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The vertices of the Knödel graph W∆, n on n ≥ 2 vertices, n even, and of maximum degree ∆, 1 ≤ ∆ ≤ ⌊log2(n)⌋,

are the pairs (i, j) with i = 1, 2 and 0 ≤ j ≤ n
2
− 1. For 0 ≤ j ≤ n

2
− 1, there is an edge between vertex (1, j) and

every vertex (2, j + 2k − 1 (mod n
2
)), for k = 0, 1, 2, . . . ,∆ − 1. Existence of a Hamilton cycle decomposition

of Wk, 2k , k ≥ 6 is not yet known, see Discrete Appl. Math. 137 (2004) 173-195. In this paper, it is shown that the

k-regular Knödel graph Wk,2k , k ≥ 6 has ⌊ k
2
⌋ − 1 edge disjoint Hamilton cycles.
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1 Introduction.

All graphs considered here are simple and finite unless otherwise stated. Let Ck (resp.Pk) denote the cycle

(resp. path) on k vertices. For a graph G, if its edge set E(G) can be partitioned into E1,E2, . . . ,Ek such

that 〈Ei〉 ∼= H, for all i, 1 ≤ i ≤ k, then we say that H decomposesG. A k-factor of G is a k-regular span-

ning subgraph of it. A k-factorization of a graph G is a partition of the edge set of G into E1, E2, . . . , Es

such that 〈Ei〉, 1 ≤ i ≤ s, is a k-factor. We say that a k-regular graph G admits a Hamilton cycle decom-

position, if the edge set of G can be partitioned into Hamilton cycles or Hamilton cycles together with a

1-factor according as k is even or odd, respectively. If H1, H2, . . . , Hk are edge disjoint subgraphs of

G such that
⋃k

i=1 Hi = G, then we write G = H1 ⊕H2 ⊕ . . .⊕Hk. The complete graph on n vertices

is denoted by Kn. Let G be a bipartite graph with bipartition (X,Y ), where X = {x0, x1, . . . , xn−1},
Y = {y0, y1, . . . , yn−1}; the edge xiyi+ℓ is called an edge of jump ℓ from X to Y in G, where addi-

tion is taken modulo n; the same edge is called an edge of jump n − ℓ from Y to X. If G contains the

edges Fℓ(X,Y ) = {xiyi+ℓ|0 ≤ i ≤ n − 1, where addition in the subscript is taken modulo n}, 0 ≤
ℓ ≤ n − 1, then we say that G has the 1-factor of jump ℓ from X to Y. Clearly, if G = Kn,n, then

E(G) =
⋃n−1

i=0 Fi(X,Y ). Note that Fi(X,Y ) = Fn−i(Y,X), 0 ≤ i ≤ n − 1, where we assume

Fn(X,Y ) = F0(X,Y ) = F0(Y, X).
An anti-directed path P is a digraph, whose underlying graph is a path, in which any two consecutive

arcs of P are either directed toward or away from the common incident vertex in P. Similarly, we define

anti-directed cycles, see Figures 1(a) and 1(b). A digraph ~G = (V, A) is denoted by ~G. A digraph
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~G = (V, A) is said to be k-diregular if d+(x) = k = d−(x) for every x ∈ V. If x is the tail, and y is the

head of an arc of ~G, then it is denoted by −→xy. A digraph ~G is called aneulerian if ~G has an Euler tour T

such that any two consecutive edges of T are either directed toward or away from the common incident

vertex in ~G, see Figures 1(c) and 1(d). A directed graph is called bieulerian if it is both eulerian (that is,

it contains a directed Euler tour) and aneulerian, see Figures 1(c) and 1(d); consequently, a digraph which

admits an aneulerian tour cannot be k-diregular for k ≥ 3.
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(d) An aneulerian tour in ~G with directed loops at some of its vertices is given by the

arc sequence 1, 2, . . . , 13, 14, where the directed loops are traversed in the

forward or backward direction in order to have an aneulerian tour in ~G.

~G =

Fig. 1: Examples for anti-directed path, anti-directed cycle and aneulerian tours.

For two graphs G and H their tensor product, denoted by G × H, has vertex set V (G) × V (H) in

which (g1, h1)(g2, h2) is an edge in G × H whenever g1g2 ∈ E(G) and h1h2 ∈ E(H). Similarly, for

two digraphs ~G and ~H their tensor product, denoted by ~G × ~H, has vertex set V (~G) × V ( ~H) in which
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−−−−−−−−−−→
(g1, h1)(g2, h2) is an arc in ~G× ~H whenever −−→g1g2 ∈ A(~G) and

−−→
h1h2 ∈ A( ~H), where A(~G) denotes the

arc set of ~G. Note that if xx is a loop at x in G (resp. H), then x × V (H) (resp. V (G) × x) induces a

copy of H (resp. G) in G ×H. A circulant graph X = Circ(n; L) is a graph with vertex set V (X) =
{u0, u1, . . . , un−1} and edge set E(X) = {uiui+ℓ | i ∈ Zn, ℓ ∈ L}, where L ⊆

{

1, 2, . . . , ⌊n
2 ⌋

}

.

The elements of L are called distances of the circulant graph and L is called the set of distances. A

circulant digraph ~X =
−−→
Circ(n; L) is a digraph with vertex set V ( ~X) = {u0, u1, . . . , un−1} and arc

set A( ~X) = {−−−−→uiui+ℓ | i ∈ Zn, ℓ ∈ L}, where L ⊆ {1, 2, . . . , n− 1} . The elements of L are called

distances of the circulant digraph. The underlying graph of a digraph ~D is the undirected graph obtained

from ~D by simply deleting the orientations of the arcs of ~D. For graph theoretical terms not defined here,

see [2, 6].

Knödel graph was originally introduced in [22]. The family of Knödel graphs has been formally de-

fined by Fraigniaud and Peters [7]. Knödel graph W∆,n is a regular graph of even order n and degree

∆, 1 ≤ ∆ ≤ ⌊log2(n)⌋. Knödel graphs are used as competitors for hypercubes in the domains of broad-

casting and gossiping. The gossiping problem, as described by Knödel in [22] is the following: “Given n

persons, each having an information, want to distribute their information among them in binary calls, each

call taking a constant time, how long must it take before each knows all the information among them?”

Broadcasting is a similar problem where only one person (the originator) has all the information that needs

to be distributed to a group of people in binary calls. Consequently, they deal with problems in dissemi-

nation of information in interconnection networks. Every interconnection network can be represented by

means of a graph. If this graph has n vertices, the minimum time required for broadcasting is ⌈log2 n⌉.

Such graphs are known as minimal broadcasting graphs. For more details on minimal broadcasting and

gossiping graphs, see [11, 19, 20]. There are several papers dealing with Knödel graphs, especially be-

cause some subfamilies of Knödel graphs have good properties in terms of broadcasting and gossiping

and Fault-Tolerance, see [1,10,14,18,21,23]. In particular, for n = 2k, the Knödel graph Wk, 2k , of order

n and degree k, turns out to be a minimum broadcast graph. It is known that, the diameter of Wk,2k is

⌈k+2
2 ⌉, see [9]. It is known that Wk, 2k is vertex-transitive but not edge-transitive, see [8]. Recently, it

has been proved, see [4], that the automorphism group of Wk,2k is the dihedral group D2k−1 and in the

same paper a short proof is given for the diameter of the Knödel graph Wk,2k . For other properties of the

Knödel graphs and modified Knödel graphs, see [5, 12, 13, 15–17].

It is known that Wk−1,2k−2 is Hamilton cycle decomposable and Wk, 2k is bipancyclic, that is, every

cycle of length ℓ, 4 ≤ ℓ ≤ 2k exists, see [8]. A detailed account of various properties the Knödel graphs

and comparison with other interconnection networks has been given in the survey [8].

It is not yet known whether the Knödel graphs Wk, 2k , k ≥ 6 admit a Hamilton cycle decomposition or

not [8]. In this paper, we prove that the k-regular Knödel graph Wk, 2k , k ≥ 6 has ⌊k
2 ⌋ − 1 edge disjoint

Hamilton cycles, that is, the edge set of Wk, 2k , k ≥ 6 can be partitioned into ⌊k
2 ⌋ − 1 Hamilton cycles

together with a 2-factor, if k is even and ⌊k
2⌋ − 1 Hamilton cycles together with a 3-factor, if k is odd.

2 Definitions and Preliminaries.

Definition 2.1 [8] The Knödel graph on n ≥ 2 vertices, n even, and maximum degree ∆, 1 ≤ ∆ ≤
⌊log2(n)⌋, is denoted by W∆, n. The vertices of W∆, n are the pairs (i, j) with i = 1, 2 and 0 ≤ j ≤
n
2 − 1. For every 0 ≤ j ≤ n

2 − 1, there is an edge between vertex (1, j) and every vertex (2, j +
2k − 1 (mod n

2 )), for k = 0, 1, 2, . . . ,∆ − 1. It is a bipartite graph containing the jump 1-factors



266 P. Paulraja, S. Sampath Kumar

2k − 1, k = 0, 1, 2, . . . ,∆− 1.

For each k, 0 ≤ k ≤ ∆−1, the edges (1, j)(2, j+2k−1 (mod n
2 )), 0 ≤ j ≤ n

2 −1, induce a 1-factor

of jump 2k − 1 in W∆, n.

The union of the 1-factors of jumps 0 and 1 from X to Y of W∆, n is a Hamilton cycle, where we

assume that X = {(1, j) | 0 ≤ j ≤ n
2 − 1} and Y = {(2, j) | 0 ≤ j ≤ n

2 − 1} are the bipartition of

W∆, n. It is known that the graphs Wk, 2k , k ≤ 5, are Hamilton cycle decomposable, see [8]. Based on

this observation the following problem is raised in [8].

Problem 2.1 [8] Is Wk, 2k Hamilton cycle decomposable for any k ≥ 2?

In this paper, we prove that the k-regular Knödel graph Wk, 2k , k ≥ 6 has ⌊k
2⌋ − 1 edge disjoint

Hamilton cycles.

Definition 2.2 (Bipartite incident graph [8]). Let ~G = (V, A) be a digraph of order n, with V =

{0, 1, . . . , n−1}. The bipartite incident graph of ~G is the (undirected) bipartite graph H = (V1, V2, E)

of order 2n, where Vi = {0i, 1i, . . . , (n−1)i}, i = 1, 2, and that for any arc
−→
ij of ~G, there corresponds

an edge i1j2 ∈ E(H) with i1 ∈ V1 and j2 ∈ V2 and for each i ∈ V, there is an edge i1i2 ∈ E(H), where

i1 ∈ V1 and i2 ∈ V2 in H.
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Fig. 2: The Circulant digraph ~G′
5 =

−−→
Circ(16, {0, 1, 3, 7, 15}).
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From the Definition 2.2, it is easy to see that the Knödel graph W∆, n is the bipartite incident graph of

the circulant digraph ~G with vertex set {0, 1, 2, . . . , n
2 − 1} and arc set consists of the arcs of distance ℓ,

ℓ ∈ L = {2k − 1, 0 ≤ k ≤ ∆− 1}. In otherwords, W∆, n is the underlying graph of ~G× ~K2, where ~K2

denotes an arc.

Let ~Gk denote the circulant digraph
−−→
Circ(2k−1; L), where L = {2j − 1 | 1 ≤ j ≤ k − 1} and

let ~G′
k denote the graph obtained from ~Gk by attaching a directed loop at each of its vertices, that is,

~G′
k =

−−→
Circ(2k−1; L ∪ {0}), see Figure 2. Clearly, Wk, 2k is isomorphic to the underlying graph of

~G′
k × ~K2.

Definition 2.3 [3] Let ~G be a 2-diregular digraph which does not have a pair of arcs having the same

tail and head, but may have directed loops. If ~G admits an uniformly odd aneulerian tour (UOAT ), that

is, an aneulerian tour in which no proper closed subtrail is of even length, then ~G is called an UOAT

digraph (in fact, one can check that if a 2-diregular digraph admits an aneulerian tour T, then each proper

closed subtrail of T is of odd length).

The proof of the following theorem is similar to the proof of Theorem 2.1 of [3].

Theorem 2.1 Let ~G be a 2-diregular digraph which does not have a pair of arcs having the same tail and

head, but may have directed loops. Then the underlying graph of the digraph ~G× ~K2 is a Hamilton cycle

if and only if ~G is an UOAT digraph.

Proof: Let ~G = (V, A) with V (~G) = {v0, v1, v2, . . . , vn}. Let ~K2 = −→xy. To each arc −−→vivj , possibly

with i = j, in ~G there corresponds an unique arc
−−−−−−−−−→
(vi, x)(vj , y) in ~G× ~K2 and similarly corresponding to

each arc
−−−−−−−−−→
(vr , x)(vs, y), possibly with r = s, in ~G× ~K2 there corresponds an arc −−→vrvs, may be a directed

loop, in ~G. Clearly, ~H = ~G× ~K2 is bipartite digraph with bipartition (X, Y ), where X = V (~G)× x =

{(vi, x) | vi ∈ V (~G)} and Y = V (~G) × y = {(vi, y) | vi ∈ V (~G)}. In ~H all the vertices in X have

only outdegree, namely 2, and all the vertices in Y have only indegree 2. Hence the underlying graph of
~G× ~K2 is a 2-regular graph. First assume that the underlying graph of ~G× ~K2 is a spanning cycle C. As

each vertex in X has only outdegree and each vertex in Y has only indegree, while we trace along C the

corresponding arcs in ~G trace an anti-directed tour T. We claim that T is an aneulerian tour. Observe that

if (vi, x)(vi, y) is an edge of C, then its corresponding arc in T is a directed loop at vi, see Figure 3. We

claim that no proper closed subtrail of T is of even length. Let vk be the origin of a proper closed subtrail

T1 of T. Without loss of generality assume that C visits (vk, x) prior to (vk, y). Hence T1 arises out of

the (vk, x)-(vk, y) section of C and this section is of odd length as ~G× ~K2 is a bipartite digraph. Hence

T1 is of odd length. Hence T is an aneulerian tour. Thus ~G is an UOAT digraph.

Conversely, assume that ~G is an UOAT digraph. Let T be an aneulerian tour of ~G with the origin v0.

Now we describe a Hamilton cycle in the underlying graph of ~G× ~K2 from the vertex (v0, x) as follows:

If −−→v0v1 is the first arc of T, then take the edge (v0, x)(v1, y) in the underlying graph of ~G × ~K2 for the

Hamilton cycle. The second arc of T would be −−→v2v1, then take the edge (v1, y)(v2, x) in the underlying

graph of ~G × ~K2. As we move along T, the corresponding edges of the underlying graph of ~G × ~K2

induce a Hamilton cycle in the underlying graph of ~G × ~K2; for otherwise, the corresponding arcs of an

nonspanning even cycle in the underlying graph of ~G × ~K2 would yield a proper closed subtrail of even

length in T, a contradiction. Hence as we trace along T, the corresponding edges of the underlying graph

of ~G× ~K2 induce a Hamilton cycle.
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(i) A Directed Euler tour in ~G is given by the arc sequence 1, 10, 7, 3, 4, 5, 9, 6, 8, 2, 11, 12.

(ii) An aneulerian tour in ~G is given by the arc sequence 1, 2, 3, . . . , 11, 12, where the loops are traversed in the

forward or backward direction according as our requirement for the existence of an aneulerian tour. Clearly this

aneulerian tour is an UOAT of ~G.

Fig. 3: ~G × ~K2, a 2-diregular bieulerian digraph.

This completes the proof of the theorem. ✷

Theorem 2.2 Let ~G be a 2-diregular digraph which does not have a pair of arcs having the same tail and

head, but may have directed loops. Then the underlying graph of ~G× ~K2 is a Hamilton cycle if and only

if ~G is bieulerian.

Proof: First assume that the underlying graph ~G × ~K2 is a Hamilton cycle C. Then by Theorem 2.1 ~G

has an UOAT. As ~G is diregular, ~G is eulerian. Thus ~G is bieulerian.

Conversely, assume that ~G is bieulerian. Let T be an aneulerian tour of ~G. If we proceed as in the proof

of Theorem 2.1, when we move along the aneulerian tour T, the corresponding edges in the underlying

graph of ~G× ~K2 induce a Hamilton cycle.

This completes the proof of the theorem. ✷

3 Edge Disjoint Hamilton Cycles of Wk, 2k.

In this section we prove that Wk, 2k contains ⌊k
2⌋ − 1 edge disjoint Hamilton cycles.

The following Theorem 3.1 is proved in [8].

Theorem 3.1 [8] For any even m and 1 ≤ ∆ ≤ ⌊log2(m)⌋, it is possible to construct W∆+1, 2m by

taking two disjoint copies of W∆,m and linking the vertices of the copies by a certain perfect matching.✷

Next we decompose the digraph ~Gk =
−−→
Circ(2k−1, L), where L = {2j − 1 | 1 ≤ j ≤ k − 1}, into

two digraphs in the following way to proceed further. Let V (~Gk) = {0, 1, 2, . . . , 2k−1 − 1}. First we

decompose ~Gk into two digraphs ~Gk, e and ~Gk, o, where ~Gk, e (resp. ~Gk, o) is the spanning subdigraph
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Fig. 4: Graphs ~G5, e and ~G5, o.

of ~Gk in which the indegree of each of the even (resp. odd) vertices, namely, 0, 2, . . . , 2k−1 − 2 (resp.

1, 3, . . . , 2k−1 − 1), is zero. That is ~Gk, e (resp. ~Gk, o) is the spanning subdigraph of ~Gk obtained by

deleting the set of arcs having their tails at the odd (resp. even) vertices of ~Gk. Each arc of ~Gk, e is directed

from an even vertex to an odd vertex and each arc of ~Gk, o is directed from an odd vertex to an even vertex

(see Figure 4 for k = 5).

Lemma 3.1 The underlying graphs of the digraphs ~Gk, e and ~Gk, o are isomorphic to Wk−1, 2k−1 .

Proof: ~Gk, e can be viewed as a bipartite graph by placing the even vertices, in the increasing order, in

the partite set X and the odd vertices, in the increasing order, in the other partite set Y. Then the arcs

of distance 2ℓ − 1, 1 ≤ ℓ ≤ k − 1, in ~Gk, e, considering it as a subdigraph of ~Gk, become the arcs of

jump 2ℓ−1 − 1 from X to Y in ~Gk, e in the bipartite structure of it and thus the underlying graph of ~Gk, e

is isomorphic to Wk−1, 2k−1 , see Figure 5(a), when k = 5. To prove the underlying graph of ~Gk, o is

isomorphic to Wk−1, 2k−1 , we establish an isomorphism between ~Gk, e and ~Gk, o by mapping the vertex i

of ~Gk, e to i+ 1, where the addition is taken modulo 2k−1, of ~Gk, o. ✷

Recall that ~G′
k is the digraph obtained from ~Gk by adding a loop at each of its vertices and, Wk, 2k is

isomorphic to the underlying graph of ~G′
k × ~K2.

First we explain the proof technique of Theorem 3.2 and the lemmas used in its proof. By Theorem

2.2, finding ⌊k
2 ⌋− 1 Hamilton cycles of Knödel graph Wk, 2k is equivalent to finding ⌊k

2⌋− 1 arc-disjoint

spanning 2-diregular subdigraphs of ~G′
k so that each of the subdigraphs is bieulerian. Hence we shall
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Fig. 5: Redrawings of
−→
G5, e and

−→
G5, o, in Figure 4, in the “natural” bipartite structure. For example the edges of

distance 7 in ~G5, e are edges of jump 3 from X to Y, where X = {0, 2, 4, . . . , 14} and Y = {1, 3, 5, . . . , 15}, in

the bipartite structure. Actually, an edge of distance 2ℓ − 1 in ~Gk, e becomes an edge of jump 2ℓ−1− 1, from X to Y,

in the bipartite structure. As the graphs of Figures 4(a) and 4(b) are isomorphic, the graphs in Figures 5(a) and 5(b)

are isomorphic (the isomorphism is obtained by mapping the vertex i in Figure 5(a) to i + 1 (mod 2k−1) of Figure

5(b)).

obtain ⌊k
2 ⌋ − 1 arc-disjoint spanning 2-diregular subdigraphs of ~G′

k such that each of which is bieulerian,

if k is even, and with a directed 1-factor (that is, d+(v) = d−(v) = 1 for each v) if k is odd. To establish

this, in Lemma 3.2, first we shall obtain ⌊k
2 ⌋ − 1 subdigraphs ~Hi, e, 1 ≤ i ≤ ⌊k

2 ⌋ − 1, and another

⌊k
2 ⌋ − 1, subdigraphs ~Hi, o, 1 ≤ i ≤ ⌊k

2⌋ − 1 out of ~Gk, e and ~Gk, o, respectively. Obtain the digraph

~Hi = ~Hi, e ∪ ~Hi, o, 1 ≤ i ≤ ⌊k
2 ⌋ − 1. We shall prove that ~Hi, 1 ≤ i ≤ ⌊k

2⌋ − 1, together with some

“appropriate” directed loops at some of its vertices is a spanning 2-diregular bieulerian subdigraph of ~G′
k,

see Lemma 3.3. Using this, in Theorem 3.2, we prove the existence of ⌊k
2 ⌋ − 1 edge disjoint Hamilton

cycles in Wk, 2k .

We shall prove what we have told above in the rest of the paper.

Remark 3.1 Let G be a bipartite graph with bipartition (X, Y ) and |X | = |Y | = n. Let Fi(X, Y )
and Fj(X, Y ), i 6= j, be two 1-factors of jump i and j, respectively, from X to Y in G. Let H =
Fi(X, Y ) ∪ Fj(X, Y ). Note that Fj(X, Y ) = Fn−j(Y, X). If gcd(n, i+ n− j (mod n)) = k, then H

is the union of k disjoint cycles of same length. We shall use this fact in the proof of the next lemma; in

particular, if gcd(n, i+ n− j (mod n)) = 1, then Fi(X, Y ) ∪ Fj(X, Y ) is a Hamilton cycle of G.

Lemma 3.2 There exist ⌊k
2⌋ − 1 arc-disjoint spanning subdigraphs ~Hj, e, 1 ≤ j ≤ ⌊k

2 ⌋ − 1, of ~Gk, e,

where each ~Hj, e is the union of 2j−1 disjoint anti-directed paths whose origins and termini be denoted by

Aj (⊂ V (~Gk)), and, also there exists ⌊k
2 ⌋− 1 arc-disjoint spanning subdigraphs ~Hj, o, 1 ≤ j ≤ ⌊k

2⌋− 1,

of ~Gk, o, where each ~Hj, o is the union of 2j−1 disjoint anti-directed paths whose origins and termini are

also Aj ; that is, the set of origins and termini of the anti-directed paths of ~Hj, e is the same as the set of

origins and termini of the anti-directed paths of ~Hj, o; moreover Ai ∩ Aj = φ for i 6= j.

Proof: ~Gk is the circulant digraph with distance set {2j − 1 | 1 ≤ j ≤ k − 1}. Let ~Gk, e and ~Gk, o be the

spanning subdigraphs of ~Gk defined as above.

Partition the distance set {2j − 1 | 1 ≤ j ≤ k − 2} of ~Gk into ⌊k
2 ⌋ − 1 2-subsets {aj = 2j − 1, bj =

2k−1−j −1}, 1 ≤ j ≤ ⌊k
2 ⌋−1, if k is even and, with one more singleton subset having only one distance,
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namely 2
k−1
2 − 1, if k is odd. For each of these pairs of distances, we shall obtain a pair of spanning

subdigraphs ~Hj, e and ~Hj, o of ~Gk, e and ~Gk, o, respectively, such that each of the digraphs ~Hj, e and ~Hj, o

is the union of 2j−1 vertex disjoint anti-directed paths.

Let ~G
j
k, e, 1 ≤ j ≤ ⌊k

2⌋−1, be the spanning subdigraph of ~Gk, e, with arc set A(~Gk, e)∩A(
−−→
Circ(2k−1; {2j−

1, 2k−1−j − 1})). The underlying graph of ~G
j
k, e, is a bipartite graph, by Lemma 3.1, with 2k−2 vertices

on each of its partite sets and its edge set consists of the edges of jumps 2j−1 − 1 and 2k−j−2 − 1, from

X to Y, where X = {0, 2, . . . , 2k−1 − 2} and Y = {1, 3, . . . , 2k−1 − 1} (recall that an arc of distance

2ℓ − 1 in ~G
j
k, e will become an arc of jump 2ℓ−1 − 1 in the bipartite structure of ~G

j
k, e). Clearly, ~G

j
k, e

consists of 2j−1 anti-directed cycles as gcd(2k−2, 2j−1 − 1 + 2k−2 − 2k−j−2 + 1 (mod 2k−2)) = 2j−1,

see Remark 3.1.

We have aj = 2j−1 and bj = 2k−1−j−1; let xj = 2(j−1). First we exhibit 2j−1 disjoint anti-directed

cycles ~Ci
j, e, 1 ≤ i ≤ 2j−1, in ~G

j
k, e, to obtain the required number of anti-directed paths for ~Hj, e.

In the following list of 2j−1 anti-directed cycles, the anti-directed cycle ~Ci
j, e, 2 ≤ i ≤ 2j−1 is obtained

from ~Ci−1
j, e by subtracting 2bj from each of its corresponding vertices and ~C1

j, e is explicitly described; in

the vertices of the following anti-directed cycles, the addition is taken modulo 2k−1 and xj = 2(j − 1).
We list 2j−1 anti-directed cycles and then we prove that they are mutually disjoint.

~C 1
j, e = xj (xj + aj) (xj + aj − bj) (xj + 2aj − bj) (xj + 2aj − 2bj) . . . (xj + 2bj − aj) (xj + bj − aj) (xj + bj)xj

~C 2
j, e = (xj − 2bj) (xj + aj − 2bj) (xj + aj − 3bj) (xj + 2aj − 3bj) (xj + 2aj − 4bj) . . . , (xj − aj)

(xj − bj − aj) (xj − bj) (xj − 2bj)

~C 3
j, e = (xj − 4bj) (xj + aj − 4bj) (xj + aj − 5bj) (xj + 2aj − 5bj) (xj + 2aj − 6bj) . . . (xj − 2bj − aj)

(xj − 3bj − aj) (xj − 3bj) (xj − 4bj)

.

.

.
.
.
.

~C i
j, e = (xj − (i− 1)2bj) (xj + aj − (i− 1)2bj) (xj + aj − bj − (i− 1)2bj ) (xj + 2aj − bj − (i− 1)2bj)

(xj + 2aj − 2bj − (i− 1)2bj) . . . (xj + 2bj − aj − (i− 1)2bj ) (xj + bj − aj − (i − 1)2bj ) (xj + bj − (i− 1)2bj)

(xj − (i− 1)2bj )

.

.

.
.
.
.

~C 2
j−1

j, e = (xj − (2j − 2)bj) (xj + aj − (2j − 2)bj) (xj + aj − (2j − 1)bj ) (xj + 2aj − (2j − 1)bj)

(xj + 2aj − 2jbj) . . . (xj − aj − (2j − 4)bj ) (xj − aj − (2j − 3)bj)

(xj − (2j − 3)bj ) (xj − (2j − 2)bj )

In ~G
j
k, e, the vertices 1, 3, 5, . . . , 2k−1 − 1 are called the odd vertices and 0, 2, 4, . . . , 2k−1 − 2

are called the even vertices. In ~C1
j, e, the odd vertices and even vertices alternate and an odd vertex is

obtained by adding aj to its preceding (even) vertex, along the anti-directed cycle, and an even vertex

is obtained from its preceding (odd) vertex by adding (−bj) to it. We obtain the required 2j−1 anti-

directed paths, denoted by ~Hi
j, e, 1 ≤ i ≤ 2j−1, from ~Ci

j, e, 1 ≤ i ≤ 2j−1, by deleting its last arc,

namely,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − (i − 1)2bj)(xj − (i− 1)2bj + bj). The origins of the 2j−1 anti-directed paths ~Hi

j, e, 1 ≤

i ≤ 2j−1, are the origins of ~Ci
j, e, namely, xj , xj − 2bj, xj − 4bj , . . . , xj − (2j − 2)bj. The union of
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these 2j−1 anti-directed paths ~Hi
j, e, 1 ≤ i ≤ 2j−1, is denoted by ~Hj, e, that is, ~Hj, e =

⋃2j−1

i=1
~Hi
j, e.

Next we prove that the vertices of these anti-directed paths ~Hi
j, e, 1 ≤ i ≤ 2j−1, form a partition of the

vertex set of ~G
j
k, e (and hence that of ~Gk, e).

Claim 1. The origins of the anti-directed paths ~H2
j, e,

~H3
j, e, . . . ,

~H2j−1

j, e , namely, (xj − 2bj), (xj −

4bj), (xj − 6bj), . . . , (xj − (2j − 2)bj) are all distinct from the even vertices of ~H1
j, e.

If xj − 2ℓbj, the origin of ~Hℓ+1
j, e , is in ~H1

j, e, then, as xj − 2ℓbj is even, it should be of the form

xj + raj − rbj , for some r 6= 0 and r ≤ 2k−j−1− 1; r ≤ 2k−j−1− 1 follows from the fact that each anti-

directed cycle is of length 2k−j and among the vertices of the anti-directed cycle, only half of them can

be even vertices and further the origin is an even vertex. Hence xj − 2ℓbj ≡ xj + raj − rbj (mod 2k−1),
that is,

rbj − raj − 2ℓbj ≡ 0 (mod 2k−1)

r(bj − aj)− 2ℓbj ≡ 0 (mod 2k−1), a contradiction,

for, if the congruence holds then, as 2j | bj−aj and 2j | 2k−1, we must have 2j | 2ℓbj, but this is not the case

as bj is odd and ℓ ≤ 2j−1−1.This implies that the origins of the anti-directed paths ~H2
j, e,

~H3
j, e, . . . ,

~H2j−1

j, e

are all distinct from the even vertices of ~H1
j, e.

This completes the proof of Claim 1.

Claim 2. ~Hℓ+1
j, e and ~Hℓ′+1

j, e , ℓ 6= ℓ′, are all disjoint.

It is enough to show that the set of even vertices of ~Hℓ+1
j, e and the even vertices of ~Hℓ′+1

j, e are disjoint.

Assume that u is an even vertex common to both ~Hℓ+1
j, e and ~Hℓ′+1

j, e for some ℓ′ 6= ℓ. Without loss of

generality assume that ℓ′ < ℓ. As u is an even vertex in ~Hℓ+1
j, e , u = xj − 2ℓbj + r(aj − bj) for some

r ≤ 2k−j−1 − 1. As u is also in ~Hℓ′+1
j, e , the vertex xj − 2ℓbj must be in ~Hℓ′+1

j, e , since the difference

between two even vertices is a multiple of aj − bj ; since xj −2ℓ′bj is the origin of ~Hℓ′+1
j, e , both xj −2ℓ′bj

and xj − 2ℓbj are in ~Hℓ′+1
j, e and they cannot be equal as ℓ 6= ℓ′. If we add 2ℓ′bj to each vertex of ~Hℓ′+1

j, e ,

then the vertex xj − 2(ℓ− ℓ′)bj is in ~H1
j, e, a contradiction to Claim 1 as xj − 2(ℓ− ℓ′)bj is the origin of

the anti-directed path ~Hℓ−ℓ′+1
j, e .

This completes the proof of Claim 2.

Clearly, the arcs of G
j
k, e which are not on the anti-directed paths ~Hi

j, e, 1 ≤ i ≤ 2j−1, are the 2j−1

arcs
−−−−−−−→
xj(xj + bj),

−−−−−−−−−−−−−→
(xj − 2bj)(xj − bj),

−−−−−−−−−−−−−−→
(xj − 4bj)(xj − 3bj), . . . ,

−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − (2j − 2)bj)(xj − (2j − 3)bj),

namely, the last arcs of the anti-directed cycles ~C i
j, e, 1 ≤ i ≤ 2j−1.

As ~Gk, e
∼= ~Gk, o, it can be verified that ~G

j
k, e

∼= ~G
j
k, o. As ~G

j
k, e has 2j−1 disjoint anti-directed cycles,

~G
j
k, o also has 2j−1 disjoint anti-directed cycles. Similar to ~Ci

j, e, 1 ≤ i ≤ 2j−1, of ~G
j
k, e, we obtain 2j−1

disjoint anti-directed cycles ~Ci
j, o, 1 ≤ i ≤ 2j−1, in ~G

j
k, o.

Addition is taken modulo 2k−1 in the vertices of the following anti-directed cycles and in the following

cycles also xj = 2(j − 1), aj = 2j − 1 and bj = 2k−j−1 − 1.
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~C 1
j, o = xj (xj − aj) (xj − aj + bj) (xj − 2aj + bj) (xj − 2aj + 2bj) . . . (xj − 2bj + aj) (xj − bj + aj)

(xj − bj)xj

~C 2
j, o = (xj − 2bj) (xj − aj − 2bj) (xj − aj − bj) (xj − 2aj − bj) (xj − 2aj) . . . (xj − 4bj + aj)

(xj − 3bj + aj) (xj − 3bj) (xj − 2bj)

~C 3
j, o = (xj − 4bj) (xj − aj − 4bj) (xj − aj − 3bj) (xj − 2aj − 3bj) (xj − 2aj − 2bj) . . . (xj − 6bj + aj)

(xj − 5bj + aj) (xj − 5bj) (xj − 4bj)

.

.

.

~C i
j, o = (xj − (i− 1)2bj) (xj − aj − (i− 1)2bj ) (xj − aj + bj − (i − 1)2bj ) (xj − 2aj + bj − (i− 1)2bj )

(xj − 2aj + 2bj − (i − 1)2bj ) . . . (xj − 2bj + aj − (i− 1)2bj ) (xj − bj + aj − (i− 1)2bj)

(xj − bj − (i− 1)2bj) (xj − (i − 1)2bj )

.

.

.

~C 2
j−1−1

j, o = (xj − (2j − 4)bj ) (xj − aj − (2j − 4)bj) (xj − aj − (2j − 5)bj) (xj − 2aj − (2j − 5)bj)

(xj − 2aj − (2j − 6)bj) . . . , (xj + aj − (2j − 2)bj ) (xj + aj − (2j − 3)bj) (xj − (2j − 3)bj)

(xj − (2j − 4)bj )

~C 2
j−1

j, o = (xj − (2j − 2)bj ) (xj − aj − (2j − 2)bj) (xj − aj − (2j − 3)bj) (xj − 2aj − (2j − 3)bj)

(xj − 2aj − (2j − 4)bj) . . . (xj + aj − 2jbj) (xj + aj − (2j − 1)bj) (xj − (2j − 1)bj)

(xj − (2j − 2)bj ) (1)

The anti-directed cycle ~Ci
j, o, 2 ≤ i ≤ 2j−1, is obtained from ~C i−1

j, o by subtracting 2bj from each of its

vertices corresponding vertices and ~C1
j, o is explicitly described.

We obtain 2j−1 anti-directed paths, denoted by ~Hi
j, o, from ~Ci

j, o, 1 ≤ i ≤ 2j−1 by deleting its last arc,

namely
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − (i− 1)2bj − bj)(xj − (i− 1)2bj). We assume that the origin of ~Hi

j, o, 1 ≤ i ≤ 2j−1, is

the origin of ~Ci
j, o; hence the origins are xj , xj − 2bj, xj − 4bj, . . . , xj − (2j − 2)bj.

Clearly the origin of the path ~Hi
j, e is same as the origin of ~Hi

j, o, 1 ≤ i ≤ 2j−1. Similarly the terminus

of ~Hi
j, o is the terminus of ~Hi+1

j, e for all i except for i = 2j−1. But we want to reconstruct ~H2j−1

j, o , suitably,

as an anti-directed path such that the reconstructed path and ~H1
j, e have the same terminus.

Let Sj and Tj denote the sets of origins and termini of the anti-directed paths ~Hi
j, e, 1 ≤ i ≤ 2j−1,

respectively.

For the reconstruction of ~H2j−1

j, o , we need to prove that the vertices xj + aj + bj , xj + bj , xj + 2bj

and xj + aj + bj +1 are on ~C2j−1

j, o and the three vertices xj + aj + bj, xj + bj, xj +2bj are consecutive

vertices along ~C2j−1

j, o . In ~C2j−1

j, o , the vertex (xj − aj − (2j − 2)bj) is the immediate next vertex of the

origin (xj − (2j − 2)bj). Further, (xj − aj − (2j − 2)bj) ≡ xj + 2bj + 1 (mod 2k−1),
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since aj = 2j − 1, bj = 2k−j−1 − 1,

−aj − (2j − 2)bj = −(2j − 1)− (2j − 2)(2k−1−j − 1)

= 1− 2j.2k−1−j + 2.2k−1−j − 2

= −2k−1 + 2.2k−1−j − 1

≡ 2.(2k−1−j − 1) + 2− 1 (mod 2k−1)

≡ 2bj + 1 (mod 2k−1)

Consequently, xj − aj − (2j − 2)bj ≡ xj + 2bj + 1 (mod 2k−1). Often we recall this congruence

xj + 2bj + 1 ≡ xj − aj − (2j − 2)bj (mod 2k−1) in the future. In many places we write xj + 2bj + 1
instead of xj − aj − (2j − 2)bj .

It is enough to show that xj + bj is in ~C2j−1

j, o , since by adding bj (resp. aj) to an odd vertex we get its

succeeding (resp. preceding) vertex, namely xj +2bj (resp. xj +aj+ bj), in the anti-directed cycle. Now

we prove that xj + bj is in ~C2j−1

j, o . Clearly, bj − aj ≡ 0 (mod 2j) as j ≤ ⌊k
2⌋ − 1; let bj − aj = m2j ,

where m is odd.

Now ajbj + aj + bj + 1 = (aj + 1)(bj + 1)

= (2j)(2k−j−1)

= 2k−1 ≡ 0 (mod 2k−1)

Hence

bj + 2j = bj + aj + 1

≡ −ajbj(mod 2k−1) (2)

As xj is even, xj + bj and the last vertex xj − (2j − 1)bj = xj − ajbj of the anti-directed cycle ~C2j−1

j, o

are odd. Hence the vertex xj+bj is in ~C2j−1

j, o if and only if xj +bj+ ℓ(bj−aj) ≡ xj −ajbj (mod 2k−1),

for some ℓ < 2k−j−1, since the difference between two odd vertices along ~C2j−1

j, o is a multiple of bj − aj

and there can be only 2k−j−1 odd vertices in an anti-directed cycles.

xj + bj is in ~C2j−1

j, o

⇐⇒ xj + bj + ℓ(bj − aj) ≡ xj − ajbj (mod 2k−1)

⇐⇒ bj + ℓ(bj − aj) ≡ −ajbj (mod 2k−1)

⇐⇒ bj + ℓm2j ≡ −ajbj (mod 2k−1), since bj − aj = m2j.

⇐⇒ bj + ℓm2j ≡ bj + 2j (mod 2k−1), by (2)

⇐⇒ ℓm2j ≡ 2j (mod 2k−1)

⇐⇒ ℓm ≡ 1 (mod 2k−j−1) (3)

As bj − aj = m2j and bj − aj are known, m is known. Thus (3) gives that xj + bj is in ~C2j−1

j, o if and only

if the congruence in (3) has a solution. As m is odd and gcd(m, 2k−j−1) = 1, the congruence in (3) has

a unique solution. Thus xj + bj must be in ~C2j−1

j, o .
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b b b b b b b b b
(xj − (2j − 2)bj )

(xj − aj − (2j − 2)bj ) ≡ xj + 2bj + 1(mod 2k−1)

(xj − aj − (2j − 3)bj )

xj + aj + bj

xj + bj xj + 2bj (xj + aj − 2jbj)

(xj + aj − (2j − 1)bj )

b b b b b b b b b
(xj − (2j − 2)bj ) (xj − aj − (2j − 3)bj )

xj + aj + bj

xj + bj xj + 2bj (xj + aj − 2jbj)

(xj − (2j − 1)bj )

b b b b b b

b b b b b b

(a)

(b)
(xj + aj − (2j − 1)bj )(xj − aj − (2j − 2)bj ) ≡ xj + 2bj + 1(mod 2k−1)

Fig. 6: Figure 6(a) shows the cycle ~C2
j−1

j, o as in (4) above and Figure 6(b) shows the reconstructed anti-directed path

~H2
j−1

j, o with origin xj − (2j − 2)bj and terminus xj + bj .

Clearly, the vertex next to xj + bj along ~C2j−1

j, o is xj + 2bj ; therefore, ~C2j−1

j, o must be of the form

~C2
j−1

j, o = (xj − (2j − 2)bj) (xj − aj − (2j − 2)bj ) (xj − aj − (2j − 3)bj) (xj − 2aj − (2j − 3)bj )

(xj − 2aj − (2j − 4)bj) . . . , (xj + aj + bj) (xj + bj) (xj + 2bj) (xj + 2bj − aj) . . . (xj + aj − 2jbj)

(xj + aj − (2j − 1)bj) (xj − (2j − 1)bj) (xj − (2j − 2)bj) (4)

Hence the reconstructed last anti-directed path ~H2j−1

j, o is obtained from (4) by deleting the first arc
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − aj − (2j − 2)bj)(xj − (2j − 2)bj) and the arc

−−−−−−−−−−−−−→
(xj + bj)(xj + 2bj) and, adding the arc

−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − aj − (2j − 2)bj)(xj + 2bj); recall that (xj − aj − (2j − 2)bj) ≡ (xj + 2bj + 1) (mod 2k−1);

see Figure 6. In fact, the arc
−−−−−−−−−−−−−−−−−→
(xj + 2bj + 1)(xj + 2bj) is never used in the previous anti-directed paths

~Hi
j, o, 1 ≤ i ≤ 2j−1 − 1, as it is an arc of distance 2k−1 − 1 in ~Gk, which is neither in ~G

j
k, e nor in

~G
j
k, o, 1 ≤ j ≤ ⌊k

2 ⌋ − 1, see Figure 6, that is,

~H
2
j−1

j, o = (xj − (2j − 2)bj) (xj − (2j − 1)bj) (xj + aj − (2j − 1)bj) (xj + aj − 2jbj) . . .

(xj + 2bj) (xj − aj − (2j − 2)bj) (xj − aj − (2j − 3)bj) (xj − 2aj − (2j − 3)bj)

(xj − 2aj − (2j − 4)bj) . . . , (xj + bj) (5)

In (5) note that the vertex (xj − aj − (2j − 2)bj) ≡ (xj + 2bj + 1) (mod 2k−1). For all our future

reference ~H2j−1

j, o will refer to the reconstructed anti-directed path in (5).

This path contains the arc
−−−−−−−−−−−−−−−−−→
(xj + 2bj + 1)(xj + 2bj) which is an arc of distance 2k−1−1 of ~Gk. Conse-

quently, the arcs of ~G
j
k, o which are not on the anti-directed paths ~Hi

j, o, 1 ≤ i ≤ 2j−1 are the 2j−1+1 arcs
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−−−−−−−→
(xj − bj)xj ,

−−−−−−−−−−−−−−→
(xj − 3bj)(xj − 2bj),

−−−−−−−−−−−−−−→
(xj − 5bj)(xj − 4bj), . . . ,

−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − (2j − 3)bj)(xj − (2j − 4)bj),

−−−−−−−−−−−−−→
(xj + bj)(xj + 2bj),

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(xj − aj − (2j − 2)bj)(xj − (2j − 2)bj), that is, these are the last arcs of the

2j−1 − 1 anti-directed cycles ~C i
j, o, 1 ≤ i ≤ 2j−1 − 1, and the two arcs deleted from ~C2j−1

j, o to obtain the

reconstructed ~H2j−1

j, o .

Let the union of these 2j−1 anti-directed paths ~Hi
j, o, 1 ≤ i ≤ 2j−1, be denoted by ~Hj, o, that is,

~Hj, o =
⋃2j−1

i=1
~Hi
j, o.

Thus for each pair of distances (aj = 2j − 1, bj = 2k−j−1 − 1) of ~Gk and xj = 2(j − 1), we have the

pair of digraphs ~Hj, e and ~Hj, o, 1 ≤ j ≤ ⌊k
2⌋ − 1.

Recall that Sj and Tj denote the origins and termini of the anti-directed paths ~Hi
j, e, 1 ≤ i ≤ 2j−1,

respectively, and also they are the origins and termini of the anti-directed paths of ~Hi
j, o. Let Aj = Sj ∪Tj

and set t = ⌊k
2 ⌋ − 1.

Next we prove that Aj , 1 ≤ j ≤ ⌊k
2 ⌋ − 1 are mutually disjoint. We know that the origin and terminus

of ~Hi
j, e, 1 ≤ i ≤ 2j−1, are xj − (i− 1)2bj and xj − (i − 1)2bj + bj (= xj − (2i− 3)bj), respectively,

and they are independent of aj .

By our choice xj = 2(j − 1), xj−1 = 2(j − 1− 1) = 2(j − 1)− 2 = xj − 2; thus, recursively we can

write xℓ in terms of xj for all ℓ < j. Further, as aj = 2j − 1, aj−1 = 2j−1 − 1 = 2j−2
2 =

aj−1
2 and bj =

2k−j−1 − 1 implies bj−1 = 2k−j − 1 = 2.2k−j−1− 1 = 2(2k−j−1 − 1)+1 = 2bj +1. Thus, recursively

we can write both aℓ and bℓ in terms of aj and bj, respectively, for all ℓ < j. Hence all xj’s bj’s and aj’s

can be written in terms of xt, bt and at, respectively, where t = ⌊k
2⌋−1. If j = t−r for some r > 0, then

xj = xt−r = xt−r+1 − 2. Again xt−r+1 = xt−r+2 − 2, thus xj = xt−r = xt−r+1 − 2 = xt−r+2 − 4.
Proceeding like this, we get xj = xt−r = xt− 2r. Similarly for j = t− r, recursively applying the above

relation, we get bj = bt−r = 2bt−r+1+1 = 2(2bt−r+2+1)+1 = 4bt−r+2+3 = 4(2bt−r+3+1)+3 =
8bt−r+3+7, etc. Proceeding like this, we get bj = bt−r = 2rbt +2r − 1. Also for j = t− r, recursively

applying the above relation, we get aj = at−r =
at−r+1−1

2 =
at−r+2−1

2 −1

2 = at−r+2−3
4 =

at−r+3−1

2 −3

4 =
at−r+3−7

8 = etc. Proceeding like this, we get aj = at−r = at−2r+1
2r .

For our convenience, we shall denote the origin and terminus of an anti-directed path ~Hℓ
j, e by the

ordered pair (r, s) where r is the origin and s is the terminus of ~Hℓ
j, e, respectively. For t = ⌊k

2⌋ − 1, by

the above notation, the ordered pairs (xt, xt+bt), (xt−2bt, xt−bt), (xt−4bt, xt−3bt), (xt−6bt, xt−
5bt), . . . (xt − (2t − 4)bt, xt − (2t − 5)bt), (xt − (2t − 2)bt, xt − (2t − 3)bt) denote the origins and

termini of the anti-directed paths ~Hi
t, e, 1 ≤ i ≤ 2t−1, in ~Ht, e. Similarly, (xt−1, xt−1 + bt−1), (xt−1 −

2bt−1, xt−1− bt−1), (xt−1− 4bt−1, xt−1− 3bt−1), (xt−1− 6bt−1, xt−1 − 5bt−1), . . . (xt−1− (2t−1−
4)bt−1, xt−1 − (2t−1 − 5)bt−1), (xt−1 − (2t−1 − 2)bt−1, xt−1 − (2t−1 − 3)bt−1) denote the origins

and termini of the anti-directed paths ~Hi
t−1, e, 1 ≤ i ≤ 2t−2, in ~Ht−1, e. But we have seen above that

bt−1 = 2bt + 1 and xt−1 = xt − 2. If we write xt−1 and bt−1 in terms of xt and bt to the origins and

termini of the anti-directed paths of ~Ht−1, e, the origins and termini of the anti-directed paths in ~Ht−1, e

are (xt − 2, xt + 2bt − 1), (xt − 4bt − 4, xt − 2bt − 3), (xt − 8bt − 6, xt − 6bt − 5), (xt − 12bt −
8, xt − 10bt − 7), . . . , (xt − (2t − 8)bt − 2t−1 + 2, xt − (2t − 10)bt − 2t−1 + 3), (xt − (2t − 4)bt −
2t−1, xt − (2t − 6)bt − 2t−1 + 1). Proceeding as above, the origin and terminal vertices of each of the

anti-direted paths of ~Hj, e can be given in terms of xt and bt.



E
d

g
e

D
isjo

in
t

H
a

m
ilto

n
C

ycles
in

K
n

ö
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In general, the origins and termini of anti-directed paths of ~Hj, e are (xj , xj + bj), (xj − 2bj, xj −
bj), (xj−4bj, xj−3bj), . . . , (xj−(i−1)2bj, xj−(2i−3)bj), . . . , (xj−(2j−2)bj, xj−(2j−3)bj).
If j = t − r, then by the relation obtained above, xj = xt − 2r and bj = 2rbt + 2r − 1. Thus the

origins and termini of anti-directed paths of ~Hj, e in terms of xt and bt are given by the ordered pairs

(xt − 2r, xt − 2r + 2rbt + 2r − 1), (xt − 2r − 2(2rbt + 2r − 1), xt − 2r − (2rbt + 2r − 1)), (xt −
2r− 4(2rbt +2r − 1), xt − 2r− 3(2rbt +2r − 1)), . . . , (xt − 2r− (i− 1)2(2rbt +2r − 1), xt − 2r−
(2i− 3)(2rbt + 2r − 1)), . . . , (xt − 2r− (2j − 2)(2rbt + 2r − 1), xt − 2r− (2j − 3)(2rbt + 2r − 1)).
Hereafter we shall represent the elements of Aj in terms of xt and bt.

We list the elements of Aj , 1 ≤ j ≤ ⌊k
2 ⌋ − 1, in terms of xt and bt, in ordered pairs in the Table 1

below with the elements of At appearing in the first column, the elements of At−1 in the second column

etc., and the last column contains the elements of A1.

Next we shall prove that Ai ∩ Aj = φ, i 6= j; the intersection here is the intersection of elements of

Ai and Aj (but not as intersection of ordered pairs of Ai and Aj described in the Table 1). For this it is

enough to prove that the even vertices in the Table 1 are distinct. For, let i < j with i = t−s and j = t−r;
hence r < s. By the above recursive relations we get xj = xt − 2r, xi = xt − 2s, bj = 2rbt + 2r − 1
and bi = 2sbt + 2s − 1. Suppose the origins in the (ℓ + 1)th pair of Aj in Table 1, that is, xj − 2ℓbj and

the (ℓ′ + 1)th pair of Ai, that is, xi − 2ℓ′bi are same then

xj − 2ℓbj ≡ xi − 2ℓ′bi (mod 2k−1); this implies

xt − 2r − 2ℓ(2rbt + 2r − 1) ≡ xt − 2s− 2ℓ′(2sbt + 2s − 1) (mod 2k−1)

that is, 2r + 2r+1ℓbt + 2r+1ℓ− 2ℓ ≡ 2s+ 2s+1ℓ′bt + 2s+1ℓ′ − 2ℓ′ (mod 2k−1)

that is, 2(r − s) + 2r+1ℓ(bt + 1)− 2ℓ ≡ 2s+1ℓ′(bt + 1)− 2ℓ′ (mod 2k−1)

that is, 2(r − s) + 2(ℓ′ − ℓ) ≡ 2s+1ℓ′2k−t−1 − 2r+1ℓ2k−t−1 (mod 2k−1)

≡ A2r+k−t (mod 2k−1) for some constant A, that is,

A2r+k−t − 2(r − s+ ℓ′ − ℓ) ≡ 0 (mod 2k−1)

However, we shall show that this congruence does not hold. We assume that the congurence holds

and we obtain a contradicition. Observe that as 0 ≤ r < s ≤ ⌊k
2 ⌋ − 1 and t = ⌊k

2⌋ − 1, we have

r + k − t ≤ ⌊k
2 ⌋ − 2 + k − ⌊k

2 ⌋+ 1 = k − 1.
First we suppose that A is odd. Since A is odd, as 2r+k−t divides both A2r+k−t and 2k−1, then it

must divide 2[r − s + ℓ′ − ℓ], that is, 2[r − s + ℓ′ − ℓ] ≡ 0 (mod 2r+k−t), which is a contradiction, as

0 ≤ r < s ≤ ⌊k
2 ⌋ − 1, 0 ≤ ℓ ≤ 2t−r−1 − 1 and 0 ≤ ℓ′ ≤ 2t−s−1 − 1.

Next we suppose that A is even. Let d be the maximum integer such that 2d |A2r+k−t. Now we

consider the case d ≤ k−1; then the proof follows similar to the case when A is odd by replacing r+k−t

by d. Next we assume that d > k−1. Since d > k−1, 2k−1 | 2d. Then 2k−1 divides 2[r−s+ℓ′−ℓ], that

is, 2[r−s+ℓ′−ℓ] ≡ 0 (mod 2k−1), which is a contradiction, as 0 ≤ r < s ≤ ⌊k
2 ⌋−1, 0 ≤ ℓ ≤ 2t−r−1−1

and 0 ≤ ℓ′ ≤ 2t−s−1 − 1.
Hence irrespective of the parity of A, the congruence does not hold. Thus the origins, that is, the even

vertices of the ordered pairs listed in the columns Ai and Aj , i 6= j, of Table 1, are distinct and hence the

odd vertices of the ordered pairs listed in the columns Ai and Aj , i 6= j, of Table 1 are also distinct.

This completes the proof of the lemma. ✷
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Lemma 3.3 There exist ⌊k
2 ⌋− 1 arc disjoint 2-diregular bieulerian digraphs ~Hj , 1 ≤ j ≤ ⌊k

2 ⌋− 1, each

of which is a spanning subdigraph of ~G′
k.

Proof: By Lemma 3.2, there exist ⌊k
2 ⌋ − 1 arc disjoint spanning subdigraphs ~Hj, e and ~Hj, o, 1 ≤ j ≤

⌊k
2 ⌋ − 1, of ~Gk, e and ~Gk, o, respectively. Clearly, each of the digraphs ~Hj, e and ~Hj, o consists of union

of 2j−1 anti-directed paths with their origins and termini at Aj = Sj ∪ Tj .

Next we construct ⌊k
2 ⌋ − 1 spanning 2-diregular bieulerian digraphs using ~Hj, e and ~Hj, o, 1 ≤ j ≤

⌊k
2 ⌋ − 1. For a fixed j, we construct a spanning 2-diregular bieulerian digraph from ~Hj, e and ~Hj, o by
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The anti-directed paths ~Hi
j, e, 1 ≤ i ≤ 2j−1, of ~Hj, e are shown in solid lines and the anti-directed paths ~Hi

j, o, 1 ≤

i ≤ 2j−1, of ~Hj, o are shown in broken lines. For clarity of the figure, ~Hi
j, o is shown as vertex disjoint from ~Hi

j, e,

but it is not the case as both ~Hj, e and ~Hj, o are spanning subdigraphs of ~Gk.

Fig. 7: 2-diregular spanning bieulerian digraph ~Hj constructed from ~Hj, e and ~Hj, o and loops added at each of the

vertices of Aj .
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concatenating the anti-directed paths of them appropriately and adding some appropriate loops to it. That

is, the spanning bieulerian digraph is H1
j, e∪H

2j−1

j, o ∪H2j−1

j, e ∪H2j−1−1
j, o ∪H2j−1−1

j, e ∪H2j−1−2
j, o ∪H2j−1−2

j, e ∪

H2j−1−3
j, o ∪H2j−1−3

j, e ∪. . .∪H2
j, o∪H

2
j, e∪H

1
j, o∪{directed loops at each of the vertices of Aj}, see Figure

7. We denote the graph ~Hj, e ∪ ~Hj, o together with directed loops added at the vertices of Aj by ~Hj , see

Figure 7. Clearly, ~Hj is eulerian and, ~Hj is aneulerian follows by moving along the anti-directed paths

of ~Hj, e and ~Hj, o, alternately, and the directed loops at the vertices of Aj ; while obtaining an aneulerian

tour, as and when a directed loop of Aj is encountered when we visit through ~Hj, e or ~Hj, o, the directed

loop is visited in the clockwise or anticlockwise direction according to the requirement for the existence

of an aneulerian tour.

This completes the proof of the lemma. ✷

Next we prove that Wk, 2k , k ≥ 6, has ⌊k
2⌋ − 1 edge disjoint Hamilton cycles.

Theorem 3.2 Wk, 2k contains ⌊k
2⌋ − 1 edge disjoint Hamilton cycles.

Proof: By Lemma 3.3, ~G′
k has ⌊k

2 ⌋ − 1 arc disjoint 2-diregular spanning bieulerian subdigraphs ~Hj , 1 ≤

j ≤ ⌊k
2 ⌋ − 1. Let ~H =

⋃⌊ k
2 ⌋−1

j=1
~Hj . Now ~H × ~K2 =

⊕⌊ k
2 ⌋−1

j=1 ( ~Hj × ~K2). But the underlying graph

of ~Hj × ~K2, 1 ≤ j ≤ ⌊k
2 ⌋ − 1, is a Hamilton cycle, by Theorem 2.2. Thus the underlying graph of

~H× ~K2 is Hamilton cycle decomposable. As ~H is a spanning subdigraph of ~G′
k and the underlying graph

of ~G′
k × ~K2 is isomorphic to Wk, 2k , Wk, 2k contains ⌊k

2 ⌋ − 1 edge disjoint Hamilton cycles. ✷

To prove the existence of a Hamilton cycle decomposition of Wk, 2k , it is enough to prove that ~G′′
k =

~G′
k−A( ~H), when k is even or, ~G′′

k = ~G′
k−{A( ~H)∪ ~F}, where ~F stands for the set of arcs of distance k+1

2

of ~G′
k, when k is odd, is a bieulerian digraph. If ~G′′

k is bieulerian, then by Theorem 2.2, the underlying

graph of ~G′′
k × ~K2 is Hamiltonian. The following remark explains the difficulty in proving that ~G′′

k is

bieulerian.

Remark 3.2 In fact, we know a method by which we can prove that ~G′′
k is bieulerian. But proving ~G′′

k

is bieulerian is complicated and too long and hence we have omitted the proof. A sketch of the proof

of ~G′′
k is bieulerian using a “reduction technique”is described in the Appendix I of the Ph.D. thesis of

the second author, see [24]. Also, using the technique described therein, we have proved that G′′
8 is

bieulerian, see Appendix II of [24]. This proves that W8,28 is Hamilton cycle decomposable. Using the

method described in the Appendix I mentioned above, and Lemma 3.3, of this paper, here we obtain three

arc disjoint spanning bieulerian subdigraphs of ~G′
6, see Figures 8, 9 and 10. Thus W6, 26 = W6, 64 is

Hamilton cycle decomposable, by Theorem 2.2. We have not given the arc disjoint bieulerian subdigraphs

of G′
k for some smaller values of k ≥ 7 as they have too many vertices and edges to draw. ✷

We present three edge disjoint Hamilton cycles of W6,26 , where we assume that (X, Y ) is the bipartition

with X = {(1, j) | 0 ≤ j ≤ 31} and Y = {(2, j) | 0 ≤ j ≤ 31}. The three Hamilton cycles H1, H2 and

H3 of W6,64 given below are obtained using the arc disjoint bieulerian subdigraphs (shown in Figures 8

to 10) of G′
6.
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H1 =(1, 0)(2, 7)(1, 4)(2, 11)(1, 8)(2, 15)(1, 12)(2, 19)(1, 16)(2, 23)(1, 20)(2, 20)(1, 13)(2, 16)

(1, 17)(2, 24)(1, 21)(2, 28)(1, 25)(2, 0)(1, 29)(2, 4)(1, 1)(2, 8)(1, 5)(2, 12)(1, 9)(2, 9)(1, 6)

(2, 13)(1, 10)(2, 17)(1, 14)(2, 21)(1, 18)(2, 25)(1, 22)(2, 29)(1, 26)(2, 1)(1, 30)(2, 5)(1, 2)

(2, 2)(1, 31)(2, 6)(1, 3)(2, 10)(1, 7)(2, 14)(1, 11)(2, 18)(1, 15)(2, 22)(1, 19)(2, 26)(1, 23)

(2, 30)(1, 27)(2, 27)(1, 24)(2, 31)(1, 28)(2, 3)(1, 0).

H2 =(1, 0)(2, 1)(1, 18)(2, 19)(1, 4)(2, 5)(1, 22)(2, 23)(1, 8)(2, 9)(1, 26)(2, 27)(1, 12)(2, 13)

(1, 30)(2, 31)(1, 16)(2, 17)(1, 2)(2, 3)(1, 20)(2, 21)(1, 6)(2, 7)(1, 24)(2, 25)(1, 10)(2, 11)

(1, 28)(2, 29)(1, 14)(2, 15)(1, 15)(2, 16)(1, 1)(2, 2)(1, 19)(2, 20)(1, 5)(2, 6)(1, 23)(2, 24)

(1, 9)(2, 10)(1, 27)(2, 28)(1, 13)(2, 14)(1, 31)(2, 30)(1, 29)(2, 12)(1, 11)(2, 26)(1, 25)

(2, 8)(1, 7)(2, 22)(1, 21)(2, 4)(1, 3)(2, 18)(1, 17)(2, 0)(1, 0).

H3 =(1, 0)(2, 31)(1, 31)(2, 0)(1, 1)(2, 1)(1, 2)(2, 9)(1, 10)(2, 10)(1, 11)(2, 11)(1, 12)(2, 12)(1, 13)

(2, 13)(1, 14)(2, 14)(1, 15)(2, 30)(1, 30)(2, 29)(1, 29)(2, 28)(1, 28)(2, 27)(1, 20)(2, 19)(1, 19)

(2, 18)(1, 18)(2, 17)(1, 17)(2, 20)(1, 21)(2, 21)(1, 22)(2, 22)(1, 23)(2, 23)(1, 24)(2, 24)(1, 25)

(2, 25)(1, 26)(2, 26)(1, 27)(2, 2)(1, 3)(2, 3)(1, 4)(2, 4)(1, 5)(2, 5)(1, 6)(2, 6)(1, 7)(2, 7)(1, 8)

(2, 8)(1, 9)(2, 16)(1, 16)(2, 15)(1, 0).
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Fig. 8: A spanning 2-diregular bieulerian subdigraph ~H2 of ~G′
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