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In this paper we present an analysis of some generalization of the classic urn and balls model. In our model each urn
has a fixed capacity and initially is filled with white balls. Black balls are added to the system of connected urns and
gradually displace white balls. We show a general form of formulas for the expected numbers of black balls in a given
urn and we analyze some special cases (parallel and serial configurations). We are mainly interested in a counterpart
of the Coupon Collector Problem for the model considered.

The primary motivation for our research is the formal analysis of the mix networks (introduced by D. Chaum) and its
immunity to so-called flooding (blending) attacks.
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1 Introduction
In this paper we investigate the following process. We have a finite directed acyclic (i.e. without directed
cycles) graph G = (V,E); we also have a family of urns (Ua)a∈V indexed by nodes of G. Each urn
contains some number of balls of two kinds - let us say, black and white balls. Initially, each urn contains
only white balls. We say that a node a ∈ V is a source node if there is no b ∈ V such that (b, a) ∈ E.
Similarly, a node a ∈ V is a sink node if there is no b ∈ V such that (a, b) ∈ E. At each round
(enumerated by natural numbers),

1. we choose a random path v0, . . . , vk from a source to a sink,

2. we pick randomly balls b0, . . . , bk from urns Uv0
, . . . , Uvk ,

3. we remove the ball bk from Uvk ,

4. for each i < k we move the ball bi to the urn Uvi+1
,

5. we put one black ball in the urn Uv0 .
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Notice that the number of balls in each urn is constant during the evolution of this process. We assume
that all random choices during the execution of our process are done independently according to uniform
distributions.

Notice that if G = ({v}, ∅), then our model is reduced to the standard, classic “urn model”. In our
investigations the classic model describes properties of the urns indexed by source nodes. The behavior
of remaining urns Ub depends on the behavior of all urns from the family {Ua : (a, b) ∈ E}.

The first motivation of our research is the analysis of blending attacks on some kinds of mix networks
analyzed in e.g., O’Connor (2005), Serjantov et al. (2002), Dingledine et al. (2006). Mix networks,
introduced by D. L. Chaum in the paper Chaum (1981), are one of the most popular ways of protecting
anonymous communication. More information about mix networks can be found in Section 7.

1.1 Organization of this paper
In Section 2 we investigate a general model of a system of urns. In Section 3 we present a special (but
most important for applications) model wherein urns are arranged in a row and balls are consecutively
moved from one urn to another. We present several results including some asymptotics. In Section 4
we investigate a system of urns arranged in a parallel. We compare some strategies of arranging urns in
Section 5. In Section 7 we show how our results can be applied to analysis of so-called flooding (blending)
attack against mix networks.

1.2 Notations and preliminary facts
In the paper, E [X] denotes the expected value of the random variable X . If f(z) =

∑
i ai · zi is a formal

power series, then we define the coefficient extractor as [zi]f(z) = ai (see Flajolet and Sedgewick (2009),
Chapter 1). |A| denotes the cardinality of a set A.

The partial exponential function en(x) is defined by the formula en(x) =
n∑
k=0

xk

k! . The sequence

(en(n)/en)n≥0 is decreasing and
en(n)

en
=

1

2
+ O

(
1√
n

)
(1)

(see e.g. Weisstein (2013)).
The Euler Gamma function for z > 0 is defined by the formula Γ(z) =

∫∞
0
xz−1e−xdx. For natural

numbers n we have Γ(n + 1) = n!. The Euler Beta function is defined for a, b > 0 by the formula
B(a, b) =

∫ 1

0
xa−1(1− x)b−1dx. It is well known that B(a, b) = (Γ(a)Γ(b))/Γ(a+ b). The incomplete

regularized Beta function is defined by he formula

I (z; a, b) =
1

B(a, b)

∫ z

0

xa−1(1− x)b−1dx.

We will use the following two recurrences for the incomplete beta function:

I (z; a, b) = zI (z; a− 1, b) + (1− z)I (z; a, b− 1) (2)

and

I (z; a, b) = I (z; a− 1, b)− Γ(a+ b− 1)

Γ(a)Γ(b)
(1− z)bza−1 . (3)
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Fig. 1: Example of a system of connected urns. Graph G = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (2, 4), (3, 5), (4, 5)}) just
after round t = 8 (left side) and just after round t = 9 (right side). For each a ∈ {1, 2, 3, 4, 5}, we have na = 4. In
this diagram we have B1(8) = B1(9) = 4, B4(9) = W4(9) = 2.

These formulas may be found in Weisstein (2013) and NIST (2013). They can also be proved by checking
that derivatives (taken with respect to the variable z) of both sides of these equations are the same. Clearly,
the initial values are the same in both sequences.

The incomplete beta function admits an analytic continuation for other values of parameters. We have
I (z; a, 0) = 0 for a > 0 among others.

2 General Model
Let us fix a finite directed acyclic graph G = (V,E). Let N = (na)a∈V denote capacities of urns
(Ua)a∈V , i.e., na is the initial number of white balls in the urn Ua. We call the triple U = (V,E,N)
a system of connected urns. Notice that the number of balls during each process is fixed for each urn.
Indeed, each ball is replaced by exactly one ball.

Let us describe more precisely the choice of a random path in the graph G. We start at one of the sources
at random (equally likely). Then we take an edge out of it at random (all neighbors are equally likely).
We do the same thing with every node we arrive at: choose one of the neighbors randomly. The walk is
perpetuated till a sink is reached.

We denote by pa the probability that a randomly chosen path from some source to some sink goes
through the node a. For each (a, b) ∈ E, we denote by pab the probability of the event where the edge
(a, b) is on the randomly chosen path. Notice that if a is a source node, then pa = 1

|S| , where S is the set
of source nodes in the graph G. Moreover, pab = pa

out(a) , where out(a) = |{c ∈ V : (a, c) ∈ E}| and

pa =
∑

(b,a)∈E

pba ,

when a is not a source node.
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Let Ba(t) denote the number of black balls in the urn Ua after the round t. Notice that Ba(0) = 0
for each a ∈ V . Our goal is to determine a difference equation for the sequence (E [Ba(t)])t≥0 for each
a ∈ V .

For the sake of clarity of presentation, we add one artificial node • to our graph. We consider an
extended system with nodes V• = {•}∪V , edgesE• = E∪({•}×S), where S is the set of source nodes
in (V,E). We set capacity n• = 1 and we put initially one black ball to the urn U•. Then B•(t) = 1 for
each t and p•s = 1

|S| for each s ∈ S.
Let us fix a node a ∈ V , the round number t and suppose that we know E [Bb(t)] for each b ∈ V . Then,

• at the (t + 1)st round the number of black urns in the node a may increase by 1 if there is b such
that (b, a) is on the chosen path, a black ball is selected from Ub and a white ball is selected from
Ua. This happens with probability pba · Bb(t)nb

· na−Ba(t)
na

.

• at the (t + 1)st round the number of black urns in the node a may decrease by 1 if there is b such
that (b, a) is on the chosen path, a white ball was selected from Ub and a black ball was selected
from Ua. This happens with probability pba · nb−Bb(t)nb

· Ba(t)
na

.

• with the remaining probability the state is not changed. This is the case if a black ball is replaced
by another black ball or a white ball by a white one.

Putting these facts together, we deduce that

E [Ba(t+ 1)] =
∑

(b,a)∈E

pb,a
nb

E [Bb(t)] +

(
1− pa

na

)
E [Ba(t)] . (4)

Let Wa(t) denote the number of white balls in the urn Ua after the round t. Notice that Wa(t) =
na − Ba(t) for each a ∈ V•. In particular, W•(t) = 0 for each t. More generally, if d(a) denotes
the minimal distance of the node a from some source link from V , then for each t ≤ d(a) we have
Wa(t) = na.

After a simple transformation we get

E [Wa(t+ 1)] =
∑

(b,a)∈E

pb,a
nb

E [Wb(t)] +

(
1− pa

na

)
E [Wa(t)] . (5)

Notice that recurrences (4) and (5) are the same. The solutions of these recurrences differ, as they have
different initial conditions. Let

Fa(x) =
∑
t≥0

E [Wa(t)]xt

be the generating function for the sequence (E [Wa(t)])t≥0. From (5) and from the fact that Fa(0) = na,
we get the following equation for each a ∈ V :

Fa(x) =
na + x

∑
(b,a)∈E•

pba
nb
Fb(x)

1−∆ax
,

where ∆a = 1− pa
na

.
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Let prec(a) denote the set of all nodes from V for which there is some oriented path to the node a (we
include the node a in prec(a)). For any real number x and a path σ = (b1, . . . , bn) from some source to
node a we define ct function that counts the number of nodes on σ with ∆ parameter equal x:

cta(x, σ) = |{k ∈ {1, . . . , n} : x = ∆bk}|

and, finally, we put

cta(x) = max{cta(x, σ) : σ is a path from some source to a} .

If p(t) is a polynomial, then deg(p) denotes the degree of p. We shall formulate a theorem which
reduces the problem of finding closed formulas for E [Wa(t)] to problems of linear algebra. This theorem
may be treated as a specialized form of a theorem about expansion of rational functions (see e.g. Theorem
IV.9 from Flajolet and Sedgewick (2009)).

Theorem 1 Let a ∈ V and let D(a) = {∆b : b ∈ prec(a)}. Then there are polynomials (p∆(t))∆∈D(a)

such that

(∀t ≥ 0)

E [Wa(t)] =
∑

∆∈D(a)

p∆(t)∆t


and deg(p∆) < cta(∆) for each ∆ ∈ D(a).

Proof: We claim that for each a ∈ V there are polynomials (αa∆)∆∈D(a) and integers (ka∆)∆∈D(a) such
that deg(αa∆) < ka∆ ≤ cta(∆) and

Fa(x) =
∑

∆∈D(a)

αa∆(x)

(1−∆x)k
a
∆
.

Observe that if a is a source node, then Fa(x) = na
1−∆s

, so the claim is true for any source node. Hence,
suppose that the claim is true for all b ∈ prec(a) \ {a}. From the recurrence (5) we get

Fa(x) =
na

1−∆ax
+

∑
(b,a)∈E

∑
∆∈D(b)

x · αb∆(x)

(1−∆x)k
b
∆(1−∆a · x)

.

Let us consider a term

τ =
x · α(x)

(1−∆x)k(1−∆ax)
,

where deg(α) < k. If ∆a = ∆, then τ = x·α(x)
(1−∆x)k+1 and deg(x · α) < k + 1. If ∆a 6= ∆, then we

decompose τ into partial fractions and we find a constant B and a polynomial β such that deg(β) < k and

τ =
B

1−∆a
+

β(x)

(1−∆x)k
.

This proves the claim.



240 Jacek Cichoń, Rafał Kapelko, Marek Klonowski

Let us fix ∆ ∈ D(a) and let us consider the term α(x)
(1−∆)k

, where α(x) is some polynomial of degree
less than k. Then

α(x)

(1−∆)k
=

k−1∑
l=0

αl
xl

(1−∆)k

for some constants α0, . . . , αk−1. Observe that

xl

(1−∆)k
=
∑
m≥0

(
m+ k − 1

k − 1

)
∆mxm+l .

Therefore,

[xt]
xl

(1−∆)k
= ∆t−l

(
t− l + k − 1

k − 1

)
= ∆t

(
t−l+k−1
k−1

)
∆l

= ∆tβ(t) ,

where β is a polynomial and deg(β) = k − 1. The term α(x)
(1−∆)k

is of the same form. 2

Theorem 1 gives us a general form of a solution of the recurrence equation (5) for a fixed structure
U = (V,E,N). In order to find required coefficients of polynomials (p∆)∆∈D we may use the equations
Wa(0) = . . . = Wa(d(a)) = na and, if d(a) is too small, we may solve explicitly the equation (5) for
sufficiently many small values of the time parameter t.

Example Let G = ({0, 1, 2}, E,N), where E={(0, 1), (1, 2)} and N0 = N1 = N2 = n > 1. Then,
prec(2) = {0, 1, 2}, p0 = p1 = p2 = 1, so ∆0 = ∆1 = ∆2 = 1 − 1

n . Hence, D(2) = {1 − 1
n} and

deg2(1 − 1
n ) = 3. From Theorem 1 we deduce that E [W2(t)] = p(t)(1 − 1

n )t for some polynomial
p(t) of degree less than 3. Let p(t) = a + bt + ct2. Notice that E [W2(0)] = E [W2(1)] = E [W2(2)] =
n, hence n = p(0)(1 − 1

n )0 = a, n = p(1)(1 − 1
n ) = (a + b + c)(1 − 1

n ) and n = p(2)(1 − 1
n )2 =

(a+ 2b+ 4c)(1− 1
n )2. The solution of this system of linear equations (in the variables a, b and c) is given

by a = n, b = − 3n−2n2

2(n−1)2 , c = n
2(n−1)2 , hence

E [W2(t)] = n

(
1 +

2n− 3

2(n− 1)2
t+

1

2(n− 1)2
t2
)(

1− 1

n

)t
.

In a similar way we may show that E [W1(t)] = n
(

1 + t
n−1

) (
1− 1

n

)t
and, of course, that E [W0(t)] =

n
(
1− 1

n

)t
.

It is clear that in a similar way we can analyze any system of urns with the underlying graph of the form
({0, . . . , n + 1}, E) where E = {(k, k + 1) : k = 0, . . . , n}. However, in the next section we show a
more uniform approach to this class of graphs. Theorem 1 will be explicitly used in Sections 4 and 6.2.

3 Serial System of Urns
Let us fix two parameters n and k. Let Uk = ({0, . . . , k}, {(a, a + 1) : a < k}, N), where na = n for
each a ∈ {0, . . . , k}. That is, each urn has the same capacity. Therefore, at each round we move one ball
from the urn Ua to Ua+1 (if a < k), we remove one ball from the kth urn and we add one black ball to the
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urn U0. As before, we assume that we choose the balls independently, using uniform distributions. Notice
that this model strictly corresponds to so-called MIX-cascade described in Section 7.

The evolution of this model is described by the vector B(t) = (B0(t), . . . , Bk(t)) of black balls in
consecutive urns. Notice thatB(0) = (0, . . . , 0). Let us observe that the random variableB0 describes the
classic urn and balls problem and E [B0(t)] = n

(
1−

(
1− 1

n

)t)
. Clearly, B0(0) ≤ B0(1) ≤ B0(2) ≤

. . .. But if k > 0, then for 0 < a ≤ k the processes (Ba(t))t≥0 are not monotonic with probability 1 - for
example Pr[B1(2) = 1, B1(3) = 0] = n−1

n3 > 0.

3.1 Difference equations
Since we are going to analyze behavior of the system Uk for arbitrary k, instead of using Theorem 1 we
shall solve directly the recurrence 4 adapted to this case. Notice that for each a ∈ {0, . . . , k} we have
pa = 1 and that pa,a+1 = 1 for each a = 0, . . . , k − 1. For a ∈ {1, . . . , k} we obtain the following
recurrence from equation 4:

E [Ba(t+ 1)] =
1

n
E [Ba−1(t)] + (1− 1

n
)E [Ba(t)] . (6)

Let ya(t) = E [Ba(t)], δ = 1
n and ∆ = 1− 1

n . Then the initial observation and the equation (6) can be
rewritten as {

y0(t) = n(1−∆t),
ya+1(t+ 1) = ∆ · ya+1(t) + δ · ya(t) .

(7)

Let us also recall that ya(0) = 0 for each a. It is also clear that ya(t) = 0 for each t ≤ a.

3.2 Closed formula
In this section we will show that there exists a closed formula for the expected value of the random variable
Ba(t) for arbitrary a and t.

Theorem 2 For each a ≥ 0 and t ≥ 0 we have

E [Ba(a+ t)] = n · I
(

1

n
; a+ 1, t

)
.

Proof: Let za(t) = ya(a + t) and ∆ = 1 − 1
n and δ = 1

n . Notice that za(0) = 0 for each a, z0(t) =
n · (1−∆t) and

za+1(t+ 1) = ya+1((a+ t+ 1) + 1) = ∆ · ya+1(a+ 1 + t) + δ · ya(a+ t+ 1) =

∆ · za+1(t) + δ · za(t+ 1) .

Therefore, the equations (7) may be rewritten as follows:{
z0(t) = n(1−∆t),

za+1(t+ 1) = ∆ · za+1(t) + δ · za(t+ 1) .
(8)
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Plain calculations show that

n · I
(

1

n
; 1, t

)
= n

Γ(t+ 1)

Γ(1)Γ(t)

∫ 1
n

0

(1− x)t−1dx = n

(
1−

(
1− 1

n

)t)
,

so z0(t) = nI
(

1
n ; 1, t

)
. From equation (2) applied for z = 1

n we get

n · I
(

1

n
; a+ 2, t+ 1

)
= ∆ · n · I

(
1

n
; a+ 2, t

)
+ δ · n · I

(
1

n
; a+ 1, t+ 1

)
. (9)

Moreover, n · I
(

1
n ; a+ 1, 0

)
= 0, so the sequences (za(t))a,t and (n · I

(
1
n ; a+ 1, t

)
)a,t satisfy the same

recurrence relations. 2

Theorem 2 gives us a closed formula for the expected number of black balls after a given number of
steps in a given urn. However, we need another formula for E [Ba(a+ t+ 1)] that is convenient for the
investigation of properties of a fixed urn and for various values of t.

Theorem 3 For each a ≥ 0 and t ≥ 0 we have

E [Ba(a+ t+ 1)] = n

(
1−

(
1− 1

n

)t+1 a∑
k=0

(
k + t

k

)
1

nk

)
. (10)

Proof: From formula (3) we deduce that

I (z; a+ 1, t+ 1) = I (z; a, t+ 1)−
(
a+ t

a

)
(1− z)t+1za .

We also know that

I (z; 1, t+ 1) = 1− (1− z)t+1 = 1−
(

0 + t

0

)
(1− z)t+1z0,

so we get

I (z; a+ 1, t+ 1) = 1−
a∑
k=0

(
k + t

k

)
(1− z)t+1zk .

After putting z = 1
n into this formula and using Theorem 2, we get the desired identity. 2

3.3 Asymptotic behavior

In this section we investigate asymptotic behavior of the system of urns. In particular, it is important for
us when the first black ball appears in a particular urn, when the fixed urn is full of black balls and when
a big portion of balls in a given urn is black.
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3.3.1 When almost all balls are black
In this section we shall investigate the moment at which almost all balls in a given layer are black. More
precisely, we fix the number n of balls in each layer and we want to approximate the moment when n− 1
balls in a given urn are black.

Lemma 1 Let tn = n(ln(n) + (a+ ν) ln(ln(n))− ln(a!)) for some ν ≥ 0. If 0 ≤ k < a+ ν, then

n

(
1− 1

n

)tn (k + tn
k

)
1

nk
= O

(
1

(lnn)a+ν−k

)
.

and for k = a and ν = 0 we have

n

(
1− 1

n

)tn (a+ tn
k

)
1

na
= 1 + O

(
ln lnn

lnn

)
.

The proof of this lemma can be instantly deduced from the following equation

ln

(
1− 1

n

)tn
= −tn ln

1

1− 1
n

= − tn
n

(
1 + O

(
1

n

))
. (11)

Theorem 4 If a is fixed and tn = n (ln(n) + a ln(ln(n))− ln(a!)), then

E [Ba(a+ tn)] = n− 1 + O

(
ln lnn

lnn

)
as n approaches infinity.

Proof: The theorem is a consequence of Lemma 1 (with ν = 0) and Theorem 3. 2

Notice that for a = 0 we get E [B0(n lnn)] = n − 1 + o (n), so our result is consistent with the
classic Coupon Collector Problem (see Feller (1965)). We shall come back to this observation in Sec. 6.
Below we show that just after the time n(lnn+ln((lnn)a/a!)) all the balls in ath urn are black with high
probability.

Theorem 5 If a and ν > 0 are fixed and tn = n(ln(n) + (a+ ν) ln(ln(n))− ln(a!)), then

Pr[Ba(a+ tn) 6= n] = O

(
1

(lnn)ν

)
.

as n approaches infinity.

Proof: Notice that the number of white balls in the tn-th round in the ath urn isWa(tn) = n−Ba(a+tn).
Thus, Wa(tn) 6= 0 is equivalent to Ba(a + tn) 6= n. However, Pr[Wa(tn) 6= 0] ≤ E [Wa(tn)] =
n − E [Ba(a+ tn)] as Wa(tn) is integer valued, non-negative random variable. To prove our theorem it
is sufficient to show that E [Ba(a+ tn)] = n − O

(
1

(lnn)ν

)
. This is the consequence of Lemma 1 for

ν > 0 and Theorem 3 . 2
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3.3.2 First black ball
Let us recall that B0(1) = 1.

Theorem 6 If a is fixed and tn = ((a+ 1)!na)
1
a+1 , then

lim
n→∞

E [Ba(a+ tn)] = 1 .

Proof: Let us observe that for all x ∈ [0, 1
n ] we have xa(1− 1

n )t ≤ xa(1− x)t−1 ≤ xa. Hence

n

B(a+ 1, t)

(
1− 1

n

)t−1 ∫ 1
n

0

xadx ≤ nI

(
1

n
; a+ 1, t

)
and

nI

(
1

n
; a+ 1, t

)
≤ n

B(a+ 1, t)

∫ 1
n

0

xadx ,

so
Γ(a+ t+ 1)

Γ(t)

(
1− 1

n

)t−1
1

(a+ 1)!na
≤ nI

(
1

n
; a+ 1, t

)
≤ Γ(a+ t+ 1)

Γ(t)

1

(a+ 1)!na
.

Notice that
Γ(a+ t+ 1)

Γ(t)
= ta+1

a∏
j=0

(
1 +

j

t

)
,

so
Γ(a+ tn + 1)

Γ(tn)
= (a+ 1)! · na

(
1 + O

(
1

n

) a+1
a

)
.

Moreover, from equation (11) we get(
1− 1

n

)tn
= 1 + O

(
1

n

) 1
a+1

,

which accomplishes the proof. 2

3.3.3 When nearly half the balls are black
Let us recall that ea(a)/ea is close to 1

2 (see Eq. (1)). We will show that at time a · n nearly half of the
balls in ath urn are black.

Theorem 7 If a is fixed and tn = a · n, then

E [Ba(a+ tn + 1)] = n

(
1− ea(a)

ea

)
+ O (1) .
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Proof: Applying equation (11) we can easily prove that(
1− 1

n

)an+1

= e−a(1 + O

(
1

n

)
) .

Moreover, (
k + an

k

)
=

1

k!

k−1∏
j=0

(k + an− j) =
aknk

k!

k∏
l=1

(1 +
l

an
) =

aknk

k!
(1 + O

(
1

n

)
) ,

and (
1− 1

n

)an+1(
k + an

k

)
1

nk
= e−a

ak

k!
(1 + O

(
1

n

)
) .

From Theorem 3 we get

E [Ya(a+ an+ 1)] = n

(
1−

a∑
k=0

e−a
ak

k!

(
1 + O

(
1

n

)))
=

n

(
1− e−a ·

a∑
k=0

ak

k!
·
(

1 + O

(
1

n

)))
= n

(
1− ea(a)

ea

(
1 + O

(
1

n

)))
=

n

(
1− ea(a)

ea
+ O

(
1

n

))
= n

(
1− ea(a)

ea

)
+ O (1) ,

so Theorem 7 is proved. 2

4 Parallel System of Urns
In the previous section we investigated a serial system of urns. In this section we consider another variant
of the system, namely, let G = ({0, . . . , k+1}, E), whereE = ({0}×{1, . . . , k})∪({1, . . . , k}×{k+1}).
We assume, as before, that the capacity of all urns is n and that at the beginning of considered process all
balls are white.

At each step we select one path 0 → i → (k + 1), where i ∈ {1, . . . , k} with the same probability.
Next, we choose balls from selected urns, we move the balls according to the arrows and put a black ball
in the selected place in the urn U0. Observe that p0 = pk+1 = 1, p0a = 1

k , pa(k+1) = 1 and pa = 1
k for

each a ∈ {1, . . . , k}.
LetWk+1(t) denote the number of white balls in the urn Uk+1 after tth step. From Theorem 1 we know

that

E [Wk+1(t)] = a

(
1− 1

kn

)t
+ (b+ ct)

(
1− 1

n

)t
for some coefficients a, b and c. Moreover, E [Wk+1(0)] = E [Wk+1(1)] = E [Wk+1(2)] = n, from
which we deduce that a = k2n

(k−1)2 , b = n−2kn
(k−1)2 , c = − n

(k−1)(n−1) , so

E [Wk+1(t)] = n

(
k2

(k − 1)2

(
1− 1

kn

)t
+

(
1− 2k

(k − 1)2
+

−t
(k − 1)(n− 1)

)(
1− 1

n

)t)
.
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Since Bk+1(t) is the number of black balls in corresponding urns after tth step, we get:

E [Bk+1(t)] = n

(
1− k2

(k − 1)2

(
1− 1

kn

)t
+

(
2k − 1

(k − 1)2
+

t

(k − 1)(n− 1)

)(
1− 1

n

)t)
. (12)

Remark The parallel system considered in this section consisting of k + 2 urns is equivalent, from the
point of view of the last urn, to the serial system of three urns: the first urn has capacity n, the second urn
has capacity k · n and the third one has capacity n.

4.1 Asymptotics
The formula (12) is much easier to analyze than the formula (3). We formulate without proofs four results
about the parallel system of urns which corresponds to Theorems 4, 5, 6 and 7:

Theorem 8 If a is fixed and n grows to infinity then

1. E
[
Ba+1

(
a · n · (lnn+ 2 ln( a

a−1 )
)]

= n− 1 + O
(

lnn
n

)
,

2. Pr[Za+1(a · n · (lnn+ 2 ln( a
a−1 ) + ln(ln(n)))) 6= n] = O

(
1

lnn

)
,

3. E
[
Ba+1

(
3
√

6an2
)]

= 1 + O
(

1

n
1
3

)
,

4. if a ≥ 2 then

lim
n→∞

E
[
Ba+1

(
n · a · ln 2a2

(a−1)2

)]
n

=
1

2
+ εa .

where ε2 = 0.1112 . . . and the sequence (εa)a is decreasing and lima→∞ εa = 0.

5 Comparison of Serial and Parallel Systems of Urns
In the following table we compare dynamics of the sink node in the parallel system of urns with total k+2
urns and the dynamics of the sink node in the serial system of urns also consisting of k + 2 urns. Let us
recall that k ≥ 2.

Expected number Serial Parallel
of black balls structure structure

1 ((k + 2)!nk+1)
1
k+2 (Thm. 6) 3

√
6kn2 (Thm. 8.3)

∼ 1
2n (k + 1)n (Thm. 7) nk ln 2k2

(k−1)2 (Thm. 8.4)
n− 1 n(lnn+ (k + 1) ln lnn− ln(k + 1)!) (Thm. 4) kn(lnn+ 2 ln k

k−1 ) (Thm. 8.1)

This table shows how many black balls have to be put to the system to obtain given expected number
of black balls in the sink urn in serial and parallel structures with the same total capacity. Notice that in
the serial model the first black ball appears in the sink urn in time θ(n

k+1
k+2 ), while in the parallel - in time

θ(n
2
3 ). On the other hand, in the serial model the sink urn is almost full at the time∼ n log n, while in the
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Fig. 2: Graphs of the difference E [S4(t)]−E [P4(t)] for n = 1000. S4(t) is the number of black balls in the serial
model and P4(t) is the number of black balls in the parallel model.

parallel model - in time ∼ kn log n. Figure 2 shows a graph of the difference between expected values of
occupancy of the sink urns in serial and parallel models for k = 4. The first dot represents the moment
when the sink urn in the serial model is almost full and the second dot - the moment when the sink urn in
the parallel model is almost full.

6 Final Remarks
We presented results for two classes of urn and bin models with applications to the security analysis of
MIX-servers. The results from this paper partially describe properties of systems of urns and some inter-
esting theoretical questions are left unanswered. In the next section we formulate some of our additional
observations.

6.1 Expected time

Let us consider a serial system of two urns. Let T (2)
n denote the first round when all balls in the second urn

are black. We may model this system as a Markov chain with states M = {(x, y) : x, y ∈ {0, . . . , n}},
where (x, y) corresponds with the situation when there are x black balls in the first urn and there are y
black balls in the second urn. Then, T (2)

n is the hitting time of a set A = {0, . . . , n}×{n} for the Markov
chain M starting from the state (0, 0). Let ha,b denote the hitting time of A for Markov chain starting
from the state (a, b). Then, for (a, b) /∈ A we have

ha,b =
1

1− ab
nn

(
(n− a)(n− b)

n2
ha+1,b +

b(n− a)

n2
ha+1,b−1 +

a(n− b)
n2

ha,b+1 + 1

)
.
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The number E
[
T

(2)
n

]
= h0,0 can be evaluated numerically for reasonably small values of the parameter

n. Our calculus suggests the following hypothesis:

E
[
T (2)
n

]
= n(Hn + ln lnn+ o(1)) ,

where Hn denotes the nth Harmonic number.

6.2 System with different capacities

Let us consider a serial system consisting of two urns, where the first urn has capacity n, the second urn
has capacity m and m 6= n. We call such structure the (n,m) system. Let Bn,m(t) and Zn,m(t) denote
the number of white and black balls in the second urn after tth round. From Theorem 1 we deduce that

E [Wn,m(t)] = a

(
1− 1

n

)t
+ b

(
1− 1

m

)t
for some constants a and b. Taking into account that E [Wn,m(0)] = E [Wn,m(1)] = m, we get a = mn

n−m ,

b = m2

m−n , so finally we get

E [Bn,m(t)] = m

(
1− n

n−m

(
1− 1

n

)t
+

m

n−m

(
1− 1

m

)t)
.

Notice that E[Bn,m(t)]
m =

E[Bm,m(t)]
n . Therefore, if n = a · m and E [Bn,m(t)] = m − 1, then

E [Bm,n(t)] = n − a. Hence, if a � 1, then the filling time for the (m, a · m) system is essentially
longer than the time required for filling the (a ·m,m) system.

7 Application to Mix Networks
As mentioned in the introduction, the primary motivation for our research comes from security analysis
of mix networks. Notice that the idea of mix networks is the essential building block for all anonymity
preserving methods used in practice in the network communication (including TOR protocol (Dingledine
et al. (2004))).

Mix network We consider a system with senders, receivers and a special-purpose unit (called the MIX-
server). Messages are not sent directly from senders to receivers but every message is sent to the MIX-
server as a ciphertext. Several messages entering MIX-server are collected, cryptographically recoded,
randomly permuted and forwarded to respective receivers. Thanks to it, messages leaving the MIX-server
become (from the external observer’s perspective) indistinguishable. Thus, the sender of a message cannot
be linked with the recipient of this message and this should guarantee anonymity (so-called unlinkability
of senders and receivers). Substantially different variants of the basic protocol adjusted to particular
conditions (acceptable latency, volume of the traffic etc.) appeared in a well-developed body of literature
devoted to anonymous communication (see e.g. Danezis and Diaz (2008)).
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MIX cascade Let us notice that the MIX-server knows the correspondence between senders and re-
ceivers. That is, if the single MIX-server is corrupted, then the adversary can link senders with receivers.
The simplest remedy that improves the security is to use several MIX-servers instead of a single one. The
basic realization of this idea called MIX-cascade has already been suggested in the seminal paper (Chaum
(1981)). In this protocol, a message, to be delivered to the proper receiver, must be processed (recoded)
by a fixed number of consecutive MIX-servers.

In some variants of the protocol working in practice, the new message submitted to the first MIX-server
is put in the buffer. Then, if there are more than n messages in the buffer, the new message replaces
one of the messages randomly chosen from the buffer. The pushed-out message is submitted to the 2nd

MIX-server. The processing in consecutive MIX-servers is exactly the same. Finally, a single message
leaves the last server and is removed from the system and delivered to the receiver.

Other configurations of MIX-servers are considered in literature (eg. parallel MIX-cascade in Klonowski
and Kutylowski (2005); Golle and Juels (2004)). It is a matter of investigation how to connect existing
MIX-servers to obtain the best security/functionality properties.

Blending attacks Blending attacks are based on the following trick: the adversary submits to the MIX-
server a number of fake messages. Such fake messages (using a special encoding) can be easily recognized
by the adversary in the bunch of messages sent by legitimate users. If all but one messages are fake, the
adversary can easily trace its route. This form of the attack is called an (n − 1)-attack (see Kesdogan
and Pimenidis (2004)). Generally, to make the anonymity weaker, the adversary may submit a fraction
of all messages and blend fake messages with real ones (i.e. submitted by regular users) to be traced.
Depending on particular protocols and implementations of MIX-es, blending attacks may be conducted in
different ways. However, the core of the idea is to flush as many real messages as possible to isolate only
a small number of target messages and then trace them.

One can easily see that such an attack can be precisely described by the model discussed in our paper.
Indeed, MIX-servers are represented by urns filled with white balls (representing messages from legiti-
mate senders). The security problem is how many messages the adversary has to submit to the system to
remove significant number of legitimate messages and leave only adversarial messages (represented by
black balls).

Up to now, blending type attacks for similar models have been investigated for very important practical
settings in several papers, e.g. O’Connor (2005); Serjantov et al. (2002); Dingledine et al. (2006). How-
ever, to the best of our knowledge, none of the previous analyses gives as precise and general results as
our paper.

Practical consequences of obtained results The presented results convince us that the way the MIX-
servers are connected has a significant influence on the immunity against flooding-type attacks. In partic-
ular, if we can construct a mix network of MIX-servers with some overall capacities, the parallel structure
gives a better immunity than the serial one. That is, the expected time necessary to flush all white mes-
sages from the last MIX-server is greater in the parallel structure. This follows directly from theorems
4 and 8. We find this fact quite surprising and counter-intuitive. On the other hand, one can see that the
parallel structure offers inferior security against cryptographic attacks. Indeed, each message has to be
processed only by a single server instead of some k ≥ 2.

Another indication for the design of mix network is that if we have a series (cascade) of MIX-servers,
they should not be of equal capacity. For example, placing a MIX-server of a bigger capacity at the end
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of the cascade can improve the immunity against flooding attacks (see section 6.2).
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