseudonymGen

This algorithm is run by the corresponding RSU\textsubscript{i} under whose coverage is the vehicle requesting for the pseudonym. The pseudonyms are allocated to vehicles each time a new RSU is encountered. The frequent updation of pseudonyms under each RSU may lead to consumption of network bandwidth and signalling overhead problem. Therefore, the Road Side Units (RSU) may combine to form the autonomous networks to help solve the signalling overhead problem and bandwidth consumption which may be caused due to the frequently updating of the pseudonyms under each RSU.

- It is assumed that autonomous network is comprised of 4 RSUs in scarcely populated areas and 2 RSUs in densely populated areas. Pseudonym is generated once under one autonomous network. This solution provides privacy and liability at the same time.
- The inputs taken by this algorithm are \textit{params} and vehicle identity \textit{QID}\textsubscript{i} and generates the pseudonym of the vehicle in two parts \(PS_1\) and \(PS_2\) such that \(PS_j = PS_1 + PS_2\).
- The autonomous network RSU\textsubscript{i} selects \(a_j \in \mathbb{Z}_q^*\) at random and sets \(PS_1 = a_j.QID\).
- Then it calculates the hash value of \(PS_1\) as \(T_j = H_3(PS_1) \in \mathbb{Z}_q^*\).
- The second part of pseudonym \(PS_2\) is calculated as \(PS_2 = a_j.T_j\).
- Finally the pseudonym \(PS_j\) is calculated as \(PS_j = PS_1 + PS_2\).

Sign

To sign a message \(m_k \in M\) using the partial private key and private key pair \((pp_i, x_i)\) with vehicle identity \(QID\textsubscript{i}\) and public key \(P\), the following steps are performed:

- Choose a random \(r_i \in \mathbb{Z}_q^*\) and compute \(U_i = r_i.P \in G_1\).
- Compute \(h_{ijk} = H_2(m_k, PS_1, P, U_i) \in \mathbb{Z}_q^*\).
- Compute \(V_{ijk} = pp_i.PS_2 + h_{ijk}.r_i.P_{pub} + h_{ijk}.x_i.P_{rsu}\).
- Output the signature on \(m_k\) as \(\sigma_{ijk} = (U_i, V_{ijk})\).

The first scalar multiplication \((pp_i.PS_2)\) in \(V_{ijk}\) can be pre-computed whenever the pseudonym is generated for \(QID\textsubscript{i}\) in the current autonomous network as it saves one scalar multiplication during signature generation.

Verify

To verify the signature \(\sigma_{ijk} = (U_i, V_{ijk})\) signed by the vehicle with pseudonym \(PS_j\), given are the \textit{params}, pseudonym \(PS_1\), the public key \(P\), the message \(m_k\) and the signature \(\sigma_{ijk} = (U_i, V_{ijk})\), the vehicle:

- Computes \(h_{ijk} = H_2(m_k, PS_1, P, U_i)\).
- Computes \(T_j = H_3(PS_1)\).
The correctness of the scheme follows from the fact:

Let \(r_i \) randomly chosen in \(G \)

Theorem 1

In the random oracle model, an adversary \(\mathcal{A}_1 \) exists having an advantage \(\epsilon \) to forge a signature in a game I modelled attack within a time span \(t \) and performs queries to various oracles by making \(q_i \) queries to \(H_i \) for \(i = 1, 2, 3, q_6 \) queries to \(\text{RevealPartialKey} \), \(q_4 \) queries to \(\text{RevealSecretKey} \), \(q_5 \) queries to \(\text{RevealPublic} \), \(q_{ps} \) queries to \(\text{RevealPseudonym} \) and \(q_{sig} \) queries to sign, then CDH problem can be solved in time

\[
t + \varphi(q_1 + q_2 + q_3 + q_6 + q_s + q_p + q_{ps} + q_{sig}) t_m
\]

where \(t_m \) is computation time for scalar multiplication in \(G_1 \) with probability

\[
\epsilon' \geq \frac{1}{(q_k + 1)} \epsilon
\]

Proof: Let \(\mathcal{C} \) be an attacker receiving a random instance \((P, aP, bP) \) of the CDH problem in cyclic group \(G_1 \). Point P is a generator of \(G_1 \) having prime order \(q \). Now, \(X = aP \) and \(Y = bP \) where \(a \) and \(b \) are randomly chosen in \(\mathbb{Z}_q^* \). A type I adversary \(\mathcal{A}_1 \) interacts with \(\mathcal{C} \) as modelled in Game I. \(\mathcal{C} \) uses \(\mathcal{A}_1 \) for

- The signatures are accepted if the following equation holds:

\[
e(V_{ijk}, P) = e(PS1_j, T_j + h_{ijk}, U_i, P_{pub}) e(h_{ijk}, P_i, P_{rsu})
\]

- If the equation holds, output is true; otherwise, output is \(\bot \).
solving the CDH problem by computing abP in \mathbb{G}_1 with the construction of an algorithm S_1. \mathcal{C} sends the

\[\text{params} = (\mathbb{G}_1, \mathbb{G}_2, e, P, P_{pub}, H_2, H_3, P_{rstu}) \] to \mathcal{A}_1.

S_1 chooses random $c \in \mathbb{Z}_q^*$ and sets $P_{pub} = X$ and $P_{rstu} = cP$ and then start performing oracle queries. The

hash functions H_1, H_2 and H_3 are considered random oracles and \mathcal{A}_1 performs the following queries. It is assumed that $H_1(\cdot)$ oracle query has been previously made on that identity for which key extraction or signature query has been made. A list $L = (ID_1, pp_i, x_i, P_i, PS_i)$ is maintained by S_1 while \mathcal{A}_1 makes queries throughout the Game I and \mathcal{C} maintains S_1 algorithm. S_1 responds to all the \mathcal{A}_1 queries.

H_1 queries: After an identity ID_i is being submitted to oracle H_1, same answer will be given if the request has been asked before. Otherwise, S_1 flips a coin $c_i \in \{0, 1\}$ yielding 0 with probability ζ and yielding 1 with probability $(1 - \zeta)$. Then randomly picks $\alpha_i \in \mathbb{Z}_q^*$. If $c_i = 0$, then

$H_1(ID_i) = \alpha_iP \in \mathbb{G}_1$. In both cases, S_1 inserts a tuple $(ID_i, \alpha_i, c_i, Q_i)$ in a list $L_{H_1} = (ID_i, \alpha_i, c_i, Q_i)$ to keep the track of the queries.

H_2 queries: S_1 maintains a list $L_{H_2} = (m_k, PS_{1j}, P_i, U_i, h_{ijk})$ which is initially empty. When \mathcal{A}_1 issues a query $H_2(m_k, PS_{1j}, P_i, U_i)$, the same answer from the list L_{H_2} will be given if the request has been previously made. Otherwise S_1 selects random element $h_{ijk} \in \mathbb{Z}_q^*$ and adds the tuple $(m_k, PS_{1j}, P_i, U_i, h_{ijk})$ to the list L_{H_2} and returns h_{ijk} as the answer to the hash value of $H_2(m_k, PS_{1j}, P_i, U_i)$ to \mathcal{A}_1.

H_3 queries: S_1 maintains a list $L_{H_3} = (PS_{1j}, t_{1j})$ which is initially empty. When \mathcal{A}_1 issues a query $H_3(PS_{1j})$, same answer will be returned if the query has been previously made. Otherwise, S_1 selects a random $t_{1j} \in \mathbb{Z}_q^*$ and adds (PS_{1j}, t_{1j}) to the list L_{H_3} and return t_{1j} as answer to \mathcal{A}_1.

RevealPseudonym queries: The request is issued on an identity ID_i.

- The corresponding tuple $(ID_i, pp_i, x_i, P_i, PS_i)$ is recovered from the list L. S_1 checks if PS_i is \bot. If $PS_i \neq \bot$, S_1 returns PS_i to \mathcal{A}_1. Otherwise, S_1 randomly chooses $k_j \in \mathbb{Z}_q^*$ and computes $PS_{1j} = k_jQ_i \in \mathbb{G}_1$ with ID_i corresponding to the list $L_{H_2} = (ID_i, \alpha_i, c_i, Q_i)$ if $c_i = 1$ and $PS_{2j} = k_j, t_{1j}$ where t_{1j} corresponds to the list $L_{H_3} = (PS_{1j}, t_{1j})$. S_1 returns $PS_i = (PS_{1j} + PS_{2j})$ to the adversary \mathcal{A}_1 and adds $(ID_i, pp_i, x_i, P_i, PS_i)$ to the list L.

- If the list L does not contain $(ID_i, pp_i, x_i, P_i, PS_i)$, then S_1 sets $PS_i = \bot$ and then randomly chooses $k_j \in \mathbb{Z}_q^*$ and computes $PS_{1j} = k_jQ_i$, and $PS_{2j} = k_j, t_{1j}$ from corresponding lists $L_{H_2} = (ID_i, \alpha_i, c_i, Q_i)$ and $L_{H_3} = (PS_{1j}, t_{1j})$ respectively. S_1 answers $PS_i = (PS_{1j} + PS_{2j})$ to the adversary \mathcal{A}_1 and adds $(ID_i, pp_i, x_i, P_i, PS_i)$ to the list L.

RevealPartialKey queries: The request is issued on an identity ID_i.

- The corresponding tuple $(ID_i, \alpha_i, c_i, Q_i)$ is recovered from the list L_{H_1}. If $c_i = 0$, then S_1 returns failure.

- If $c_i = 1$, and if list L contains $(ID_i, pp_i, x_i, P_i, PS_i)$, S_1 checks if $pp_i = \bot$. If $pp_i \neq \bot$, then S_1 returns pp_i to S_1. If $pp_i = \bot$, S_1 recovers the tuple $(ID_i, \alpha_i, c_i, Q_i)$ from the list L_{H_1}. Now, $c_i = 1$, i.e. $H_1(ID_i)$ is defined as $\alpha_iP \in \mathbb{G}_1$ and $pp_i = \alpha_iP_{pub} = \alpha_iX \in \mathbb{G}_1$. S_1 returns partial private key pp_i to \mathcal{A}_1 and adds tuple $(ID_i, pp_i, x_i, P_i, PS_i)$ into list L.

Avleen Kaur M, Shalini Batra
Again if $c_i = 1$, and list L does not contain the tuple $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 sets $pp_i = ⊥$ and recovers $(ID_i, α_i, c_i, Q_i)$ from the list L_{H_1}. S_1 sets $pp_i = α_i, P_{pub} = α_iX ∈ G_1$ and returns pp_i to S_1 and adds $(ID_i, pp_i, x_i, P_i, PS_j)$ into the list L.

RevealPublicKey queries: The request is issued on an identity ID_i.
- If the list L contains $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 checks whether $P_i = ⊥$. If $P_i ≠ ⊥$, then S_1 returns P_i to S_1. Otherwise if $P_i = ⊥$, S_1 randomly selects $v_i ∈ RZ_q^*$ and $P_i = v_iP ∈ G_1$ and returns P_i to S_1 as answer to $RevealPublicKey$ and saves (P_i, x_i) into the list L.
- If the list L does not contain $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 sets $P_i = ⊥$ and selects randomly $v_i ∈ RZ_q^*$ and $P_i = v_iP ∈ G_1$; $v_i ∈ RZ_q^*$ and returns P_i to S_1 and adds the tuple $(ID_i, pp_i, x_i, P_i, PS_j)$ to the list L.

RevealSecretKey queries: The request is issued on an identity ID_i.
- If the list L contains $(ID_i, pp_i, x_i, P_i, PS_j)$, then S_1 checks if $x_i = ⊥$. If $x_i ≠ ⊥$, then S_1 returns x_i to S_1. Otherwise, S_1 randomly selects $v_i ∈ RZ_q^*$ and sets $x_i = v_i$ and $P_i = v_iP ∈ G_1$. It returns x_i to S_1 and adds $(ID_i, pp_i, x_i, P_i, PS_j)$ into the list L.
- If the list L does not contain $(ID_i, pp_i, x_i, P_i, PS_j)$, then S_1 sets $x_i = ⊥$, selects randomly $v_i ∈ RZ_q^*$ and $P_i = v_iP ∈ G_1$, and returns x_i to S_1 and adds $(ID_i, pp_i, x_i, P_i, PS_j)$ into the list L.

ReplacePublicKey queries: Suppose S_1 chooses new public key P_i' for an identity ID_i.
- S_1 searches the list L and if L contains an element $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 replaces P_i with P_i' and sets $x_i = ⊥$.
- If the list L does not contain $(ID_i, pp_i, x_i, P_i, PS_j)$, then S_1 sets $P_i = P_i'$ and $x_i = ⊥$. It also sets $pp_i = ⊥$ and adds $(ID_i, pp_i, x_i, P_i, PS_j)$ into the list L.

Sign queries: On receiving a sign query on ID_i, S_1 firstly recovers L_{H_1} list as $(ID_i, α_i, c_i, Q_i)$, then list L as $(ID_i, pp_i, x_i, P_i, PS_j)$, list L_{H_2} as $(m_i, PS1_j, P_i, U_i, h_{ijk})$ and list L_{H_3} as $(PS1_j, t_{ij})$ and generates the signature as follows:
- If $c_i = 1$ and if the list L contains $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 checks if $x_i = ⊥$. If $x_i = ⊥$, S_1 makes $RevealPublicKey$ query to generate $x_i = v_i$ and $P_i = v_iP$.
- If L does not contain $(ID_i, pp_i, x_i, P_i, PS_j)$, S_1 makes $RevealPublicKey$ query to generate x_i and P_i and adds it to list L.
- To generate the signature, if $c_i = 0$, choose $r_i, q_i ∈ RZ_q^*$, set $U_i = r_iP − h_{ijk}.PS1_j.t_{ij}$ and computes
 \[
 V_{ijk} = pp_iPS2_j + h_{ijk}.r_i.P_{pub} + h_{ijk}.x_i.P_{r_{su}} = h_{ijk}.r_iX + h_{ijk}.x_i.P_{r_{su}}
 \]
 The output $σ_{ijk}$ can be expressed as $σ_{ijk} = (U_i, V_{ijk})$
- If $c_i = 1$, to generate the signature, choose at random $r_i ∈ RZ_q^*$ and $U_i = r_iP ∈ G_1$ and set the values $pp_i = α_iX, PS2_j = k_j.t_{ij}, P_{r_{su}} = c.P$. It computes the value of V_{ijk} as
 \[
 V_{ijk} = α_iX.k_j.t_{ij} + h_{ijk}.r_iX + h_{ijk}.x_i.c.P
 \]
If the tuple containing h_{ijk} already appears in the list L_{H_1}, then S_1 selects another $r_i, h_{ijk} \in \mathbb{Z}_p^*$ and tries again. Finally S_1 responds to \mathcal{A}_1 with $\sigma_{ijk} = (U_i, V_{ijk})$. All the responses to Sign queries are valid, i.e. the output (U_i, V_{ijk}) of sign query is a valid signature generated on message m_k.

Now, when $c_i = 0$, $V_{ijk} = h_{ijk}.r_i.X + h_{ijk}.x_i.P_{rsu}$

\[
e(V,P) = e(h_{ijk}.r_i.X + h_{ijk}.x_i.P_{rsu}, P) = e(h_{ijk}.r_i.a.P, P)e(h_{ijk}.x_i.c.P, P) = e(h_{ijk}.r_i.P, aP)e(h_{ijk}.x_i.P, cP) = e(h_{ijk}.U_i + PS_{1.j}.t_{1.j}.X)e(h_{ijk}.P, P_{rsu})
\]

By forking lemma, [Shamir (1985)], replaying \mathcal{A}_1 with some random tape, S_1 obtains two valid signatures $\sigma_{ijk}^s(ID_i, m_k^s, h_{ijk}^s, U_i, V_{ijk}^s)$ and $\sigma_{ijk}^s(ID_i, m_k^s, h_{ijk}^s, U_i, V_{ijk}^s)$ within polynomial time, where

\[
V_{ijk} = pp_i.PS_{2.i}^s + h_{ijk}^s.r_i^s.P_{pub} + h_{ijk}^s.x_i^s.P_{rsu}^s
\]

\[
V_{ijk} = pp_i.PS_{2.i}^s + h_{ijk}^s.r_i^s.P_{pub} + h_{ijk}^s.x_i^s.P_{rsu}^s
\]

Multiplying both sides of equation (1) by $(h_{ijk}^s)^{-1}$ and both sides of equation (2) by $(h_{ijk}^s)^{-1}$

\[
(h_{ijk}^s)^{-1}V_{ijk} = (h_{ijk}^s)^{-1}pp_i.PS_{2.i}^s + (h_{ijk}^s)^{-1}h_{ijk}^s(r_i^s.P_{pub} + x_i^s.P_{rsu}^s)
\]

\[
(h_{ijk}^s)^{-1}V_{ijk} = (h_{ijk}^s)^{-1}pp_i.PS_{2.i}^s + (h_{ijk}^s)^{-1}h_{ijk}^s(r_i^s.P_{pub} + x_i^s.P_{rsu}^s)
\]

Subtracting (4) from (5)

\[
(h_{ijk}^s)^{-1}V_{ijk} - (h_{ijk}^s)^{-1}V_{ijk} = [(h_{ijk}^s)^{-1} - (h_{ijk}^s)^{-1}]pp_i.PS_{2.i}^s
\]

Then, S_1 recovers the corresponding (ID_i, α, c_i, Q_i) from the list L_{H_1}. If $c_i = 1$, S_1 aborts. Otherwise, if $c_i = 0$, $Q_i = \alpha P$, $PS_{2.i} = k_j.t_{1.j}$. Now $P_{pub} = a.P$, where a is the secret key of KGC. Then, $pp_i = a.Q_i = a(\alpha, b.P) = \alpha.abP$. Now, in equation (5),

\[
(h_{ijk}^s)^{-1}V_{ijk} - (h_{ijk}^s)^{-1}V_{ijk} = [(h_{ijk}^s)^{-1} - (h_{ijk}^s)^{-1}]\alpha.abP,k_j.t_{1.j}
\]

\[
abP = [(h_{ijk}^s)^{-1}V_{ijk} - (h_{ijk}^s)^{-1}V_{ijk}]\alpha,k_j.t_{1.j}.(h_{ijk}^s)^{-1} - (h_{ijk}^s)^{-1}]
\]

Thus, algorithm S_1 outputs abP as the solution to Computational Diffie Hellman problem.

The proof is completed by showing that S_1 solves the given instance of CDH problem with the probability

\[
\varepsilon' \geq \frac{1}{(q_k + 1)}.\varepsilon
\]

S_1 needs three events in order to succeed:

E_1: The result of any \mathcal{A}_1’s $RevealPartialKey$ queries does not abort S_1.

E_2: A valid and non trivial signature is generated by \mathcal{A}_1.

E_3: Probability that \mathcal{A}_1 outputs a valid and nontrivial forgery and S_1 does not abort.

Probability that S_1 succeeds after all these events happen is

$$P[E_1 \land E_2 \land E_3] = P[E_1] \cdot P[E_2|E_1] \cdot P[E_3|E_1 \land E_2]$$

- **Claim 1**: Probability that result of any \mathcal{A}_1’s RevealPartialKey queries does not abort S_1 is at least $(1 - \zeta)^q_k$. Hence, $P[E_1] \geq (1 - \zeta)^q_k$.

 Proof: $P[c_i = 1] = (1 - \zeta)$, therefore probability that S_1 does not abort is $(1 - \zeta)$. As it takes at most q_k times RevealPartialKey queries, probability of S_1 not aborting after the queries of \mathcal{A}_1 is atleast $(1 - \zeta)^q_k$.

- **Claim 2**: The probability of S_1 not aborting with \mathcal{A}_1’s signature queries and key extraction queries is ε. $P[E_2|E_1] \geq \varepsilon$.

- **Claim 3**: Probability that \mathcal{A}_1 outputs a valid and nontrivial forgery and S_1 does not abort is ζ.

 Proof: Suppose \mathcal{A}_1 generated a valid and nontrivial forgery after the events E_1 and E_2 occurred. Thus, $P[E_3|E_1 \land E_2] \geq \zeta$.

Thus,

$$P[E_1 \land E_2 \land E_3] = P[E_1] \cdot P[E_2|E_1] \cdot P[E_3|E_1 \land E_2]$$

$$= (1 - \zeta)^q_k \cdot \varepsilon \cdot \zeta$$

$$= \zeta (1 - \zeta)^q_k \cdot \varepsilon$$

Now, $\zeta_{opt} = \frac{1}{q_k + 1}$. Thus,

$$\varepsilon' \geq \zeta (1 - \zeta)^q_k \cdot \varepsilon$$

$$\varepsilon' \geq \frac{1}{q_k + 1} \left[1 - \frac{1}{q_k + 1}\right]^{q_k} \cdot \varepsilon$$

With sufficiently large q_k, the term $\left[1 - \frac{1}{q_k + 1}\right]^{q_k}$ tends to $\frac{1}{e}$. Thus the probability is,

$$\varepsilon' \geq \frac{1}{(q_k + 1)} \cdot \varepsilon$$

\[\square\]

Theorem 2 In the random oracle model, an adversary \mathcal{A}_2 exists having an advantage ε to forge a signature in a game II modelled attack within a time span t and performs queries to various oracles by making q_2 queries to H_2, q_3 queries to H_3, q_p queries to RevealPublicKey, q_s queries to RevealSecretKey, q_{ps} queries to RevealPseudonym and q_{sig} queries to sign, then the CDH problem in G_1 can be solved in time

$$t + \varphi(q_2 + q_3 + q_s + q_p + q_{ps} + q_{sig})t_m$$

where t_m is the computational time for scalar multiplication in G_1 with probability

$$\varepsilon' \geq \frac{1}{(q_p + 1)} \cdot \varepsilon$$
Proof: Let be an attacker receiving a random instance (PaPaP) of the CDH problem in cyclic group \mathbb{G}_1. Point P is a generator of \mathbb{G}_1 having prime order q. $X = aP$ and $Y = bP$ where a and b are randomly chosen in \mathbb{Z}_q^*. A type II adversary A_2 interacts with as modelled in Game II. C uses A_2 for solving the CDH problem by computing abP in \mathbb{G}_1 with the construction of an algorithm S_2. C sets $P_{ru} = aP = X$. S_2 randomly sets the master key of KGC as $\lambda \in \mathbb{Z}_q^*$ and sets the public key of KGC as $P_{pub} = \lambda.P$. S_2 then sends the system parameters params $(\mathbb{G}_1, \mathbb{G}_2, e, P, P_{pub}, H_2, H_3, P_{ru})$ to A_2. The adversary A_2 is also provided the master key λ by S_2. Now, A_2 has the master key so it can generate the partial public key itself. C maintains S_2 algorithm and S_2 responds to all the A_2 queries. Since, the partial private key $pp_i = s.H_1(ID_i)$ can be computed by both S_2 and A_2. So, there is no need to model the hash function H_1 as random oracle. S_2 maintains a list (ID_i,x_i,P_i,PS_j,c_i) in list L.

H_2 queries: S_2 maintains a list $L_{H_2} = (m_k, PS1_j,P_i, U_i, h_{ijk})$ which is empty initially. Suppose $(m_k, PS1_j, P_i, U_i, h_{ijk})$ is submitted to $H_2(.)$. S_2 first checks if the request has been asked before on the same input and if so, the previous value is returned. Otherwise, S_2 selects random $h_{ijk} \in \mathbb{Z}_q^*$ and adds the tuple $(m_k, PS1_j, P_i, U_i, h_{ijk})$ to L_{H_2} and returns h_{ijk} as answer to the query made by A_2.

H_3 queries: S_2 maintains a list $L_{H_3} = (PS1_j, t_{1j})$ which is empty initially. When A_2 issues a query on $H_3(.)$ oracle, S_2 checks if the request has been asked previously on same input and returns the same answer. Otherwise, S_2 selects a random $t_{1j} \in \mathbb{Z}_q^*$ and adds $(PS1_j, t_{1j})$ to the list L_{H_3} and returns t_{1j} as an answer to A_2.

RevealPseudonym queries: The request is issued on an identity ID_i.

- S_2 recovers the corresponding (ID_i,x_i,P_i,PS_j,c_i) and checks if $PS_j = \bot$. If $PS_j \neq \bot$, S_2 returns PS_j to A_2. Otherwise, S_2 randomly selects $k_j \in \mathbb{Z}_q^*$ and computes $PS1_j = k_j.Q_i$ where $Q_i = H_1(ID_i)$ and $PS2_j = k_j.t_{1j}$ where the corresponding list is $L_{H_3} = (PS1_j, t_{1j})$. S_2 returns $PS_j = (PS1_j + PS2_j)$ to A_2 and adds (ID_i,x_i,P_i,PS_j, c_i) to the list L.

If the list L does not contain $(ID_i, x_i, P_i, PS_j, c_i)$, then S_2 sets $PS_j = \bot$ and randomly selects $k_j \in \mathbb{Z}_q^*$, computes $PS1_j = k_j.Q_i$ and $PS2_j = k_j.t_{1j}$ where the corresponding list is $L_{H_3} = (PS1_j, t_{1j})$ and $Q_i = H_1(ID_i)$. S_2 returns $PS_j = (PS1_j + PS2_j)$ to A_2 and adds $(ID_i, x_i, P_i, PS_j, c_i)$ to the list L.

RevealPublicKey queries: When the RevealPublicKey query is issued on an identity ID_i, the following three cases hold:

- S_2 checks the list L and if it contains (ID_i,x_i,P_i,PS_j,c_i), S_2 returns P_i to A_2.

If the list L does not contain $(ID_i, x_i, P_i, PS_j, c_i)$, then a coin $c_i \in \{0,1\}$ is flipped by S_2 yielding 0 with probability ξ and yielding 1 with probability $(1 - \xi)$. If $c_i = 0$, S_2 randomly selects $y_i \in \mathbb{Z}_q^*$ and sets $P_i = y_i.P \in \mathbb{G}_1$. S_2 sets $x_i = y_i$ and inserts a tuple $(ID_i, x_i, P_i, PS_j, c_i)$ to the list L and P_i is returned to A_2.

If $c_i = 1$, S_2 returns $P_i = y_i.Y \in \mathbb{G}_1$ to A_2 where a random $y_i \in \mathbb{Z}_q^*$ and sets $x_i = y_i$ and inserts a tuple $(ID_i, x_i, P_i, PS_j, c_i)$ to the list L.

RevealSecretKey queries: The request is issued on an identity ID_i, the following three cases hold:

- It checks if the list L contains $(ID_i, x_i, P_i, PS_j, c_i)$, then it returns x_i to A_2.

Avleen Kaur Malhi, Shalini Batra
• If the list does not contain \((ID_i, x_i, P_i, PS_j, c_i)\), then if \(c_i = 1\), it halts.
• If \(c_i = 0\), \(S_2\) makes \textit{RevealPublicKey} query and the tuple \((ID_i, x_i, P_i, PS_j, c_i)\) is added to the list \(L\) and returns \(x_i\) to \(\mathcal{A}_2\).

\textbf{Sign Oracle: } On receiving a sign query on \(ID_i\), \(S_2\) firstly recovers the list \(L = (ID_i, x_i, P_i, PS_j, c_i)\), then \(L_{H_2} = (mk, PS1_j, P_i, U_i, h_{ijk})\) and \(L_{H_3} = (PS1_j, t_{ij})\) and generates the signature as follows:

• If \(c_i = 1\), then if the list contains \((ID_i, x_i, P_i, PS_j, c_i)\), \(S_2\) checks as \(x_i = \gamma\) and \(P_i = \gamma . Y \in \mathbb{G}_1\).
• If \(c_i = 0\), then list contains \((ID_i, x_i, P_i, PS_j, c_i)\), \(S_2\) checks as \(x_i = \gamma\) and \(P_i = \gamma . P \in \mathbb{G}_1\).

Now, for generating the signature, if \(c_i = 1\), then \(S_2\) checks if the adversary \(\mathcal{A}_2\) has not made the sign query on \((ID_i, x_i, P_i, PS_j, c_i)\). In addition, the forged signature must satisfy

\[
e(V, P) = e(PS1_j \cdot t_{ij} + h_{ijk} \cdot U_i, P_{pub}) e(h_{ijk} \cdot P_i, P_{rSU})
\]

The above equation holds for a valid signature. Otherwise, \(S_2\) aborts. If the equation holds i.e. if \(S_2\) does not abort, then the signature on \((ID_i, x_i, P_i, PS_j, c_i)\) is

\[
e(V^*, P) = e(PS1_j \cdot t_{ij} + h_{ijk} \cdot U_i, P_{pub}) e(h_{ijk} \cdot P_i, P_{rSU})
\]

By setting the values as \(PS1_j = k_j \cdot Q_i, Q_i = H_1(ID_i), P_{pub} = \lambda \cdot P, P_{rSU} = a \cdot P, P_i = \gamma^a \cdot Y = \gamma^a \cdot bP\), and \(t_{ij} = H_3(PS1_j)\):

\[
e(V^*, P) = (k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i, \lambda \cdot P) e(h_{ijk} \cdot \gamma^a \cdot bP, aP)
\]

\[
e(h_{ijk} \cdot \gamma^a \cdot bP, aP) = e(V^*, P) e(k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i, \lambda \cdot P)^{-1}
\]

\[
e(h_{ijk} \cdot \gamma^a \cdot abP, P) = e(V^*, P) e(k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i, \lambda \cdot P)^{-1}
\]

\[
e(h_{ijk} \cdot \gamma^a \cdot abP, P) = e(V^* - \lambda(k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i), P)
\]

Now,

\[
h_{ijk} \cdot \gamma^a \cdot abP = V^* - \lambda(k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i)
\]

\[
abP = (h_{ijk} \cdot \gamma^a)^{-1}[V^* - \lambda(k_j \cdot Q_i \cdot t_{ij} + h_{ijk} \cdot U_i)]
\]

Thus, \(S_2\) outputs \(abP\) as the solution of the Computational Diffie Hellman problem. Similar to Theorem 11, it can be shown that the given instance of CDH problem is solved by \(S_2\) with probability

\[
\mathbf{\epsilon'} \geq \frac{1}{(q_p + 1) . \epsilon}
\]

\square
6 New Certificateless Aggregate Signature Scheme

This section proposes a new certificateless aggregate signature scheme based on the proposed Certificateless signature scheme.

6.1 Proposed Certificateless Aggregate Signature Scheme

This section explains the construction of a new certificateless aggregate signature scheme for VANETs. All the six algorithms Setup, Registration, PartialKeyGen, UserKeyGen, PseudonymGen and Sign algorithms remain same as proposed in the basic CLS scheme. The remaining two algorithms are described as:

Aggregate

This algorithm aggregates the collection of individual signatures. The vehicle acts as an aggregate signature generator aggregating a collection of n signatures form n users \{U_1, ..., U_n\} with pseudonyms \{P_1, ..., P_n\}, public keys \{P_1, ..., P_n\} with messages \{M_1, ..., M_n\} and signatures \{\sigma_1 = (U_1, V_1), ..., \sigma_n = (U_n, V_n)\} from corresponding users \{U_1, ..., U_n\} respectively. It aggregates all the signatures signed under the same Roadside Unit (RSU). The aggregate signatures can be computed as \(V = \sum_{i=1}^{n} V_i\) and \(\sigma = (U_1, ..., U_n, V)\) is an output for an aggregate signature pair.

AggregateVerify

An aggregate signature \(\sigma = (U_1, ..., U_n, V)\) which is signed by n users \{U_1, ..., U_n\} on n messages \{M_1, ..., M_n\} is verified by AggregateVerify algorithm with the help of following steps:

- Compute \(h_i = H_2(m_i, PS_1, P_i, U_i)\) for \(i = 1\) to \(n\).
- Compute \(T_i = H_2(PS_1)\) for \(i = 1\) to \(n\).
- Check the following equation if it holds or not:

\[e(V, P) = e(\sum_{i=1}^{n} [PS_1, T_i + h_i, U_i], P_{pub})e(\sum_{i=1}^{n} h_i, P_i, P_{rsu})\]

for all the messages signed under single RSU. The vehicle accepts the signature if the equation holds, otherwise outputs \(\bot\).

6.2 Security Proof

Theorem 3 The certificateless aggregate signature scheme is considered secure against existential forgery if the proposed certificateless signature scheme is secure against adaptive chosen message attacks in the aggregate model.

Proof: There exists an adversary \(\mathcal{A}\) having an advantage \(\epsilon\) in forging a signature in certificateless aggregate signature scheme in the random oracle model. An algorithm \(S\) is constructed to output the forgery of the certificateless aggregate signature scheme. \(S\) chooses random \(c \in \mathbb{Z}_q^*\) and sets \(P_{pub} = X\) and \(P_{rsu} = cP\) and then start performing oracle queries. Algorithm \(S\) maintains a list \(L = (ID_i, pp_i, x_i, P_i, PS_i)\) while \(\mathcal{A}\) makes queries throughout the Game and algorithm \(S\) responds to all the queries of \(\mathcal{A}\).
H1 queries: On submitting an identity IDi to oracle H1, it returns same answer if the request has been asked before. Otherwise, a coin ci ∈ {0, 1} is flipped by S yielding 0 with probability ζ and yielding 1 with probability (1 − ζ) and picks αi randomly from \(\mathbb{Z}_{q}^{*} \). If \(c_i = 0 \), \(H_i(ID_i) \) is defined as \(Q_i = \alpha_i P_{pub} \in \mathbb{G}_1 \). If \(c_i = 1 \), then the hash value \(H_i(ID_i) = \alpha_i P \in \mathbb{G}_1 \). A tuple \((ID_i, \alpha_i, c_i, Q_i)\) is inserted in the list \(L_{H1} = (ID_i, \alpha_i, c_i, Q_i) \) by algorithm S in both cases to keep the track of all the queries. Now, ultimately adversary \(\mathcal{A} \) has to output n users set with identities from \(L_{ID} = \{ID_1^*, \ldots, ID_n^*\} \), public keys from \(L_{pub} = \{P_1^*, \ldots, P_n^*\} \), pseudonyms from \(L_{PS} = \{PS_1^*, \ldots, PS_n^*\} \), n messages from the set \(L_{msg} = \{m_1^*, \ldots, m_n^*\} \) and aggregate signature \(\sigma^* = (U_1^*, \ldots, U_n^*, V^*) \). Now, S finds the corresponding n tuples \((ID_i, \alpha_i, c_i, Q_i)\) for \(i = 1 \) to n from \(L_{H1} \) and precedes only when \(c_k = 0 \) and \(c_j = 1 \) for \(j = 1 \) to n and \(j \neq k \). The signature \((m_k^*, PS_k^*, P_k^*, U_k^*, h_k^*) \) has never been requested before. Otherwise, S will fail and halt. When \(Q_k = \alpha_k P_{pub} \) and \(Q_j = \alpha_j P \) for \(j = 1 \) to n and \(j \neq k \), S succeeds. The generated aggregate signature is \(\sigma^* = (U_1^* \ldots U_n^*, V^*) \) satisfying the aggregate verification equation:

\[
e(V^*, P) = e(V^*, P) = e(\sum_{i=1}^{n} [PS_1^* \cdot T_1^* + h_1^* \cdot U_1^*], P_{pub}) e(\sum_{i=1}^{n} h_1^* \cdot P_i^*, P_{rsu})
\]

Then, S searches the tuple \((m_1^*, PS_1^*, P_1^*, U_1^*, h_1^*)\) from the list \(L_{H2} \) of \((PS_1^*, t_1^*)\) from the list \(L_{H1} \), and the tuple \((ID_i^*, pp_i^*, x_i^*, P_i^*, PS_i^*)\) from the list \(L \). It sets \(V_i^* = \alpha_i P_{pub} \), then \(e(V_i^*, P) = e(Q_i^*, P_{pub}) \) for \(i = 1 \ldots n \), \(j \neq k \). Finally S constructs \(V_i^* \) as \(V^* - \sum_{i=1}^{n} \beta_i V_i^* \). Now,

\[
V_i^* = pp_i^* \cdot PS_i^* + \sum_{i=1}^{n} h_i^* \cdot x_i^* \cdot P_{pub} + \sum_{i=1}^{n} h_i^* \cdot P_{rsu}
\]

As \(U_i^* = r_i^* \cdot P \) and \(r_i^* \in \mathbb{Z}_q^* (1 \leq i \leq n) \). Algorithm S now chooses a random number \(w_k^* \in \mathbb{Z}_q^* \) and computes \(U^* = (w_k^*)^{-1} \sum_{i=1}^{n} h_i^* \cdot U_i^* \). After this, S computes \(P_k^* = (w_k^*)^{-1} \sum_{i=1}^{n} h_i^* \cdot P_i^* \).

S updates \(P_i \) to \(P_i^* \) by invoking \texttt{ReplacePublicKey} query. Then, S defines the hash value \(H_2(m_k^*, PS_1^*, P_k^*, U_k^*) = w_k^* \). If the tuple \((m_k^*, PS_k^*, P_k^*, U_k^*)\) already appears in list \(L_{H1} \) then it tries another \(w_k^* \) until there is no collision. Thereupon, \((U^*, V^*)\) is a valid signature for identity \(ID_k^* \) on message \(m_k^* \) with pseudonym \(PS_k^* \) and corresponding public key \(P_k^* \). Its verification equation is:

\[
e(w_k^* \cdot U^* + PS_k^* \cdot t_k^*, P_{pub}) e(w_k^*, T_k^*, P_{rsu})
\]

\[
= e(w_k^* \cdot (w_k^*)^{-1} \sum_{i=1}^{n} h_i^* \cdot U_i^* + PS_k^* \cdot t_k^*, P_{pub}) e(w_k^* \cdot (w_k^*)^{-1} \sum_{i=1}^{n} h_i^* \cdot P_i^*, P_{rsu})
\]

\[
= e(\sum_{i=1}^{n} h_i^* \cdot U_i^* + PS_k^* \cdot t_k^*, P_{pub}) e(\sum_{i=1}^{n} h_i^* \cdot P_i^*, P_{rsu})
\]

\[
= e(\sum_{i=1}^{n} h_i^* \cdot r_i^* \cdot P_{pub} + pp_i^* \cdot PS_k^* \cdot P) e(\sum_{i=1}^{n} h_i^* \cdot x_i^* \cdot P_{rsu}, P)
\]

\[
= e(V^*, P)
\]

Thus, the output \((U^*, V^*)\) is given by algorithm S which acts as a forgery of the basic certificateless signature scheme.
To complete the proof, it is to be shown that S’s advantage in forging the basic certificateless signature is at least

$$\varepsilon' \geq \frac{1}{(q_k + n) \cdot e} \cdot \varepsilon$$

There are three events needed for S to succeed:

- **E₁**: The result of any A’s RevealPartialKey queries does not abort S.
- **E₂**: A valid and non-trivial signature is generated by A.
- **E₃**: Probability that A outputs a valid and non-trivial forgery and S does not abort.

Probability that S succeeds after all these events happen is

$$P[E_1 \wedge E_2 \wedge E_3] = P[E_1] \cdot P[E_2|E_1] \cdot P[E_3|E_1 \wedge E_2]$$

- **Claim 1**: Probability that S does not abort as a result of the RevealPartialKey queries is at least $$(1 - \zeta)^{q_k}$$. Hence, $$P[E_1] \geq (1 - \zeta)^{q_k}$$

 Proof: For key extraction queries, probability that S does not abort is $$(1 - \zeta)$$. As it takes at most $$q_k$$ times RevealPartialKey queries, probability that S does not abort as result of A queries is at least $$(1 - \zeta)^{q_k}$$.

- **Claim 2**: The probability of S not aborting with A’s signature queries and key extraction queries is $$\varepsilon \cdot P[E_2|E_1] \geq \varepsilon$$.

- **Claim 3**: Probability that A outputs a valid and non-trivial forgery and S does not abort is $$\zeta$$.

 Proof: Suppose events E₁ and E₂ have occurred and A has generated some valid and non-trivial forgery. Hence $$P[E_3|E_1 \wedge E_2] \geq \zeta (1 - \zeta)^{q_k + n - 1}$$

Thus,

$$P[E_1 \wedge E_2 \wedge E_3] = P[E_1] \cdot P[E_2|E_1] \cdot P[E_3|E_1 \wedge E_2]$$

$$= (1 - \zeta)^{q_k} \cdot \varepsilon \cdot \zeta (1 - \zeta)^{n - 1}$$

$$= \zeta (1 - \zeta)^{q_k + n - 1} \cdot \varepsilon$$

Now, $$\zeta_{opt} = \frac{1}{q_k + n}$$. Thus,

$$\varepsilon' \geq \zeta (1 - \zeta)^{q_k + n - 1} \cdot \varepsilon$$

$$\geq \frac{1}{q_k + n} \left[1 - \frac{1}{q_k + n}\right]^{q_k + n - 1} \cdot \varepsilon$$

With sufficiently large $$q_k$$, the term $$\left[1 - \frac{1}{q_k + n}\right]^{q_k + n - 1}$$ tends to $$\frac{1}{e}$$. Thus the probability is,

$$\varepsilon' \geq \frac{1}{(q_k + n) \cdot e} \cdot \varepsilon$$
An Efficient Certificateless Aggregate Signature Scheme for Vehicular Ad-Hoc Networks

Tab. 1: Comparison of the proposed scheme with other schemes

<table>
<thead>
<tr>
<th>CLS scheme</th>
<th>Type</th>
<th>Sign Cost</th>
<th>Verify Cost</th>
<th>Aggregate Verify Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang and Zhang (2009)</td>
<td>Sync#</td>
<td>3S</td>
<td>4P</td>
<td>(n+3)P</td>
</tr>
<tr>
<td>Zhang et al. (2010)</td>
<td>Sync</td>
<td>5S</td>
<td>5P+2S</td>
<td>5P+2nS</td>
</tr>
<tr>
<td>First scheme in Gong et al. (2007)</td>
<td>Ad hoc*</td>
<td>2S</td>
<td>3P</td>
<td>(2n+1)P</td>
</tr>
<tr>
<td>Second scheme in Gong et al. (2007)</td>
<td>Sync</td>
<td>3S</td>
<td>3P</td>
<td>(n+2)P+nS</td>
</tr>
<tr>
<td>Our scheme</td>
<td>Ad hoc</td>
<td>3S</td>
<td>3P+3S</td>
<td>3P+3nS</td>
</tr>
</tbody>
</table>

#Sync means normal mode of transfer
*Ad hoc means temporary mode of transfer

7 Efficiency

In practice, element size in group G_1 can be reduced by a factor of 2 using the various compression techniques. The certificateless aggregate signature scheme proposed here is a short CLAS scheme like BLS signature scheme by Boneh et al. (2001). Elliptic curve are used to choose the group and bilinear map resulting in a group size of 160 bits and thus, the signatures generated by this scheme are of length 160 bits approximately (half-size comparing to other proposed CLAS schemes). Therefore, the proposed scheme is much more efficient in terms of bandwidth which is a must requisite for the bandwidth limited networks such as VANETs. The comparison of the computational costs of the proposed scheme and the computational costs of already existing schemes, Zhang and Zhang (2009); Zhang et al. (2010); Gong et al. (2007) is made in Tab. 1. Here, the cost of operations which may be pre-computed by the signer such as pP_1, P_2, etc. are omitted.

Tab. 1 gives the detailed comparison of the proposed scheme with other schemes based on Type, Sign Cost, Verify Cost and Aggregate Verify Cost. The major goal is to reduce the signature verification cost to enhance the signature verification process. Here, the two main operations are considered on the basis of which comparison is made, scalar multiplication(S) in G_1 and pairing operation(P). The pairing operation is the most costly operation, so there is need to minimize the pairing operations. The scheme presented by Zhang and Zhang (2009) takes (n+3) pairing operations for signature verification process, thus the pairing operations increase linearly as the number of signatures increase. The scheme by Zhang et al. (2010) takes 5 pairing operations and 2n scalar multiplications; therefore it takes 5 constant pairing operations and the scalar multiplications increase linearly. The first scheme in Gong et al. (2007) takes (2n+1) pairing operations and the second scheme in Gong et al. (2007) takes (n+2) pairing operations and n scalar multiplications. Both the schemes are highly costly in Gong et al. (2007) as the pairing operations increase linearly with the number of signatures. The Aggregate Verify procedure of the proposed scheme is much efficient as it takes just 3 pairing operations and 3n scalar multiplications which is less as compared to all other schemes whereas the sign procedure is comparable to other schemes. In vehicular ad-hoc networks, vehicle has high computational power where the vehicle needs to sign only one signature whereas needs to verify multiple signatures. Therefore, the signing cost can be compromised but one cannot compromise on the signature verification cost. It can be seen that the computational cost of the proposed scheme is more efficacious than the already existing schemes.
8 Conclusion

A new efficient Certificateless Aggregate Signature Scheme is proposed for vehicular communications. The proposed signature scheme is proven existentially unforgeable against the chosen message attack under the assumption that CDH problem is intractable in the random oracle model. The proposed CLAS scheme is deduced specifically for securing vehicular communications in vehicular ad-hoc networks by reducing the signature verification time drastically and helps in verifying more messages in the specific stipulated time, thus increasing the efficiency of the network. The propounded scheme has much less computational cost in terms of verifying signatures when compared with the already proposed works. This scheme is very adequate in networks which have limited bandwidth such as vehicular ad-hoc networks.

Acknowledgements

The work is fully supported by the grant under TCS (Tata Consultancy Services) Research Scholar Program.

References

An Efficient Certificateless Aggregate Signature Scheme for Vehicular Ad-Hoc Networks

