A relation on 132-avoiding permutation patterns

Natalie Aisbett
School of Mathematics and Statistics, University of Sydney, Australia

received $9^{\text {th }}$ June 2013, revised $14^{\text {th }}$ Jan. 2014, $16^{\text {th }}$ Feb. 2014, $24^{\text {th }}$ Mar. 2015, 15 ${ }^{\text {th }}$ May 2015, accepted $12^{\text {th }}$ Nov. 2015.

Abstract

A permutation σ contains the permutation τ if there is a subsequence of σ order isomorphic to τ. A permutation σ is τ-avoiding if it does not contain the permutation τ. For any n, the popularity of a permutation τ, denoted $A_{n}(\tau)$, is the number of copies of τ contained in the set of all 132 -avoiding permutations of length n. Rudolph conjectures that for permutations τ and μ of the same length, for all n we have $A_{n}(\tau) \leq A_{n}(\mu)$ if and only if the spine structure of τ is less than or equal to the spine structure of μ in refinement order. We prove one direction of Rudolph's conjecture by showing that if the spine structure of τ is less than or equal to the spine structure of μ, then for all $n, A_{n}(\tau) \leq A_{n}(\mu)$. Furthermore, we show that $A_{n}(\tau)<A_{n}(\mu)$ when n is greater than the length of τ and μ. We disprove the opposite direction by giving a counterexample, and hence disprove the conjecture.

Keywords: permutations, permutation pattern, popularity

1 Introduction

A permutation σ contains the permutation τ if there is a subsequence of σ order isomorphic to τ. In this case we say that τ is a pattern of σ. A permutation σ is τ-avoiding if it does not contain the permutation τ. The popularity of a permutation τ in length $n 132$-avoiding permutations (defined more rigorously in Section 22, denoted $A_{n}(\tau)$, is the number of copies of τ contained in the set of all 132-avoiding permutations of length n. The question of pattern popularity within permutations that avoid some pattern was first asked by Joshua Cooper on his webpage [4]. Here he raised the question: what is the expected number of copies of a pattern in a randomly chosen pattern avoiding permutation? This problem was first tackled by Bóna in [1], where he proved that for all permutation patterns τ of length k and for any $n \geq k$ we have

$$
A_{n}(12 \ldots k) \leq A_{n}(\tau) \leq A_{n}(k(k-1) \ldots 1)
$$

He then extended this result in [2] to show that for all $n \geq 3$

$$
A_{n}(213)=A_{n}(231)=A_{n}(312)
$$

In [5], Homberger studied Cooper's question for patterns of length 3 in 123-avoiding permutations.
Every 132 -avoiding permutation τ has an associated binary tree $T(\tau)$ (defined in Section 4 which in turn has an associated partition called its spine structure. In [6], Rudolph extended the results of Bóna to show that:

Theorem 1.1 ([6, Theorem 16]). For any 132-avoiding permutations τ and μ of length k, if $T(\tau)$ and $T(\mu)$ have the same spine structure, then for all $n \geq k$ we have $A_{n}(\tau)=A_{n}(\mu)$.

Chua and Sankar have since shown in [3] that if $A_{n}(\tau)=A_{n}(\mu)$ for all n, then $T(\tau)$ and $T(\mu)$ have the same spine structure.

In [6], Rudolph conjectured the following:
Conjecture 1.2 ([6, Conjecture 21]). Given patterns τ and μ, for all n we have $A_{n}(\tau) \leq A_{n}(\mu)$ if and only if the spine structure of $T(\tau)$ is less than or equal to the spine structure of $T(\mu)$ in refinement order.

In Theorem 4.6 we prove one direction of Conjecture 1.2, by showing that if the spine structure of $T(\tau)$ is less than or equal to the spine structure of $T(\mu)$ in refinement order, then $A_{n}(\tau) \leq A_{n}(\mu)$. It should be mentioned that Theorem 4.6 has previously been proven by Rudolph (unpublished). In Proposition 4.8, we strengthen this result by showing that if τ and μ have length less than n and the spine structure of $T(\tau)$ is less than the spine structure of $T(\mu)$ in refinement order, then $A_{n}(\tau)<A_{n}(\mu)$. Then, in Corollary 5.2 , we disprove Conjecture 1.2 by showing that there exist permutations τ and μ such that for all n we have $A_{n}(\tau) \leq A_{n}(\mu)$, whereas $T(\tau)$ and $T(\mu)$ are incomparable in refinement order.

We now give an outline of how the paper leads into the proof of the main theorem, Theorem4.6. Chapter 2 introduces the main definitions that are used in the paper. Chapter 3 introduces a "move" that can be performed on a 132 -avoiding permutation τ, which gives another 132 -avoiding permutation μ of the same length as τ. Theorem 3.5 is used to show that $A_{n}(\mu) \geq A_{n}(\tau)$, and is the main theorem in Chapter 3 . In Chapter 4, we describe a well-known bijection between binary trees and 132 -avoiding permutations. In this paper, this bijection sends the permutation τ to the tree $T(\tau)$. We describe this bijection in order to define the spine structure of 132 -avoiding permutations, which is a property of their corresponding binary trees. Note that two distinct 132 -avoiding permutations may have the same spine structure. Then, in Proposition 4.4. we show that if ϕ is obtained from σ by the popularity increasing move, then the spine structure of ϕ is greater than the spine structure of σ in refinement order. We then show (see Proposition 4.5 and the proof of Theorem4.6, that if the spine structure of a 132 -avoiding permutation ϕ is greater than the spine structure of another 132 -avoiding permutation σ, then there is a permutation τ with the same spine structure as σ, and a permutation μ with the same spine structure as ϕ, such that μ is obtained from τ by the popularity increasing move. Since popularity is equal for permutations with the same spine structure (Theorem 1.1), this proves the main theorem of this paper, Theorem 4.6 .

Acknowledgements

I would like to thank my PhD supervisor Anthony Henderson for helpful conversations.

2 Definitions

Let $[n]$ denote the set of integers $\{1,2, \ldots, n\}$. Let $\sigma=\sigma_{1} \ldots \sigma_{n}$ denote a permutation of $[n]$ written in one-line notation. The permutation σ contains the pattern $\tau=\tau_{1} \ldots \tau_{k}$ if there exist $1 \leq i_{1}<i_{2}<$ $\cdots<i_{k} \leq n$ such that for any $1 \leq s, t \leq k$ we have $\sigma_{i_{s}}<\sigma_{i_{t}}$ when $\tau_{s}<\tau_{t}$. A permutation pattern $\tau=\tau_{1} \ldots \tau_{k}$ is of length k. A 132-avoiding permutation is a permutation that does not contain the pattern 132. We denote the set of all permutations of $[n]$ that are 132 -avoiding by $S_{n}(132)$.

Suppose that $\tau=\tau_{1} \ldots \tau_{k}$ is a permutation of length k for some integer $k \leq n$, and suppose that $\sigma \in$ $S_{n}(132)$. Let $f(\sigma, \tau)$ denote the number of copies of τ contained in σ. For example, $f(53421,321)=7$ since the subsequences $532,531,542,541,521,321$ and 421 give rise to the pattern 321 . The popularity of a pattern $\tau \in S_{k}(132)$ in length $n 132$-avoiding permutations, denoted $A_{n}(\tau)$, is given by

$$
A_{n}(\tau):=\sum_{\sigma \in S_{n}(132)} f(\sigma, \tau)
$$

Permutations τ and μ each of length k are equipopular if for all $n, A_{n}(\tau)=A_{n}(\mu)$. Note that if a 132 -avoiding permutation contains a pattern, then that pattern must also be a 132 -avoiding permutation. There is $0!=1$ permutation of the empty set, which is of length 0 . It certainly avoids 132 , and hence belongs to $S_{0}(132)$, so that $\left|S_{0}(132)\right|=1$. When τ is the length 0 permutation we take by convention $A_{n}(\tau)=\left|S_{n}(132)\right|$.

Suppose $\sigma_{1} \ldots \sigma_{n} \in S_{n}(132)$ and that $\sigma_{s_{1}} \ldots \sigma_{s_{k}}$ (where $s_{1}<\cdots<s_{k}$) gives rise to a permutation pattern τ. Then we say that $\left\{\sigma_{s_{1}}, \ldots, \sigma_{s_{k}}\right\}$ are the elements in this occurrence of τ, and for all $i \in[k]$ we say that $\sigma_{s_{i}}$ occurs as τ_{i}.

3 A popularity increasing move

In this section we describe a move on 132 -avoiding permutations. We show that for all n, this move can be applied to any permutation in $S_{n}(132)$ other than $n(n-1) \ldots 1$, and that it results in another 132-avoiding permutation. We then show, in Theorem 3.5, that this move produces a new permutation whose popularity is greater than or equal to that of the original permutation.

Observe that if $\sigma=\sigma_{1} \ldots \sigma_{n}$ is a 132 -avoiding permutation, and if $\sigma_{j}=n$, then for all $i<j$ and for all $k>j$ we have $\sigma_{i}>\sigma_{k}$. In other words, all entries to the left of n are greater than all entries to the right of n.

Suppose that $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132)$, and that there are a pair of indices i, j with $i<j$, such that:

- $\sigma_{i}<\sigma_{j}$,
- for all integers α such that $\alpha<i$ we have $\sigma_{\alpha}>\sigma_{j}$,
- for all integers β such that $i<\beta<j$ we have $\sigma_{\beta}<\sigma_{i}$.

Then we may form a new permutation $\phi=\phi_{1} \ldots \phi_{n}$, where $\phi_{1} \ldots \phi_{i-1}=\sigma_{1} \ldots \sigma_{i-1}, \phi_{i}=\sigma_{j}$, $\phi_{i+1} \ldots \phi_{j}=\sigma_{i} \ldots \sigma_{j-1}$, and $\phi_{j+1} \ldots \phi_{n}=\sigma_{j+1} \ldots \sigma_{n}$. In other words, ϕ is obtained from σ by removing σ_{j} and inserting it before σ_{i}. Since σ is 132 -avoiding, all elements in $\left\{\sigma_{j+1}, \ldots, \sigma_{n}\right\}$ are either less than σ_{i} or greater than σ_{j}, hence we must have $\sigma_{j}=\sigma_{i}+1$. We can therefore denote ϕ unambiguously by $\sigma^{\sigma_{j}}$.

Example 3.1. Let $\sigma=865347129 \in S_{9}(132)$. Then σ^{7} is defined, and is equal to 876534129. The permutation σ is shown below on the left, and σ^{7} is shown below on the right.

Note that if $\sigma \in S_{n}(132)$ and $\sigma^{\sigma_{j}}$ is defined for some j, then σ can be broken into five parts (dependent on j) as follows:

- The set of numbers $\left\{\sigma_{1}, \ldots, \sigma_{i-1}\right\}$, which we denote by L for left. Every number in L is greater than σ_{j}.
- σ_{i}.
- The set of numbers $\left\{\sigma_{i+1}, \ldots, \sigma_{j-1}\right\}$, which we denote by M for middle (this set is empty if $j=i+1)$. Every number in M is less than σ_{i}.
- σ_{j}.
- The set of numbers $\left\{\sigma_{j+1}, \ldots, \sigma_{n}\right\}$, which we denote by R for right. Each number in this set is either less than all numbers in the set $M \cup \sigma_{i}$, or is greater than σ_{j}.

Example 3.2. Let $\sigma=865347129 \in S_{9}(132)$ (see Example 3.1), and let $\sigma_{j}=7$. Then $L=\{8\}$, $M=\{5,3,4\}$, and $R=\{1,2,9\}$.
Proposition 3.3. Suppose $\sigma \in S_{n}(132)$ and that for some $j, \phi=\sigma^{\sigma_{j}}$ is defined. Then $\phi \in S_{n}(132)$.
Proof: Suppose for a contradiction that $\phi \notin S_{n}(132)$. Then σ_{j} must occur as an element in a 132 pattern in ϕ. If σ_{j} occurs as 1 , then the elements that occur as 3 and 2 must be contained in R. This is the desired contradiction that σ would not be 132-avoiding, since the same triple of integers form a 132 pattern in σ. If σ_{j} occurs as 3 or 2 we also have a contradiction since $\sigma_{1} \ldots \sigma_{i-1}$ are all greater than σ_{j}.

Proposition 3.4. For any $n \geq 2$ and any $\sigma \in S_{n}(132)-\{n(n-1) \ldots 1\}$, there exists an index j such that $\sigma^{\sigma_{j}}$ is defined.

Proof: Since σ is not the permutation $n(n-1) \ldots 1$, there is a minimal j such that $\sigma_{j}>\sigma_{j-1}$. Then permutation $\sigma^{\sigma_{j}}$ is defined since $\sigma_{1} \ldots \sigma_{j-1}$ is decreasing.

Suppose $\tau \in S_{k}(132)$ and n is an integer greater than or equal to k. Let $\mathcal{O}_{n}(\tau)$ denote the set of occurrences of τ in permutations $\sigma \in S_{n}(132)$ such that n is an element in the occurrence, and let $\mathcal{O}_{n}^{\prime}(\tau)$
be the set of occurrences of the pattern τ in permutations $\sigma \in S_{n}(132)$ such that n is not an element in the occurrence. Then

$$
A_{n}(\tau)=\left|\mathcal{O}_{n}(\tau)\right|+\left|\mathcal{O}_{n}^{\prime}(\tau)\right|
$$

We denote an occurrence of τ in some $\sigma=\sigma_{1} \ldots \sigma_{n}$ by a pair $\left(\sigma, \sigma_{s_{1}} \ldots \sigma_{s_{k}}\right)$ in which $\left\{\sigma_{s_{1}}, \ldots, \sigma_{s_{k}}\right\}$ are the elements in the occurrence of τ.

Given permutations τ of length k and μ of length l, we define permutations $\tau \oplus \mu$ and $\tau \ominus \mu$ each of length $k+l$ as follows

$$
\begin{aligned}
(\tau \oplus \mu)_{i} & = \begin{cases}\tau_{i}, & \text { if } 1 \leq i \leq k \\
\mu_{i}+k, & \text { if } k+1 \leq i \leq k+l\end{cases} \\
(\tau \ominus \mu)_{i} & = \begin{cases}\tau_{i}+l, & \text { if } 1 \leq i \leq k \\
\mu_{i}, & \text { if } k+1 \leq i \leq k+l\end{cases}
\end{aligned}
$$

Theorem 3.5. Suppose that $\mu, \tau \in S_{k}(132)$ and that for some $j, \mu=\tau^{\tau_{j}}$. Then for all $n \geq k$ we have $A_{n}(\mu) \geq A_{n}(\tau)$.

Proof: We proceed by induction. By definition, if $\mu=\tau^{\tau_{j}}$ for some j, then μ and τ have length greater than or equal to 2 . Hence, to prove the base case, we need to prove that if $\mu=\tau^{\tau_{j}}$ for some j, where μ is of length 2 , then $A_{2}(\mu) \geq A_{2}(\tau)$. This is true since $A_{2}(\tau)=A_{2}(\mu)=1$. Now assume by induction that $A_{n^{\prime}}(\mu) \geq A_{n^{\prime}}(\tau)$ holds for every pair μ and τ of length k^{\prime} with $\mu=\tau^{\tau_{j}}$ for some j, where $k^{\prime} \leq k$ and $n^{\prime}<n$, or $k^{\prime}<k$ and $n^{\prime} \leq n$. Now suppose that $\mu=\tau^{\tau_{j}}$ for some μ, τ and j, where $\mu \in S_{k}(132)$. We will show that $A_{n}(\mu) \geq A_{n}(\tau)$.

Note that the sets L, M and R that we will mentioned in this proof are subsets of $\left\{\tau_{1}, \ldots, \tau_{k}\right\}$. We will consider occurrences of the pattern τ contained in permutations $\sigma \in S_{n}(132)$. We will consider the following two cases separately.
a) The set of occurrences of τ contained in $\mathcal{O}_{n}^{\prime}(\tau)$.
b) The set of occurrences of τ contained in $\mathcal{O}_{n}(\tau)$. In this case n may occur as τ_{j} if and only if L is empty, and the elements in R are all less than the elements in $M \cup\left\{\tau_{i}\right\}$.

To show that $A_{n}(\mu) \geq A_{n}(\tau)$ we first show, in part a), by induction that $\left|\mathcal{O}_{n}^{\prime}(\tau)\right| \leq\left|\mathcal{O}_{n}^{\prime}(\mu)\right|$, and we then show, in part b), that $\left|\mathcal{O}_{n}(\tau)\right| \leq\left|\mathcal{O}_{n}(\mu)\right|$.

First we consider case a), i.e., occurrences of τ in $\mathcal{O}_{n}^{\prime}(\tau)$. Suppose that for some $\xi \leq i$, there exists at least one occurrence of τ in some permutation $\sigma \in S_{n}(132)$, so that when σ is written in one-line notation:

- n is to the left of the element that occurs as τ_{ξ}, and
- if $\xi \neq 1$, then the element that occurs as $\tau_{\xi-1}$ is to the left of n.

Given any such occurrence in which $\sigma_{\alpha+1}=n$, the pattern which is order isomorphic to the word $\tau_{1} \ldots \tau_{\xi-1}$ occurs within the permutation which is order isomorphic to the word $\sigma_{1} \ldots \sigma_{\alpha} \in S_{\alpha}(132)$, and the pattern $\tau_{\xi} \ldots \tau_{k}$ occurs within the permutation $\sigma_{\alpha+2} \ldots \sigma_{n} \in S_{n-\alpha-1}(132)$. Also, given an occurrence of the pattern which is order isomorphic to the word $\tau_{1} \ldots \tau_{\xi-1}$ within a permutation θ in $S_{\alpha}(132)$, and an occurrence of $\tau_{\xi} \ldots \tau_{k}$ within a permutation ϕ in $S_{n-\alpha-1}(132)$, we may concatenate these occurrences to form an occurrence of τ in the permutation $\sigma=(\theta \oplus 1) \ominus \phi$. Hence, the number of such occurrences of τ in permutations $\sigma \in \mathcal{O}_{n}^{\prime}(\tau)$ in which $\sigma_{\alpha+1}=n$ is given by

$$
A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right) A_{n-\alpha-1}\left(\tau_{\xi} \ldots \tau_{k}\right)
$$

Summing this over all possible values of α gives the total number of such occurrences (with respect to this value of ξ) of $\tau \in \mathcal{O}_{n}^{\prime}(\tau)$:

$$
\sum_{\alpha=\xi-1}^{n+\xi-k-2} A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right) A_{n-1-\alpha}\left(\tau_{\xi} \ldots \tau_{k}\right)
$$

In the case that $\xi=1$, so that $\tau_{1} \ldots \tau_{\xi-1}$ is the empty word, recall that the term $A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right)$ equals $\left|S_{\alpha}(132)\right|$, and that $\left|S_{0}(132)\right|=1$. We will now consider, for this value of ξ, occurrences of μ is permutation in $\mathcal{O}_{n}^{\prime}(\mu)$ in which n lies between $\mu_{\xi-1}$ and μ_{ξ} (or to the left of μ if $\xi=1$). By a similar argument, the number of such occurrences of μ in all possible $\sigma \in S_{n}(132)$ is the sum

$$
\sum_{\alpha=\xi-1}^{n+\xi-k-2} A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right) A_{n-1-\alpha}\left(\mu_{\xi} \ldots \mu_{k}\right)
$$

Now, $\mu_{1} \ldots \mu_{\xi-1}=\tau_{1} \ldots \tau_{\xi-1}$, so that $A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right)=A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right)$ for all α in the summation. By induction, we have that

$$
A_{n-1-\alpha}\left(\tau_{\xi} \ldots \tau_{k}\right) \leq A_{n-1-\alpha}\left(\mu_{\xi} \ldots \mu_{k}\right)
$$

for all α in the summation, since $\mu_{\xi} \ldots \mu_{k}=\tau_{\xi} \ldots \tau_{k}^{\tau_{j}}$. Therefore

$$
\begin{aligned}
& \sum_{\alpha=\xi-1}^{n+\xi-k-2} A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right) A_{n-1-\alpha}\left(\tau_{\xi} \ldots \tau_{k}\right) \\
\leq & \sum_{\alpha=\xi-1}^{n+\xi-k-2} A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right) A_{n-1-\alpha}\left(\mu_{\xi} \ldots \mu_{k}\right)
\end{aligned}
$$

holds for all $\xi \leq i$ such that n may lie between $\tau_{\xi-1}$ and τ_{ξ}.
Note that it is not possible for n to lie between $\tau_{\xi-1}$ and τ_{ξ} if $\xi \in\{i+1, \ldots, j\}$. Suppose that for some $\xi \geq j$, there exists at least one occurrence of τ in some permutation $\sigma \in S_{n}(132)$, so that when σ is written in one-line notation:

- n is to the right of the element that occurs as $\tau_{\xi-1}$, and
- if $\xi-1 \neq k$, then the element that occurs as τ_{ξ} is to the right of n.

For this value of ξ, we can again consider occurrences of μ is $\mathcal{O}_{n}^{\prime}(\mu)$ in which n lies between $\mu_{\xi-1}$ and μ_{ξ}. Note that if $\xi-1=j$, then $\mu_{\xi-1}=\tau_{j-1}$. By a similar argument to that given when $\xi \leq i$, we can deduce that the number of such occurrences of the pattern τ is less than or equal to the number of such occurrences of the pattern μ. Since we have considered all possible occurrences of τ in $\mathcal{O}_{n}^{\prime}(\tau)$, we have shown that

$$
\left|\mathcal{O}_{n}^{\prime}(\tau)\right| \leq\left|\mathcal{O}_{n}^{\prime}(\mu)\right|
$$

We now consider case b), i.e., occurrences of τ in $\mathcal{O}_{n}(\tau)$. Recall that $\mathcal{O}_{n}(\tau)$ is the set of occurrences of τ in permutations in $S_{n}(132)$ in which n is an element of the occurrence. For this part, we will show that $\left|\mathcal{O}_{n}(\tau)\right| \leq\left|\mathcal{O}_{n}(\mu)\right|$ in two cases. The first case is when τ_{j} is not equal to k, and we prove this case by induction. The second case is when $\tau_{j}=k$, so that for all elements in $\mathcal{O}_{n}(\tau)$ we must have n occur as τ_{j}. In this case we define a map from $\mathcal{O}_{n}(\tau)$ to $\mathcal{O}_{n}(\mu)$ and show that this map in an injection.

Suppose that $\tau_{j} \neq k$, so that n may occur as an element in L or R only. Suppose that for some $\xi \leq i-1$, there exists an occurrence of τ in which n occurs as τ_{ξ}. Then there exists an occurrence of μ in $\mathcal{O}_{n}(\mu)$ in which n occurs as μ_{ξ}. The number of such occurrences of the pattern τ in all possible $\sigma \in S_{n}(132)$ is

$$
\sum_{\alpha=\xi-1}^{n+\xi-k-1} A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right) A_{n-1-\alpha}\left(\tau_{\xi+1} \ldots \tau_{k}\right)
$$

and the number of such occurrences of the pattern μ in all possible $\sigma \in S_{n}(132)$ is

$$
\sum_{\alpha=\xi-1}^{n+\xi-k-1} A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right) A_{n-\alpha-1}\left(\mu_{\xi+1} \ldots \mu_{k}\right)
$$

Since $\tau_{1} \ldots \tau_{\xi-1}=\mu_{1} \ldots \mu_{\xi-1}$ we have that $A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right)=A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right)$ for all α in the summation. By the inductive hypothesis $A_{n-1-\alpha}\left(\tau_{\xi+1} \ldots \tau_{k}\right) \leq A_{n-1-\alpha}\left(\mu_{\xi+1} \ldots \mu_{k}\right)$ for all α in the summation since $\mu_{\xi+1} \ldots \mu_{k}=\tau_{\xi+1} \ldots \tau_{k}^{\tau_{j}}$. Hence

$$
\begin{aligned}
& \sum_{\alpha=\xi-1}^{n+\xi-k-1} A_{\alpha}\left(\tau_{1} \ldots \tau_{\xi-1}\right) A_{n-1-\alpha}\left(\tau_{\xi+1} \ldots \tau_{k}\right) \\
\leq & \sum_{\alpha=\xi-1}^{n+\xi-k-1} A_{\alpha}\left(\mu_{1} \ldots \mu_{\xi-1}\right) A_{n-\alpha-1}\left(\mu_{\xi+1} \ldots \mu_{k}\right) .
\end{aligned}
$$

Suppose that for some $\xi \geq j+1$, that there is at least one occurrence of τ in $\mathcal{O}_{n}(\tau)$ in which n occurs as τ_{ξ}. Then there exists at least one occurrence of μ in $\mathcal{O}_{n}(\mu)$ in which n occurs as μ_{ξ}. By the same argument as in the case where $\xi \leq i-1$, we have that the number of such occurrences of the pattern τ is less than or equal to the number of such occurrences of the pattern μ.

We now consider elements of $\mathcal{O}_{n}(\tau)$ in which n occurs as τ_{j}. Note that this case is possible if and only if $\tau_{i}=\tau_{1}$ (i.e., L is empty), and all elements of R are less than elements in $M \cup \tau_{i}$. For such τ we will define a map

$$
\psi: \mathcal{O}_{n}(\tau) \rightarrow \mathcal{O}_{n}(\mu)
$$

We will argue that this map in injective, and therefore, the number of such occurrences of the pattern τ is less than or equal to the number of such occurrences of the pattern μ.

Fix an element $\left(\sigma, \sigma_{s_{1}} \ldots \sigma_{s_{k}}\right) \in \mathcal{O}_{n}(\tau)$ such that $\sigma_{s_{j}}=n$. Consider the earliest index $\alpha \in\left[s_{j}-1\right]$ such that:

- the occurrence of the elements in $M \cup\left\{\tau_{i}\right\}$ in σ are in the set $\left\{\sigma_{1}, \ldots, \sigma_{\alpha}\right\}$, and
- each element in $\left\{\sigma_{1}, \ldots, \sigma_{\alpha}\right\}$ is greater than all the elements in the set $\left\{\sigma_{\alpha+1}, \ldots, \sigma_{n}\right\}-\left\{\sigma_{s_{j}}\right\}$.

Note that there must exist such an index α since $s_{j}-1$ satisfies the above two conditions. Note also that since $\sigma \in S_{n}(132)$, the elements $\sigma_{\alpha+1}, \ldots, \sigma_{s_{j}-1}$ (we take this set to be empty if $\sigma_{\alpha}=\sigma_{s_{j}-1}$) are an interval in the set of integers $[n]$. Let u be the permutation pattern $\sigma_{1} \ldots \sigma_{\alpha}$, let v be the permutation pattern $\sigma_{\alpha+1} \ldots \sigma_{s_{j}-1}$, and let w be the permutation pattern $\sigma_{s_{j}+1} \ldots \sigma_{n}$. We let

$$
\psi\left(\left(\sigma, \sigma_{s_{1}} \ldots \sigma_{s_{k}}\right)\right)=\left(\bar{\sigma}, \bar{\sigma}_{t_{1}} \ldots \bar{\sigma}_{t_{k}}\right)
$$

where

$$
\bar{\sigma}=((v \oplus 1) \ominus u) \ominus w
$$

with the occurrence $\bar{\sigma}_{t_{1}}, \ldots, \bar{\sigma}_{t_{k}}$ of μ in $\bar{\sigma}$ is given by n, followed by the entries in the patterns u and w in $\bar{\sigma}$ that give the occurrence of the elements

$$
\tau_{1}, \ldots, \tau_{j-1}, \tau_{j+1}, \ldots, \tau_{n}
$$

in u and w in σ (see Example 3.6.
Now $\bar{\sigma}$ is clearly in $S_{n}(132)$. To show that ψ in injective, we show that for any occurrence of μ in the image of this map, we can recover the occurrence of τ that mapped to it uniquely. Suppose $\psi\left(\left(\sigma, \sigma_{s_{1}} \ldots \sigma_{s_{k}}\right)\right)=\left(\bar{\sigma}, \bar{\sigma}_{t_{1}} \ldots \bar{\sigma}_{t_{k}}\right)$, and consider the earliest index $\beta \in[n]$ such that:

- the occurrence of the elements in $M \cup\left\{\tau_{i}\right\}$ in $\bar{\sigma}$ are in the set $\left\{\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{\beta}\right\}$,
- the occurrence of the elements in R in $\bar{\sigma}$ are in the set $\left\{\bar{\sigma}_{\beta+1}, \bar{\sigma}_{\beta+2}, \ldots, \bar{\sigma}_{n}\right\}$,
- each element in $\left\{\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{\beta}\right\}$ is greater than all the elements in the set $\left\{\bar{\sigma}_{\beta+1}, \ldots, \bar{\sigma}_{n}\right\}$.

Note that there must exist such an index β since there was an index α that satisfied these conditions in σ. Suppose that $\bar{\sigma}_{l}=n$. Then the permutation pattern $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{l-1}$ is denoted by v. We denote the permutation pattern $\bar{\sigma}_{l+1}, \ldots, \bar{\sigma}_{\beta}$ by u, and we denote the permutation pattern $\bar{\sigma}_{\beta+1} \ldots \bar{\sigma}_{n}$ by w. Then

$$
\bar{\sigma}=((v \oplus 1) \ominus u) \ominus w
$$

and the occurrence of τ that maps to ($\bar{\sigma}, \bar{\sigma}_{t_{1}} \ldots \bar{\sigma}_{t_{k}}$) must be given by

$$
\sigma=((u \ominus v) \oplus 1) \ominus w
$$

where n occurs as τ_{j}, and the entries in u and w that corresponded to the occurrence of $\mu_{2} \ldots \mu_{n}$ in $\bar{\sigma}$ give the occurrence of $\tau_{1} \ldots \tau_{j-1} \tau_{j+1} \ldots \tau_{n}$ in σ (see Example 3.6). This is exactly $\left(\sigma, \sigma_{s_{1}} \ldots \sigma_{s_{k}}\right)$.

Example 3.6. We give an example of the map ψ given in the proof of Theorem 3.5. Let $k=6$ and let $n=13$. Let τ be the permutation 534612 , and let $\mu=\tau^{6}=653412$. Let

$$
((11,12,8,7,9,6,10,5,4,13,2,1,3),(12,7,9,13,2,3))
$$

be an occurrence of τ in $\sigma=(11,12,8,7,9,6,10,5,4,13,2,1,3)$. The occurrence (σ, τ) is shown below in Figure $1(a)$ where we have included a dot above elements in the occurrence of τ. The index s_{j} is equal to 10 , and $\sigma_{10}=13$ occurs as $\tau_{j}=6$. The pattern u is given by $(11,12,8,7,9,6,10)$, the pattern v is given by $(5,4)$, and the pattern w is given by $(2,1,3)$. Then the occurrence of μ in the permutation $\bar{\sigma}$ is given by

$$
((12,11,13,9,10,6,5,7,4,8,2,1,3),(13,10,5,7,2,3)),
$$

and is shown in Figure $1(b)$ below.

Fig. 1:

4 Proof of the main theorem

In this section, we prove the main theorem, Theorem 4.6. Before proving Theorem 4.6, we describe the binary tree $T(\sigma)$ associated to a 132 -avoiding permutation σ, and we then describe the difference in the structure of $T(\tau)$ and $T(\mu)$ where $\mu=\tau^{\tau_{j}}$ for some j.

The set of all 132-avoiding permutations of length n is in bijection with the set of all binary trees with n vertices, denoted \mathcal{T}_{n}. This is a well-known result, and it is described in detail in [6]. We will briefly
describe this bijection. For any tree $T \in \mathcal{T}_{n}$, we label the vertices as follows. We visit each of the vertices of the tree in pre-order (root, left subtree, right subtree), labelling the i th vertex visited by $n+1-i$. Given T with such a labelling, we recover its corresponding permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132)$ by visiting the vertices in in-order (left subtree, root, right subtree), letting the i th vertex visited be the value of σ_{i}. Following the notation of [6], for any $\sigma \in S_{n}(132)$ we denote its associated binary tree by $T(\sigma)$. We will also assume that the trees come with the pre-order labeling described. Rudolph defines the spines of a binary tree T to be connected components of T when all edges connecting left children to their parents are deleted. She also defines the spine structure of T to be the sequence $\left\langle a_{1}, \ldots, a_{s}\right\rangle$, where the a_{i} are the number of vertices in each of the spines in T listed in descending order. We also denote the spine structure of a tree T by $S(T)$, and call the numbers a_{i} the parts of $S(T)$. To make discussions easier, we also define the spine structure of a 132-avoiding permutation τ to be the spine structure of the binary tree $T(\tau)$. Define the relation \leq_{R} called the refinement order on the set of all spine structures whose parts sum to n as follows. If $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ and $\left\langle b_{1}, \ldots, b_{t}\right\rangle$ are two spine structures such that $\sum_{i=1}^{s} a_{i}=\sum_{i=1}^{t} b_{i}=n$, then $\left\langle a_{1}, \ldots, a_{s}\right\rangle \geq_{R}\left\langle b_{1}, \ldots, b_{t}\right\rangle$ (or equivalently $\left\langle b_{1}, \ldots, b_{t}\right\rangle \leq_{R}\left\langle a_{1}, \ldots, a_{s}\right\rangle$) if $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ can be obtained from $\left\langle b_{1}, \ldots, b_{t}\right\rangle$ by merging subsets of its parts. For example $\langle 5,4,3\rangle \geq_{R}\langle 3,3,2,2,1,1\rangle$ since it can be obtained by merging the subset of parts $\{3,2\}$ and the subset of parts $\{2,1,1\}$.

Suppose G is a graph with vertex set S. An induced subgraph H of G is a graph with vertex set a subset of S, such that two vertices are adjacent in H if and only if they are adjacent in G. A subtree H of a binary tree graph G is an induced subgraph that is itself a binary tree graph, in which the root of H is the closest vertex of H to the root of G.

The following two propositions describe the child/parent relation between vertices in $T(\sigma)$ for a permutation σ. They are used to understand the proof of Proposition 4.3, which describes how $T\left(\sigma^{\sigma_{j}}\right)$ is obtained from $T(\sigma)$ when $\sigma^{\sigma_{j}}$ is defined.
Proposition 4.1. Suppose $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132)$. For any index $\alpha \in[n]$ such that $\sigma_{\alpha} \in[n-1]$, let σ_{β} be the least integer such that:

- $\sigma_{\beta}>\sigma_{\alpha}$,
- if $\beta<\alpha$, then $\sigma_{\beta+1}, \ldots, \sigma_{\alpha-1}$ (this set is empty if $\beta=\alpha-1$) are all less than σ_{α},
- if $\beta>\alpha$, then $\sigma_{\alpha+1}, \ldots, \sigma_{\beta-1}$ (this set is empty if $\beta=\alpha+1$) are all less than σ_{α}.

Then σ_{β} is the parent vertex of σ_{α} in $T(\sigma)$.
Proof: Suppose that $\sigma_{m}=n$. Since $\sigma \in S_{n}(132)$ the words $\sigma_{1} \ldots \sigma_{m-1}$ and $\sigma_{m+1} \ldots \sigma_{n}$ are both 132-avoiding. Now $T(\sigma)$ has root n, and the left child of n is the root of the subtree $T\left(\sigma_{1} \ldots \sigma_{m-1}\right)$, and the right child of n is the root of the subtree $T\left(\sigma_{m+1} \ldots \sigma_{n}\right)$. We assume by way of induction, that the proposition is true for all 132 -avoiding permutations of length less than n. The proposition is clearly true for permutations of length 1 . By the inductive hypothesis, the proposition holds for $T\left(\sigma_{1} \ldots \sigma_{m-1}\right)$ and $T\left(\sigma_{m+1} \ldots \sigma_{n}\right)$. Then, since the root of $T\left(\sigma_{1} \ldots \sigma_{m-1}\right)$ is the largest integer in the set $\left\{\sigma_{1}, \ldots, \sigma_{m-1}\right\}$, and the root of $T\left(\sigma_{m+1} \ldots \sigma_{n}\right)$ is the largest integer in the set $\left\{\sigma_{m+1}, \ldots, \sigma_{n}\right\}$, the condition of the proposition holds for all vertices in $T(\sigma)$, so that the proposition holds for all n.

We may also rephrase this result as a condition for being a child, rather than a parent:

Proposition 4.2. Suppose $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132)$. For any index $\alpha \in[n]$ such that $\sigma_{\alpha}>1$, let β be an index such that $\sigma_{\beta}<\sigma_{\alpha}$, and either:

- $\beta<\alpha$, and σ_{β} is the greatest integer such that $\left\{\sigma_{\beta+1}, \ldots, \sigma_{\alpha-1}\right\}$ (this set is empty if $\beta=\alpha-1$) are all less than σ_{β},
- $\beta>\alpha$, and σ_{β} is the greatest integer such that $\left\{\sigma_{\alpha+1}, \ldots, \sigma_{\beta-1}\right\}$ (this set is empty if $\beta=\alpha+1$) are all less than σ_{β}.

Then σ_{β} is a child vertex of σ_{α} in $T(\sigma)$.
Suppose σ is a permutation in $S_{n}(132)$ such that $\sigma^{\sigma_{j}}$ is defined for some j. Using Propositions 4.1 and 4.2, we can deduce the following about the construction of $T(\sigma)$:

- The vertex σ_{i} is the left child of σ_{j}.
- The vertex σ_{i} has no left child.
- The subtree of T consisting of the right child of σ_{i} and its descendants is the tree $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)$.
- Suppose there is a largest integer m such that all elements in the set $\left\{\sigma_{j+1}, \ldots, \sigma_{m}\right\}$ are all less than σ_{j}. Then the right child of σ_{j} is the root of the tree $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$. If $j=n$ or $\sigma_{j+1}>\sigma_{j}$, so that there is no such integer m, then σ_{j} has no right child (that is, the tree $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$ is empty).

Fig. 2: The tree $T(\sigma)$ for some $\sigma \in S_{n}(132)$ such that $\sigma^{\sigma_{j}}$ is defined for some j. The vertex σ_{j} may be the left or right child of its parent vertex.

The following proposition describes how we may alter $T(\sigma)$ to obtain $T(\phi)$ where $\phi=\sigma^{\sigma_{j}}$ for some j. Figures 3,4 and 5 give an example of this process.

Proposition 4.3. Suppose that $\phi=\sigma^{\sigma_{j}}$ is defined for some j. Suppose that m is the largest integer such that $\sigma_{j+1}, \ldots, \sigma_{m}$ are all less than σ_{j}. Then $T(\phi)$ is obtained from $T(\sigma)$ by the following steps:
(1) Remove the subtrees $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)$ and $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$ from $T(\sigma)$.
(2) Remove the vertex σ_{i} from the remaining tree and reattach it as the right child of σ_{j}.
(3) Reattach the tree $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)$ so that its root is the right child of σ_{i}.
(4) Reattach the tree $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$ so that its root is the right child of the vertex σ_{j-1} (note that σ_{j-1} is the smallest integer in the spine of the tree $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)$ that contains its root).

Proof: The reader should refer to Propositions 4.1 and 4.2 throughout every step of this proof. Consider all numbers in the set

$$
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}-\left(\left\{\sigma_{i}, \sigma_{i+1}, \ldots, \sigma_{j-1}\right\} \cup\left\{\sigma_{j+1}, \ldots, \sigma_{m}\right\}\right)
$$

A vertex is a left (respectively right) child of another vertex w in this set in $T(\sigma)$, if and only if it is a left (respectively right) child of w in $T(\phi)$. This confirms that step (1) is correct, i.e., that the subtree on the vertices

$$
\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}-\left(\left\{\sigma_{i}, \sigma_{i+1}, \ldots, \sigma_{j-1}\right\} \cup\left\{\sigma_{j+1}, \ldots, \sigma_{m}\right\}\right)
$$

is identical in $T(\sigma)$ and $T(\phi)$.
It is clear that σ_{i} is the right child of σ_{j} in $T(\phi)$. This confirms that step (2) is correct.
A vertex v in the set $\left\{\sigma_{i}, \ldots, \sigma_{j-1}\right\}$ is the left (respectively right) child of another vertex w in this set in $T(\sigma)$, if and only if it is the left (respectively right) child of w in $T(\phi)$. This confirms that step (3) is correct.

A vertex v in the set $\left\{\sigma_{j+1} \ldots \sigma_{m}\right\}$ is a left (respectively right) child of another vertex w in this set in $T(\sigma)$, if and only if it is a left (respectively right) vertex of w in $T(\phi)$. Also, the root of $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$ is the right child of σ_{j-1} in $T(\phi)$. This confirms step 4.

Fig. 3: An example of $T(\sigma)$ for $\sigma=(15,14,16,10,7,8,9,6,11,4,3,5,2,12,1,13)$ in which $\sigma_{i}=10$ and $\sigma_{j}=$ 11. We remove the subtrees $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)=T(7896)$ and $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)=T(4352)$.

Fig. 4: Reattaching the vertex $\sigma_{i}=10$ so that it is the right child of $\sigma_{j}=11$.

Fig. 5: Left: reattaching the tree $T\left(\sigma_{i+1} \ldots \sigma_{j-1}\right)$. Right: reattaching the tree $T\left(\sigma_{j+1} \ldots \sigma_{m}\right)$.

Proposition 4.4. Suppose that for some $j, \phi=\sigma^{\sigma_{j}}$, and suppose that $S(T(\sigma))=\left\langle a_{1}, \ldots, a_{s}\right\rangle$. Then $S(T(\phi))$ is obtained from the spine structure $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ by merging two parts. That is, there exist indices l, m, such that the parts in $S(T(\phi))$ are $\left\{a_{1}, \ldots, a_{s}\right\}-\left\{a_{l}, a_{m}\right\} \cup\left\{a_{l}+a_{m}\right\}$.

Proof: By Proposition 4.3 the spine structure of $T(\phi)$ is obtained from the spine structure of $T(\sigma)$ by merging the spine of $T(\sigma)$ that contains σ_{i} and the spine of $T(\sigma)$ that contains σ_{j}.

The following definition appears in [6]. A left-justified binary tree is is a binary tree in which every vertex that is a right child of its parent does not have a left child.

Proposition 4.5. Suppose that $T_{1}, T_{2} \in \mathcal{T}_{n}$ and the spine structure of T_{2} is obtained from the spine structure of T_{1} by merging two parts. Then there exists $\sigma \in S_{n}(132)$ such that $\phi=\sigma^{\sigma_{j}}$ is defined for some j, and such that $T(\sigma)$ has the same spine structure as T_{1}, and $T(\phi)$ has the same spine structure as T_{2}.

Proof: Suppose that $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ is the spine structure of T_{1}, and that a_{l} and a_{m} are merged to give the
spine structure of T_{2}. We will construct a new tree $T \in \mathcal{T}_{n}$ that is left-justified, with the same spine structure as T_{1}. If we label the vertices of any left-justified tree with s parts in pre-order, then the vertices $n-s+1, n-s+2, \ldots, n-1, n$ are a path of vertices in this tree, in which each vertex in this sequence is the left child of the following vertex. Let T be such a tree, so that the spine containing vertex $n-s+1$ has a_{l} vertices, and the spine containing vertex $n-s+2$ has a_{m} vertices. The order of the remaining spines in T is irrelevant. Then T is equal to $T(\sigma)$ for some $\sigma \in S_{n}(132)$ such that $\phi=\sigma^{n-s+2}$ is defined, and the tree $T(\phi)$ has the same spine structure as T_{2}.

Theorem 4.6. Suppose τ and μ are elements of $S_{k}(132)$. If the spine structure of $T(\tau)$ is less than or equal to the spine structure of $T(\mu)$ in refinement order, then for all $n, A_{n}(\tau) \leq A_{n}(\mu)$.

Proof: We may assume that the spine structure of $T(\mu)$ is obtained from the spine structure of $T(\tau)$ by merging two parts, since if this implies $A_{n}(\tau) \leq A_{n}(\mu)$, then the theorem also holds if $S(T(\mu))$ is obtained from $S(T(\tau)$) by merging any subsets of parts. By Proposition 4.5 there exists $\bar{\tau}$ and j such that $\bar{\tau}^{\bar{\tau}_{j}}$ is defined, and such that $S(T(\tau))=S(T(\bar{\tau}))$ and $S(T(\mu))=S\left(T\left(\bar{\tau}^{\bar{\tau}_{j}}\right)\right)$. By Theorem 1.1, $A_{n}(\tau)=$ $A_{n}(\bar{\tau})$ and $A_{n}(\mu)=A_{n}\left(\bar{\tau}^{\bar{\tau}_{j}}\right)$. By Theorem 3.5. $A_{n}(\bar{\tau}) \leq A_{n}\left(\bar{\tau}^{\bar{\tau}_{j}}\right)$, so that $A_{n}(\tau) \leq A_{n}(\mu)$.

We will now strengthen the result of Theorem4.6 by showing, in Theorem 4.8, that if $\mu=\tau^{\tau_{j}}$ for $\mu \in S_{k}(132)$, and $n>k$, then $A_{n}(\mu)>A_{n}(\tau)$. The following proposition on spine structures is used to prove Theorem 4.8
Proposition 4.7. Suppose that $\tau \in S_{k}(132)$ and that for some $j, \mu=\tau^{\tau_{j}}$ is defined. Then there exists a permutation $\bar{\tau} \in S_{k}(132)$ such that $\bar{\mu}=\bar{\tau}^{k}$ is defined, $\left.S(T(\tau))=S(T(\bar{\tau}))\right)$ and $S(T(\mu))=S(T(\bar{\mu}))$.

Proof: Suppose the spine of $T(\tau)$ that contains τ_{j} contains l vertices, and that the spine of $T(\tau)$ that contains $\tau_{i}=\tau_{j}-1$ contains m vertices. Create a binary tree T with the same spine structure as $T(\tau)$ as follows. First, form a left-justified binary tree T_{1} with two spines, one of length m and the other of length l, so that the root of the length l spine is the root of T_{1}. Form a left-justified binary tree T_{2} whose spines consist of the spines of T that do not contain τ_{i} or τ_{j}. Form T by adjoining T_{1} and T_{2} so that the root of T_{2} is the left child of the leaf contained in the same spine as τ_{i} of T_{1}. See Figure 6 for an example.

Theorem 4.8. Suppose $\tau \in S_{k}(132)$ and that for some $j, \mu=\tau^{\tau_{j}}$ is defined. Then for any integer $n>k$ we have $A_{n}(\mu)>A_{n}(\tau)$.

Proof: By Proposition 4.7, we may assume that $\tau_{j}=k$. Then it is possible that n occurs as τ_{j}. In order to understand this proof we need to recall the proof of Theorem 3.5. We will show that the injective map from $\mathcal{O}_{n}(\tau)$ to $\mathcal{O}_{n}(\mu)$, defined in the proof of Theorem 3.5, is not onto. This is proves the theorem.

Suppose $n>k$. Then there exists some σ in $S_{n}(132)$ which contains the pattern μ, such that n occurs as $\mu_{1}=k, \sigma_{n}=n-1$, and σ_{n} is not an element in the occurrence of μ. We require that $\sigma_{1}=n$ in this case. If such an occurrence of μ is mapped to by an occurrence of τ, then the occurrence of τ is obtained by shifting n so that entries occurring as elements in $M \cup\left\{\tau_{i}\right\}$ (note $\tau_{i}=\mu_{2}$) are to its left, and entries occurring as elements in R are to its right. However such a permutation would not be in $S_{n}(132)$ because $\sigma_{s} n(n-1)$ forms a 132 pattern, where σ_{s} occurs as μ_{2}. Hence, in this case, $A_{n}(\mu)>A_{n}(\tau)$.

Fig. 6: Let $\tau=895436217 \in S_{9}(132)$, and let $\mu=\tau^{6}$. Then $T(874536921)$ has the same spine structure as $T(\tau)$, and $T\left(874536921^{9}\right)$ has the same spine structure as $T(\mu)$. The tree shown on the left is $T(\tau)$ and the tree shown on the right is $T(874536921)$

5 A counterexample to Conjecture 1.2

In this section, we provide a counterexample to Conjecture 1.2, by showing that for all $n \geq 4$ we have $A_{n}(3241) \leq A_{n}(3421)$. This provides a contradiction since $S(T(3241))=\langle 2,2\rangle$ and $S(T(3421))=$ $\langle 3,1\rangle$ are incomparable in refinement order.

Proposition 5.1. For all $n \geq 4$ we have $A_{n}(3241) \leq A_{n}(3421)$. Furthermore, we have equality if and only if $n=4$.

Proof: We assume by induction that for all $k \in\{4,5, \ldots, n-1\}$ we have $A_{k}(3241) \leq A_{k}(3421)$. This is true for $k=4$ since $A_{4}(3241)=A_{4}(3421)=1$. We will now consider possible occurrences of 3241 and 3421 in permutations in $S_{n}(132)$ for some $n \geq 4$.

For all $n \geq 4$ the following expression holds:

$$
\begin{aligned}
A_{n}(3241) & =2 \sum_{i=4}^{n-1} A_{i}(3241)\left|S_{n-1-i}(132)\right|+\sum_{i=3}^{n-2} A_{i}(324) A_{n-1-i}(1) \\
& +\sum_{i=2}^{n-2} A_{i}(32) A_{n-1-i}(1)
\end{aligned}
$$

The sum of the first two terms is the number of occurrences of 3241 in which n is not an element in the occurrence. The first term is the number of occurrences in which the element n lies entirely to the right or entirely to the left of elements in the occurrence of 3241 , and the second term is the sum of occurrences in which the element n lies between the entry that occurs as 4 and the entry that occurs as 1 . The final term is the number of occurrences in which n occurs as 4 . Also, for all $n \geq 4$:

$$
\begin{aligned}
A_{n}(3421) & =2 \sum_{i=4}^{n-1} A_{i}(3421)\left|S_{n-1-i}(132)\right|+\sum_{i=3}^{n-2} A_{i}(342) A_{n-1-i}(1) \\
& +\sum_{i=2}^{n-3} A_{i}(34) A_{n-1-i}(21)+\sum_{i=1}^{n-3} A_{i}(3) A_{n-1-i}(21)
\end{aligned}
$$

The sum of the first three terms in the summation is the number of occurrences of 3421 in which n is not an element in the occurrence. The first term is the number of occurrences in which the entry n is entirely to the right or entirely to the left of all elements in the occurrence of 3421 . The second term is the number of occurrences of 3421 in which the entry n lies to the right of the entry that occurs as 2 and to the left of the entry that occurs as 1 . The third term is the number of occurrences in which the entry n lies between the entry that occurs as 4 and the entry that occurs as 2 . The fourth term is the number of occurrences in which n occurs as 4 .

By induction, we have that

$$
\sum_{i=4}^{n-1} A_{i}(3241)\left|S_{n-1-i}(132)\right| \leq \sum_{i=4}^{n-1} A_{i}(3421)\left|S_{n-1-i}(132)\right|
$$

By Bona's result in [2], we have that

$$
\sum_{i=3}^{n-2} A_{i}(324) A_{n-1-i}(1)=\sum_{i=3}^{n-2} A_{i}(342) A_{n-1-i}(1)
$$

Also,

$$
\sum_{i=2}^{n-2} A_{i}(32) A_{n-1-i}(1)=\sum_{i=1}^{n-3} A_{i}(3) A_{n-1-i}(21)
$$

Since $\sum_{i=2}^{n-3} A_{i}(34) A_{n-1-i}(21)>0$ this implies that $A_{n}(3241)<A_{n}(3421)$.
Corollary 5.2. There exist permutations τ and μ of the same length k, such that for all $n \geq k$ we have $A_{n}(\tau) \leq A_{n}(\mu)$, and the spine structure of $T(\tau)$ is incomparable to the spine structure of $T(\mu)$ in refinement order.

The counterexample given in Proposition 5.1 leads naturally to Question 5.3, on the popularity of 132 -avoiding permutations. For all n, define the partial order \leq_{L}, called the lexicographic order, on the set of partitions of n, as follows. For any partitions $\left\langle a_{1}, \ldots, a_{s}\right\rangle$ and $\left\langle b_{1}, \ldots, b_{t}\right\rangle$, where the parts are listed in descending order, we have $\left\langle a_{1}, \ldots, a_{s}\right\rangle \geq_{L}\left\langle b_{1}, \ldots, b_{t}\right\rangle$ if there exists $j \in[s]$ such that $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{j-1}=b_{j-1}$ and $a_{j}>b_{j}$. Note that if $\left\langle a_{1}, \ldots, a_{s}\right\rangle \geq_{R}\left\langle b_{1}, \ldots, b_{t}\right\rangle$ then it follows that $\left\langle a_{1}, \ldots, a_{s}\right\rangle \geq_{L}\left\langle b_{1}, \ldots, b_{t}\right\rangle$.
Question 5.3. Let τ and μ be permutations in $S_{k}(132)$. Is it true that if $S(T(\tau)) \leq_{L} S(T(\mu))$, then for all $n \geq k$ we have $A_{n}(\tau) \leq A_{n}(\mu)$? If this is true, do we have equality only when $n=k$?

Proposition5.1 demonstrates that the first statement in Question5.3 is true in the case that $k=4$.

References

[1] Miklós Bóna, The Absence of a Pattern and the Occurrences of Another, Discrete Mathematics and Theoretical Computer Science, Vol. 14, 2010, no. 2.
[2] Miklós Bóna, Surprising symmetries in Objects Counted by Catalan Numbers, Electronic Journal of Combinatorics, Vol. 19, 2012, no. 1, p. 62.
[3] Lynn Chua, Krishanu Roy Sankar, Equipopularity classes of 132-avoiding permutations, The Electronic Journal of Combinatorics, Vol. 21, 2014, no. 1.
[4] Joshua Cooper, Combinatorial problems I like, http://www.math.sc.edu/~cooper/ combprob.html, accessed 2013.
[5] Cheyne Homberger, Expected Patterns in Permutation Classes, Electronic Journal of Combinatorics, Vol. 19, no.3.
[6] Kate Rudolph, Pattern Popularity in 132-avoiding Permutations, The Electronic Journal of Combinatorics, Vol. 20, 2013, no. 1, p. 8.

