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Network models allow one to deal with massive data sets using some standard concepts from graph theory. Under-
standing and investigating the structural properties of a certain data set is a crucial task in many practical applications
of network optimization. Recently, labeled network optimization over colored graphs has been extensively studied.
Given a (not necessarily properly) edge-colored graph G = (V,E), a subgraph H is said to be monochromatic if all its
edges have the same color, and called multicolored if all its edges have distinct colors. The monochromatic clique and
multicolored cycle partition problems have important applications in the problems of network optimization arising
in information science and operations research. We investigate the computational complexity of the problems of de-
termining the minimum number of monochromatic cliques or multicolored cycles that, respectively, partition V (G).
We show that the minimum monochromatic clique partition problem is APX-hard on monochromatic-diamond-free
graphs, and APX-complete on monochromatic-diamond-free graphs in which the size of a maximum monochromatic
clique is bounded by a constant. We also show that the minimum multicolored cycle partition problem is NP-complete,
even if the input graph G is triangle-free. Moreover, for the weighted version of the minimum monochromatic clique
partition problem on monochromatic-diamond-free graphs, we derive an approximation algorithm with (tight) ap-
proximation guarantee ln |V (G)|+ 1.
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1 Introduction
Graph based data mining is defined as the science and the art of extracting useful knowledge like patterns
and outliers provided by an underlying complex system in order to draw meaningful conclusions regarding
the system’s properties [1, 11]. The vertices of a complex network denote the entities in a system, and the
edges between the vertices represent some kind of relationship between the entities. Network clustering
is an important task frequently arising with the aim of partitioning a network into clusters of elements
with some similar relationship. In many cases, one can investigate specific properties of a data set by
detecting special information in the corresponding clusters, for instance, cliques, cycles, spanning trees
and connected components. In particular, edge-colored connected components are often used for solving
the important clustering problem arising in data mining, which essentially represents partitioning the set of
elements of a certain data set into a number of clusters of objects according to some kind of relationship.
For example, a major application of edge-colored graph descriptions of structure arose in sociometry.
Social network analysis has grown to be a field in its own right with widely accepted methods used in an
increasing variety of applications [3, 13, 25]. Wasserman and Faust [34] describe the main methods and
underlying philosophies as well as giving a range of illustrative problems.

1.1 Motivation
In social networks, vertices represent people and edges the relations between them. Different kinds of
relationship are distinguished with different colors. The social network analysts need to survey each
person about their friends, ask for their approval to publish the data and keep a trace of that population
for years. Also the applications, implemented on internet, that use the concept of links between friends
and friends of friends, like Google+ which is built on this foundation of “Circles”, provide such large
structured data sets. One person on Google+ may be connected to many people which can be divided into
different circles such as a circle of “Family”, a circle of “Friends”, a circle of “Employees”, and a circle of
“Customers”. Colored edges can be used to describe the different relations of circles between members.
Since a cluster is typically understood as a “tightly knit” group of elements, the graph theoretic concept
of a monochromatic clique, which is a subset of vertices inducing a monochromatic complete subgraph,
is a natural formalization of a cluster that has been used within the context. These monochromatic cliques
define cohesive subgroups of some kind of relationship and provide a useful start to the analysis of the
structure of social networks, which gives some basis for the study of information exchange and patterns
of influence in social networks. The proposed Socratic query is the following: How many “circles” (or
monochromatic cliques) are needed to cover the whole graph? Moreover, colors may have weights which
can be assigned by the strength or the levels of irrelevant relations between members. This might lead to
the problem of partitioning the graph into minimum weight-sum clusters with the highest possible level
of cohesiveness which is a natural generalization of the classical clique partition problem.

A cycle partition or cycle cover of a graph is a spanning subgraph such that each vertex is part of
exactly one simple cycle. A special case of the cycle cover problem is the traveling salesman problem
(TSP), where the goal is to compute a Hamiltonian tour of maximum or minimum weight. The problem
of cycle partition is an important tool for the design of approximation algorithms for different variants of
the traveling salesman problem [6, 8, 9, 19]. Computing cycle partitions is an important task in the fields
of information science, graph theory and combinatorial optimization [23, 26].

Although many studies have been carried out to analyze the complexity of cycle partition problems and
the design of approximation algorithms for it [28, 29], few of them considered a more general case of
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the problem for edge-colored graphs or edge-labeled graphs. For the edge-colored case, the multicolored
cycle partition problem is to seek a minimum number of vertex-disjoint multicolored cycles (all the edges
of any cycle have distinct colors) in G such that every vertex is in at least one multicolored cycle [20].

1.2 Related results
A variant of the traveling salesman problem called MaxLTSP, where the goal is to compute a Hamiltonian
tour of maximum number of colors in an edge-colored complete graph, has been considered in [4, 10].
It is easy to see that MaxLTSP and the multicolored cycle partition problem have a similar relationship
to that of TSP and the cycle partition problem. The multicolored cycle partitioning models naturally the
need of a maximum covering problem with a certain network structure (in our case such a structure is a
multicolored cycle). For example, consider the situation of designing some metropolitan peripheral ring
roads, where every color represents a different sub-urban area that a certain link would traverse. In order
to minimize the number of peripheral rings such that each of them can cover different sub-urban areas,
we wish to use as few multicolored cycles as possible to partition a given edge-colored graph (network).

Labeled network optimization over colored graphs has been extensively studied [16, 17, 30, 21]. Sev-
eral variations of such problems, and in particular their computational complexity, have been well studied.
MacGillivray and Yu [27] studied a general graph partitioning problem including graph coloring, homo-
morphism to H , conditional coloring, contractibility to H , and partition into cliques as special cases, and
investigated their complexity. Yegnanarayanan [35] considered three coloring parameters of a graph G
in connection with the computational complexity, partitions, algebra, projective plane geometry and anal-
ysis. Jin et al. [18] investigated the computational complexity of the problem of partitioning complete
multipartite 2-edge-colored graphs into the minimum number of vertex-disjoint monochromatic cycles,
paths and trees, respectively. For more general coloring and partitioning problems, the readers could refer
to Garey and Johnson [14], and Kano and Li [20].

Monochromatic clique and multicolored cycle partition problems have important applications in the
problems of network optimization arising in information science and operations research mentioned
above. We abbreviate the problems of partitioning the vertex set of a (not necessarily properly) edge-
colored graph into a minimum number of monochromatic cliques and multicolored cycles to MCLP and
MCYP, respectively.

1.3 Diamond-free graphs
In graph theory, many important families of graphs can be described by a finite set of individual graphs
that do not belong to the family and further exclude all graphs from the family which contain any of
these forbidden graphs as (induced) subgraph or minor. Diamond-free graphs belong to such kinds of
important families of graphs. The diamond graph is obtained from a complete graph K4 by removing
one edge. A graph is diamond-free if it has no diamond as an induced subgraph. The triangle-free graphs
are diamond-free graphs, since every diamond contains a triangle. Much research about diamond-free
graphs has focused on graph coloring. Characterizations of (subclasses of) diamond-free graphs and their
structural properties have been considered both from a theoretical and applications angle. For example,
cactus graphs as well as the family of pseudoforests are diamond-free graphs. The former graph family is
downwardly closed under graph minor operations and may be characterized by a single forbidden minor
which is the diamond graph [12]. They represent electrical circuits that have useful properties [31] and
have also recently been used in comparative genomics as a way of representing the relationship between
different genomes or parts of genomes [33]. The latter graph family with the characters of both the
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butterfly graph and the diamond graph being forbidden minors. Pseudoforests also form graph-theoretic
models of functions and occur in several algorithmic problems. Pseudoforests are sparse graphs which
have very few edges relative to their number of vertices and their matroid structure allows several other
families of sparse graphs to be decomposed as unions of forests and pseudoforests. Pseudoforests also
play a key role in parallel algorithms for graph coloring and related problems [15, 22]. Li and Zhang [24]
showed that both the problems of determining the minimum number of monochromatic cliques and the
minimum number of multicolored cycles that partition V (G) for edge-colored diamond-free graphs are
NP-complete.

1.4 Our contribution
In this paper, we prove, by reduction from vertex cover in 3-regular connected graphs, that MCLP is
APX-hard for graphs that are monochromatic-diamond-free. Previously, it had been shown in [21] that
MCLP is NP-complete for diamond-free (and implicitly also for monochromatic-diamond-free) graphs.

We observe that the algorithms from [24] (polynomial algorithm for finding a largest monochromatic
clique, and O(logm)-approximation for MCLP, where m is the size of a largest monochromatic clique)
do not work for diamond-free graphs, as claimed in [24], but only for monochromatic-diamond-free
graphs (See the Appendix). Furthermore, the algorithmic ideas of [24] are extended to show that for
monochromatic-diamond-free graphs, one can enumerate all maximal monochromatic cliques in polyno-
mial time and find a (log(|V |) + 1)-approximation algorithm even for a weighted version of MCLP.

We prove, by reduction from set cover, that MCYP is NP-hard even for triangle-free graphs. (The
graphs constructed in the previous NP-hardness proof from [21] were diamond-free but not triangle-free.)

2 Preliminaries
Let G = (V,E) be a connected undirected simple graph. If G is assigned a mapping ` : E → N, we say
that G is an edge-colored graph. We call `(e) the color of the edge e ∈ E, and we use `(H) to denote
the number of different colors in the set {`(e)|e ∈ E(H)} for a subgraph H of G. A complete graph
is a graph in which every two distinct vertices are adjacent. We denote by Km a complete graph on m
vertices, and by Cm a cycle on m vertices. A clique of G is a nonempty subset of V (G) that induces
a complete subgraph of G. A clique CL of G is called a monochromatic clique if all the edges of the
corresponding subgraph of G have the same color. A cycle CY of G is called a multicolored cycle if
`(CY ) = |E(CY )|, i.e., if no two edges of CY have the same color. Note that a single vertex can be
viewed as a degenerate monochromatic clique or multicolored cycle. We simply call it a vertex-clique or
vertex-cycle.

A subgraph H of an edge-colored graph G is called monochromatic-induced if H is monochromatic
with edge color c and for any pair of vertices u, v ∈ V (H), uv is an edge of H if and only if uv is an edge
ofGwith color c. And a graphG is called monochromatic-diamond-free if it does not contain a monochro-
matic diamond as a monochromatic-induced subgraph. Note that the properties of being diamond-free and
monochromatic-diamond-free do not imply each other. For example, a K4 with one edge colored `1 and
the others colored `2 is diamond-free, but not monochromatic-diamond-free. However, a monochromatic
cycle on 4 vertices with a chord of a different color is monochromatic-diamond-free, but not diamond-
free. A vertex u is color-adjacent to a vertex v of a monochromatic clique CL if the edge uv has the
same color as the edges of CL. A clique CL of G is called a maximal monochromatic clique if there is
no vertex u of G color-adjacent to each vertex of CL.
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The paper is organized as follows. In Section 3, we show that MCLP is APX-complete on monochromatic-
diamond-free graphs with maximum degree 6. In Section 4, we generalize MCLP to its weighted version
WMCLP, and present a greedy scheme that yields an ln |V (G)|+1-approximation algorithm for WMCLP
on monochromatic-diamond-free graphs. We also provide an example to show that the approximation
guarantee is tight. In Section 5, we investigate the complexity of MCYP and show that the problem is
NP-complete, even if the input is a triangle-free graph. In the final section, we present some concluding
remarks and propose some open problems for further research.

3 Inapproximability of MCLP on monochromatic-diamond-free
graphs

Given a graph G = (V,E) and a positive integer k, the Partition into cliques (PIC) decision problem
consists of deciding whether there exists a partition of V into k disjoint subsets such that the subgraph in-
duced by each part of the subsets is a clique ofG. Garey and Johnson [14] proved that PIC is NP-complete
for K4-free graphs. Cerioli et al. [5] establish both the NP-completeness of PIC for planar cubic graphs
and the Max SNP-hardness of PIC for cubic graphs. They also presented a deterministic polynomial time
5/4-approximation algorithm for finding clique partitions in maximum degree three graphs. It is easily
seen that PIC is a special case of the decision version of MCLP if the graph G is colored by a unique
color. Li and Zhang [24] have proved that MCLP is NP-complete, even when the input is restricted to
diamond-free graphs. They showed a polynomial algorithm to find an approximation solution for MCLP
in diamond-free graphs with performance ratio lnm + 1, where m is the size of a maximum monochro-
matic clique in the input graph. However, the algorithm actually works for monochromatic-diamond-free
graphs instead of diamond-free graphs. We added Appendix A to explain the details.

Hence, if the input graph for MCLP is monochromatic-diamond-free with the size of a maximum
monochromatic clique bounded by a constant, we have an approximation algorithm with constant perfor-
mance ratio.

We further investigate the inapproximability of MCLP. Alimonti and Kann [2] have shown that the
Vertex Cover problem restricted to 3-regular connected graphs is APX-complete. This implies that there
is some small ε > 0 such that the existence of a polynomial time approximation algorithm for finding a
minimum cardinality vertex cover in a connected 3-regular graph with performance guarantee 1+ε would
imply P = NP.

L-reduction is a transformation of optimization problems which linearly preserves approximability fea-
tures and it is one type of approximation-preserving reduction. L-reductions in studies of approximability
of optimization problems play a similar role to that of polynomial reductions in the studies of computa-
tional complexity of decision problems. L-reductions preserve membership in APX for the minimizing
case only, as a result of implying AP-reductions. Its definition is given as follows [32].

Let f be a polynomial-time transformation from a minimization optimization problem Π to a mini-
mization optimization problem Π

′
, We say that f is an L-reduction if there are constants α, β > 0 such

that for each instance I of Π:
a) The optima of I and f(I),OPT (I) andOPT (f(I)) respectively, satisfyOPT (f(I)) ≤ αOPT (I).
b) For any solution of f(I) with cost c, we can find in polynomial time a solution of I with cost at most

OPT (I) + β[c−OPT (f(I))].
The constant β will be usually 1. We now give an approximation preserving L-reduction from the

Vertex Cover problem in 3-regular connected graphs to MCLP and draw the following conclusions.
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Theorem 3.1 MCLP is

(1) APX-hard on monochromatic-diamond-free graphs, and

(2) APX-complete on monochromatic-diamond-free graphs with the size of a maximum monochromatic
clique bounded by a constant.

3.1 Proof of Theorem 3.1

Consider an arbitrary instance of the Vertex Cover problem in 3-regular connected graphs. So let G =
(V,E) be a 3-regular connected graph, with |V | = 2n and |E| = 3n for some n ∈ Z+. A corresponding
MCLP instance on an edge-colored graph H = (VH , EH) is constructed from G in the following way. H
is obtained from G by replacing every edge (u, v) ∈ E by a gadget g(u, v) consisting of the vertices u
and v as well as two new vertices e1u,v and e2u,v , and the edges (u, e1u,v), (u, e2u,v), (v, e1u,v) and (v, e2u,v).
Furthermore, for a vertex u with neighbors v, w and x, the vertices e1u,v , e1u,w and e1u,x are made mutually
adjacent in H . For every vertex u ∈ V , we define a color `(u), and for every edge (u, v) ∈ E, we define
two colors `(u, eu,v) and `(v, eu,v), where all the colors we define are different. For an edge (u, v) ∈ E,
the corresponding edges in H are colored as follows. The edge (u, e1u,v) is assigned color `(u) and the
edge (v, e1u,v) is assigned color `(v). The edge (u, e2u,v) is assigned color `(u, eu,v) and the edge (v, e2u,v)
is assigned color `(v, eu,v). For a vertex u with neighbors v, w and x in G, the edges (e1u,v, e

1
u,w),

(e1u,w, e
1
u,x) and (e1u,x, e

1
u,v) in H are all assigned color `(u). This completes the construction and edge-

coloring of the graph H (See Figure 1). It is easy to observe that a largest monochromatic clique in H
corresponds to a K4, and that H is monochromatic-diamond-free, with maximum degree 6. Note that the
degree of the vertices u, v, and e1v,u is exactly 6 for every gadget g(u, v).

x

e2u,v

w

v

u

l(u)

l(w) l(x)

l(v)
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Fig. 1: Gadgets near the vertex u
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Let V ∗c be a minimum vertex cover of G, and let P ∗ be a minimum monochromatic clique partition of
H . Then, we have the following inequalities.

Lemma 3.2 |P ∗| ≤ 8n ≤ 8|V ∗c |

Proof: Since every vertex in G is incident with exactly three edges, V ∗c has at least |E|/3 = n vertices.
There are |V | + 2|E| = 8n vertices in H , so H can be partitioned into 8n vertex-cliques. Hence,
|P ∗| ≤ 8n ≤ 8|V ∗c |. 2

Suppose P is an arbitrary monochromatic clique partition of H . We further have the following conclu-
sion.

Lemma 3.3 P can always be turned into a new monochromatic clique partition P ′ such that |P ′| ≤ |P |
and for every edge (u, v) of G, e1u,v ∈ K(u) or e1u,v ∈ K(v) holds and there is no vertex-clique u or v in
P ′. Here K(v) denotes a vertex-clique v or a (nontrivial) monochromatic clique containing v.

Proof: First suppose that K(e1u,v) is a vertex-clique in P , or is a monochromatic clique with color `(u)
that does not contain u. We can execute one of the following operations on P to mergeK(e1u,v) intoK(u)
or u into K(e1u,v), without increasing the cardinality of P . If u forms a vertex-clique or is contained in
a monochromatic clique with color `(u), then K(e1u,v) can be combined with K(u) to obtain a larger
monochromatic clique with color `(u). If u is contained in a monochromatic clique with a color different
from `(u), then u can be taken away from K(u) and combined with K(e1u,v) to form a new clique with
color `(u).

Therefore, we may assume that e1u,v ∈ K(u) or K(v) for all edges (u, v) in G. If there exists a
vertex-clique v in a gadget g(u, v) after executing the above operations, then e1u,v ∈ K(u), and e2u,v forms
a vertex-clique. Hence, v can be combined with e2u,v to form a new monochromatic clique with color
`(v, eu,v), and the cardinality of the partition is decreased.

After applying the above operations we have obtained a new partition P ′ with |P ′| ≤ |P |, satisfying
the conditions in the lemma. 2

Let g(u, v) be a gadget in H . Without loss of generality we may assume that e1u,v ∈ K(u) with color
`(u) in P ′. Then e2u,v forms either a vertex-clique, or a clique with v of color `(v, e2u,v).

Let Vc be composed of all the vertices u ∈ V such that for some edge (u, v) ∈ E, e1u,v ∈ K(u) in P ′.
Since for every edge (u, v) ∈ E, e1u,v ∈ K(u) or e1u,v ∈ K(v) in P ′, at least one of u and v is in Vc.
Hence Vc is a vertex cover of G.

For every edge (u, v) ∈ E, e2u,v forms either a vertex-clique or a monochromatic clique together with v
or u in P ′. There are totally |E| such cliques. Each of the other cliques in P ′ contains exactly one vertex
u ∈ V and at least one vertex e1u,v for some neighbor v of u in G, and hence corresponds to a vertex
u ∈ Vc. Consequently,

|Vc| = |P ′| − |E| = |P ′| − 3n ≤ |P | − 3n. (1)

On the other hand, we can obtain a monochromatic clique partition P̃ of H from a minimum vertex
cover V ∗c of G, as follows. For a gadget g(u, v) in H , if (u, v) is covered by exactly one end vertex in
V ∗c , say u, then let e1u,v be in the same clique with u in P̃ , and hence K(u) is of color `(u). If (u, v) is
covered by both u and v, then let e1u,v be in the same clique with either u or v in P̃ arbitrarily.
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Since every edge is covered by at least one vertex, every vertex of type e1u,v is contained in either K(u)
or K(v). We claim that for every vertex u ∈ V ∗c , K(u) contains at least one vertex of type e1u,v . For if
there exists a u0 ∈ V ∗c such that K(u0) contains no vertex e1u0,v for every neighbor v of u0 in G, then
V ∗c \{u0} is a vertex cover of G with cardinality less than V ∗c , contradicting the minimality of V ∗c . Since
no two vertices inG can be in the same clique in P̃ , there are exactly |V ∗c | cliques in P̃ containing vertices
of type e1u,v .

For any vertex v of G that is not contained in V ∗c , let v form a clique in P̃ with a vertex e2u,v for a
neighbor u of v in G. Note that such a vertex e2u,v is always available for v, since any neighbor of v in G
must be in V ∗c .

Finally, we let the remaining vertices of type e2u,v be vertex-cliques in P̃ . P̃ consists of |E| cliques
containing vertices of type e2u,v , and |V ∗c | cliques containing vertices of type e1u,v , therefore

|V ∗c | = |P̃ | − |E| = |P̃ | − 3n. (2)

Thus,

Lemma 3.4 P̃ is a minimum monochromatic clique partition.

Proof: For if there exists a monochromatic clique partition P with |P | < |P̃ |, then by the above discussion
we can always obtain a vertex cover Vc of G with |Vc| ≤ |P | − 3n < |P̃ | − 3n = |V ∗c |, contradicting the
minimality of V ∗c . 2

Lemma 3.5 The existence of a polynomial time approximation scheme for MCLP restricted to mono-
chromatic-diamond-free graphs with maximum monochromatic clique K4 would imply the existence of
a polynomial time approximation scheme for the Vertex Cover problem restricted to 3-regular connected
graphs.

Proof: Given an instance of the Vertex Cover problem restricted to 3-regular connected graphs, we have
known that it can be turned into an instance of MCLP restricted to monochromatic-diamond-free graphs
with maximum monochromatic clique K4. We can assume that the monochromatic clique partition P we
find satisfies the condition that every vertex of type e1u,v is contained in K(u) or in K(v), and that there
is no vertex-clique u or v in P . Then from P we can obtain a solution Vc for the instance of the Vertex
Cover problem, in the way we discussed above. We keep using the notations P ∗ and V ∗c to denote the
optimal solutions for both problems. We have |P | = |Vc| + 3n and |P ∗| = |V ∗c | + 3n. Further, using
|P ∗| ≤ 8|V ∗c | we have 3n ≤ 7|V ∗c |.

Suppose there exists a small positive ε such that |P | ≤ (1 + ε)|P ∗|. Substituting Vc and V ∗c into the
inequality, we get |Vc|+3n ≤ (1+ε)(|V ∗c |+3n), that is, |Vc| ≤ (1+ε)|V ∗c |+3nε ≤ (1+ε)|V ∗c |+7ε|V ∗c | =
(1 + 8ε)|V ∗c |.

Therefore, we complete the proof of this lemma. 2

Since the Vertex Cover problem restricted to 3-regular connected graphs is APX-complete, we have
that MCLP is APX-hard on monochromatic-diamond-free graphs. Finally, we have the algorithm from
[24] that works out a solution with a constant approximation ratio for MCLP in monochromatic-diamond-
free graphs in which the size of a maximum monochromatic clique is bounded by a constant. Therefore,
statement (2) holds.
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4 An approximation algorithm for WMCLP
We generalize MCLP to its weighted version WMCLP. Let G be an edge-colored graph with colors `(G).
Each color c ∈ `(G) is associated with a non-negative cost w(c). Every monochromatic clique CL of G
with at least two vertices has the same non-negative cost as its color, denoted by w(CL). As any vertex
v of G is viewed as a degenerate monochromatic clique, we also assign it a non-negative cost w(v), with
w(v) ≤ min{w(c)|c ∈ `(G)}. WMCLP asks for a monochromatic clique partition such that the sum of
the costs of all cliques in the partition is minimal among all the possible partitions. Obviously, MCLP is
the special case of WMCLP in which all the costs are equal to 1.

Li and Zhang [24] presented a polynomial algorithm, denoted by Alg(clique), which was claimed to
calculate all maximal monochromatic cliques in a diamond-free graph and return a maximum one. How-
ever, their claim holds only when diamond-free is replaced by monochromatic-diamond-free. We refer
the reader to Appendix A for details.

In this paper, we use Alg(clique) as a subroutine to find all maximal monochromatic cliques in our
(ln |V (G)|+1)-approximation algorithm (Algorithm 1) for solving WMCLP restricted to monochromatic-
diamond-free graphs. In Algorithm 1, Alg(clique) is implemented from Step 2 to Step 9.

Let G be a monochromatic-diamond-free graph, and let CL1 and CL2 be two distinct maximal mono-
chromatic cliques in G. Suppose that there is at least one common edge (u, v) with color c of CL1 and
CL2. Since CL1 and CL2 are maximal, there must be at least one vertex w ∈ V (CL1)\V (CL2) and
one vertex x ∈ V (CL2)\V (CL1) such that w and x are not adjacent by an edge of color c. But then u,
v, w and x span a monochromatic-diamond in G, a contradiction. Therefore, any two distinct maximal
monochromatic cliques in a monochromatic-diamond-free graph do not share a common edge.

We note that MCLP can be considered as a variant of the Set Cover problem, in which the (possibly
exponentially many) subsets are the vertex sets of all the monochromatic cliques and vertex-cliques of the
input graph G, and the objective is to find a minimum collection of pairwise disjoint subsets covering the
vertex set of G. Hence, it is natural that our design of a greedy approximation algorithm for WMCLP is
inspired by the greedy algorithm for the weighted Set Cover problem in [7].

Theorem 4.1 Algorithm 1 runs in polynomial time and achieves the performance ratio ln |V (G)|+ 1 for
WMCLP on a monochromatic-diamond-free graph G.

Proof: In this proof, we do not distinguish between a clique and its vertex set.
First we claim that the set C contains all maximal monochromatic cliques after the execution of the

loop from Step 2 to Step 9 in Algorithm 1. Since any two maximal monochromatic cliques do not share
an edge in G, every edge belongs to one maximal monochromatic clique. Hence, we can start from the
end vertices of any edge, and find out the maximal monochromatic clique containing the edge through the
loop from Step 5 to Step 7. Then, all edges of this clique are removed from E(G). Repeating this process
until E(G) becomes empty, all maximal monochromatic cliques of G are found. The running time of the
loop from Step 2 to Step 9 is at most O(|E||V |2) = O(|V |4).

Assume that the loop from Step 11 to Step 17 is iterated r times. Let the vertex-clique or maximal
monochromatic clique picked in Step 12 at the i-th iteration of the loop be qi, for 1 ≤ i ≤ r. Let
G = G1 and Gi+1 = G1 \ {q1 ∪ q2 ∪ . . . ∪ qi} = Gi \ qi, for 1 ≤ i ≤ r − 1. The algorithm outputs
D = {qi, 1 ≤ i ≤ r} as a solution.

It is easy to prove by induction that Q contains all the vertex-cliques and maximal monochromatic
cliques of Gi+1 at the i-th iteration after the execution of Step 16, for 1 ≤ i ≤ r − 1. We denote by
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Algorithm 1 An approximation algorithm for WMCLP on monochromatic-diamond-free graphs
Input: A monochromatic-diamond-free graph G;
Output: A monochromatic vertex-disjoint clique partition D of G;

1: Let C := ∅, D := ∅;
2: repeat
3: Select an edge (vi, vj) ∈ E(G);
4: Let S := {vi, vj};
5: while there is a vertex vk which is color-adjacent to each vertex of the monochromatic clique
G[S] do

6: S = S ∪ {vk};
7: end while
8: C = C ∪ S, E(G) = E(G) \ E(S), where E(S) denotes the edges of G with both end vertices

in S;
9: until no edge in E(G).

10: Let Q := V (G) ∪ C;
11: repeat
12: Pick q ∈ Q such that the ratio w(q)/|q| is minimum, where w(q) denotes the weight of the

monochromatic clique G[q];
13: Let C ′ := ∅;
14: for all c ∈ C do

c = c \ q, C ′ = C ′ ∪ c;
15: end for
16: D = D ∪ {q}, V (G) = V (G) \ q, Q = V (G) ∪ C ′, C = C ′;
17: until V (G) = ∅.
18: return D.

Pi an optimal monochromatic clique partition of Gi and w(Pi) the cost of Pi, for 1 ≤ i ≤ r. Note
that P1 is an optimal solution of the problem. Let j be an integer such that 1 ≤ j ≤ r − 1. Let the
number of cliques in Pj be t, and Pj = {pj1, pj2, . . . , pjt}. Then P ′j = {pji \ qj : 1 ≤ i ≤ t} is a
monochromatic clique partition of Gj+1. Hence, w(Pj+1) ≤ w(P ′j) =

∑t
i=1 w(pji \ qj). Furthermore,

for each pji ∈ Pj , if |pji \ qj | ≥ 2, w(pji) = w(pji \ qj); otherwise w(pji) ≥ w(pji \ qj). Therefore,
w(Pj+1) ≤ w(P ′j) ≤

∑t
i=1 w(pji) = w(Pj).

Note that for any monochromatic clique q and q′ ⊆ q with |q′| ≥ 2, the relation w(q)
|q| ≤

w(q′)
|q′| holds.

Therefore, the clique qi picked in Step 12 at the i-th iteration has the minimum ratio w(qi)
|qi| over all vertex-

cliques and monochromatic cliques of Gi. So we have w(qi)
|qi| ≤

w(pij)
|pij | , for 1 ≤ j ≤ t. Therefore,

w(Pi) =

t∑
j=1

|w(pij)|
|pij |

|pij | ≥
w(qi)

|qi|

t∑
j=1

|pij | =
w(qi)

|qi|
|V (Gi)|,
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or, w(qi) ≤ w(Pi)|qi|
|V (Gi)| . Hence,

w(D) =

r∑
i=1

w(qi) ≤
r∑
i=1

w(Pi)|qi|
|V (Gi)|

≤ w(P1)

r∑
i=1

|qi|
|V (Gi)|

≤ w(P1)

r∑
i=1

|qi|−1∑
k=0

1

|V (Gi)| − k
= w(P1)H(|V (G)|)

≤ w(P1)(ln |V (G)|+ 1),

where H(|V (G)|) is the |V (G)|-th harmonic number. 2

To show that the above approximation ratio is tight, we present an example to demonstrate that the
approximation algorithm may find a solution with cost H(n) times the optimum, where n is the number
of vertices of the graph.

Let G be an edge-colored complete graph with vertices v1, v2, . . . ,vn. And let the cost of every vertex-
clique vi be 1

i+ε for i = 1, 2, . . . , n, where ε is a very small positive number. All edges e ∈ E(G)
have the same color of cost 1. It is not difficult to verify that Algorithm 1 finds a solution consisting of
all vertex-cliques in the order vn, vn−1, . . . , v1, with total cost

∑n
i=1

1
i+ε , and hence arbitrarily close to

H(n), whereas the optimal solution picks G directly, with cost 1.

5 MCYP is NP-complete for triangle-free graphs
We first consider several trivial cases of MCYP. Let G be an edge-colored graph on n vertices. If G is
colored with a small number of colors, say `(G) = 1 or `(G) = 2, then we can only partition G into n
vertex-cycles. When G is colored by the largest possible number of colors, that is, `(G) = |E(G)|, then
finding the minimum multicolored cycle partition of G is at least as hard as finding a Hamiltonian cycle
of G, which is well-known to be NP-hard. For `(G) ≥ 3, Li and Zhang [24] showed that MCYP is NP-
complete, even if the input graph G is diamond-free. Their proof is based on a reduction from the Exact
Cover By 3-Sets problem. We achieve a further strengthening by showing that MCYP is NP-complete,
even if the input graphs are restricted to triangle-free graphs, a proper subclass of diamond-free graphs.

Theorem 5.1 MCYP is NP-complete when restricted to triangle-free graphs.

5.1 Proof of Theorem 5.1
MCYP on triangle-free graphs is clearly in NP: a nondeterministic algorithm needs only guess a set of
cycles of the input graph, and check in polynomial time whether the cycles in the set are vertex-disjoint
multicolored cycles that cover all the vertices of the graph, and whether the number of cycles in the set is
no larger than a given positive number.

Our proof of the NP-completeness of MCYP is based on a reduction from the Minimum Set Cover
problem. In an instance of the Minimum Set Cover problem, a universe U of n elements, a collection of
subsets of U , S = {s1, ..., sm} where ∪mi=1si = U , and a positive integer k ≤ min{m,n} are given. The
question is whether there exists a subcollection C of S with |C| ≤ k that covers all the elements of U .

Suppose now that we are given an instance of the Minimum Set Cover problem, with the universe
U = {ui|1 ≤ i ≤ n} and the subset collection S = {sj |1 ≤ j ≤ m}, where ∪mi=1si = U . We construct
an edge-colored triangle-free graph G as follows.



238 Xiaoyan Zhang, Zan-Bo Zhang, Hajo Broersma, Xuelian Wen

The vertex set of G is the union of the sets Ui = {u1i , u2i } ∪ {u1ij , u2ij |1 ≤ j ≤ m}, 1 ≤ i ≤ n, and
Si = {sij |0 ≤ j ≤ n+ 1}, 1 ≤ i ≤ m.

We define the following colors for the edges of G.

1. For 1 ≤ i ≤ n, 1 ≤ j ≤ 2m+ 1, define the colors cij .

2. For 0 ≤ i ≤ n, define the colors `i.

3. For 1 ≤ i ≤ m, define the colors `i1 and `i(n+1).

4. For 1 ≤ i ≤ m, supposing the set si contains ti elements, define the colors di1, di2, . . ., di(ti−1).

The edges of G and their colors are given below.

1. For 1 ≤ i ≤ m, form the cycles CY (si) = si0si1 . . . si(n+1)si0. Assign color `i1 to edge (si0, si1),
and color `i(n+1) to edge (si0, si(n+1)). Each of the other n edges on the cycle is assigned a color
from the set {cj1 : uj /∈ si, 1 ≤ j ≤ n} ∪ {`0} ∪ {dij : 1 ≤ j ≤ ti − 1}, so that no two edges have
the same color. Note that we have exactly n colors in the color set, because ti is the number of uj’s
contained in si. We denote by P (si1, si(n+1)) the path si1si2 . . . si(n+1).

2. For 1 ≤ i ≤ n, form the cycles CY (ui) = u1iu
1
i1u

1
i2 . . . u

1
imu

2
i1u

2
i2 . . . u

2
im u2iu

1
i . Assign color `i to

the edge (u1i , u
2
i ). Denote the paths u1iu

1
i1u

1
i2 . . . u

1
im u2i1u

2
i2 . . . u

2
imu

2
i by P (u1i , u

2
i ). Assign colors

cij , 1 ≤ j ≤ 2m+ 1 to the 2m+ 1 edges of P (u1i , u
2
i ) successively.

3. For 1 ≤ j ≤ n, 1 ≤ i ≤ m, if si contains uj , join u1j and si1 by an edge and assign color `i1 to the
edge, and join u2j and si(n+1) and assign color `i(n+1) to the edge.

4. For 1 ≤ j < r ≤ n, if there exists a set si, 1 ≤ i ≤ m, containing both uj and ur, then join u1j and
u2r , and u2j and u1r , and assign color `j to the edges.

Figure 2 is an illustration of G. It is easy to verify that G is triangle-free and that the construction can be
accomplished in polynomial time.

Now suppose that G has a multicolored cycle partition P with k′ + m ≤ k + m multicolored cycles.
We list the following properties of P , which are crucial for our proof.

1. For 1 ≤ i ≤ m, the vertex si0 either forms a vertex-cycle, or is contained in the cycle CY (si)
of P , and hence we have m cycles in P , each containing one si0. To see this, suppose that si0
is contained in a multicolored cycle CY . CY must contain the edges (si0, si1) and (si(n+1), si0).
Since every edge associated with si1 has color `i1 except for the edge (si1, si2), CY must contain
(si1, si2). Similarly CY must contain the edge (sin, si(n+1)) and hence CY = CY (si).

2. For 1 ≤ i ≤ m, the path P (si1, si(n+1)) is contained in a multicolored cycle; otherwise, the vertices
si0, si1, . . ., si(n+1) must form n+ 2 vertex-cycles in P . However, we have m multicolored cycles
to cover all si0 by Property 1. Together we need at least m + n + 2 − 1 = m + n + 1 > k′ + m
cycles in P , a contradiction.

3. For any 1 ≤ i 6= j ≤ m, the two paths P (si1, si(n+1)) and P (sj1, sj(n+1)) cannot be contained in
the same multicolored cycle, since both of them have an edge of color `0.
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s10

...

...
...

... ...

s11 s1n s1(n+1) u11 u111 u121 u1m1u12 u112 u122 u1m2

uj1 uj11 uj21 ujm1uj2 uj12 uj22 ujm2

ur1 ur11 ur21 urm1ur2 ur12 ur22 urm2

un1 un11 un21 unm1un2 un12 un22 unm2

si0 si1 sin si(n+1)

sm0 sm1 smn sm(n+1)

li(n+1)

li(n+1)

lj

lj

li1

lj

lr

l0

li(n+1)

li1

li1

ln

l1l11 l0

l1(n+1)

lm1 l0

lm(n+1)

Fig. 2: The graph G constructed from an instance of the Minimum Set Cover problem, in which uj , ur ∈ si and
j < r. Labels on some edges denote the colors of the edges. We assume that the edges (stn, st(n+1)) are colored l0,
1 ≤ t ≤ m.

4. For 1 ≤ i ≤ n, the path P (u1i , u
2
i ) is contained in a multicolored cycle; otherwise, the 2m vertices

u1ij and u2ij , j = 1, . . . ,m would form 2m vertex-cycles in P . Then, there would be at least
2m+ 1 > k′ +m cycles in P , a contradiction.

5. If there is a multicolored cycle CY in P containing only vertices in ∪nj=1Uj , then CY = CY (ui),
for some 1 ≤ i ≤ n. To see this, let j0 be the smallest index such that CY contains some vertices
in Uj0 . By Property 4, CY contains the paths P (u1j0 , u

2
j0

). If CY contains some more vertices in
∪nj=1Uj , then there must be two edges joining P (u1j0 , u

2
j0

) to the other part of CY , which must
be associated with u1j0 and u2j0 . However, both edges have the same color `j0 , contradicting the
multicolored property of CY . Therefore CY = CY (uj0).

6. If sj does not contain ui, then the path P (u1i , u
2
i ) cannot be in a multicolored cycle which contains

the path P (sj1, sj(n+1)). The reason is that the first edge of P (u1i , u
2
i ) is colored ci1, while there is

also an edge of color ci1 on the path P (sj1, sj(n+1)).
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Lemma 5.2 There are only four possible kinds of multicolored cycles in the partition P , as follows.

(1) The cycles CY (si), for some 1 ≤ i ≤ m.

(2) The cycles which contain a path P (si1, si(n+1)) and several paths P (u1j , u
2
j ), where uj ∈ si for some

1 ≤ i ≤ m and 1 ≤ j ≤ n.

(3) The vertex-cycles formed by si0 for some 1 ≤ i ≤ m.

(4) The cycles CY (ui), for some 1 ≤ i ≤ n.

Proof: By Property 1, every vertex si0 must be contained in cycle kind of (1) or (3). If si0 forms a vertex-
cycle, then by Property 2 and Property 3, the path P (si1, si(n+1)) must form a multicolored cycle with
some vertices from ∪ni=1Ui in P . Furthermore, by Property 4 and Property 6, P (si1, si(n+1)) must form
a multicolored cycle with some paths P (u1j , u

2
j ), where uj ∈ si for some 1 ≤ j ≤ n. All such cycles

belong to cycle kind of (2). Finally, the cycles that contains only vertices from ∪ni=1Ui is of kind (4), by
Property 5.

2

Lemma 5.3 Given a positive integer k ≤ min{m,n}, there is a covering C ⊆ S of U with no more than
k subsets, if and only if G has a multicolored cycle partition P with k′+m ≤ k+m multicolored cycles.

Proof: SupposeG has a multicolored cycle partition P with k′+m ≤ k+m vertex-disjoint multicolored
cycles. By Property 1, there must be m cycles of the first or third kind in P , each covering one si0, for
1 ≤ i ≤ m. Let t and t′ denote the number of multicolored cycles in P of the second kind and the fourth
kind, respectively. Then t + t′ = k′ ≤ k. Every multicolored cycle of the second kind contains a path
P (si1, si(n+1)) for some si ∈ S; there are t such si’s. For every multicolored cycle CY (ui) of the fourth
kind, we can always find a subset sj in S containing ui, since ∪mj=1sj = U ; there are at most t′ such sj’s.
The subcollection of S composed of the si’s and sj’s covers U , and has at most t+ t′ ≤ k′ ≤ k elements.

Conversely, let there be a covering C of U with k′ ≤ k subsets. Without loss of generality, let C =
{s1, . . . , sk}. Let s′1 = s1, and s′i = si\ ∪i−1j=1 sj , i ≥ 2. Then s′1, . . ., s′k are k′ disjoint subsets (some of
which may be empty) whose union covers U . For every 1 ≤ i ≤ k′, if s′i 6= ∅, take a multicolored cycle
of the second kind constituted by the path P (si1, si(n+1)) and the paths P (u1j , u

2
j ) for all uj ∈ s′i. Since

∪ki=1s
′
i covers U , all vertices of G in Ui, 1 ≤ i ≤ n, are covered by these multicolored cycles. Finally

take m multicolored cycles of the first kind CY (si) or the third kind si0, covering all vertices of G that
are left. Then a partition of at most k′ +m ≤ k +m multicolored cycles for G is obtained. 2

Since the Minimum Set Cover problem is NP-complete ([14]), by Lemma 5.3, we have that MCYP
with restriction to triangle-free graphs is NP-complete.
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6 Concluding Remarks
The monochromatic clique and multicolored cycle partition problems have many practical applications in
information science and operations research. It is an important task of network optimization to understand
the structural properties of a certain data set. In this paper we obtained results on the inapproximability
and complexity of MCLP and MCYP restricted to graphs avoiding some induced subgraphs, and we pre-
sented a (1 + ln |V (G)|)-approximation algorithm for WMCLP restricted to monochromatic-diamond-
free graphs. A natural suggestion for further research is to consider possible approximation algorithms
for MCYP or its weighted version on triangle-free graphs, and alternative algorithms that might improve
the approximation ratio (1 + ln |V (G)|) for WMCLP on monochromatic-diamond-free graphs. Another
interesting direction is to study the computational complexity of similar problems, e.g., on minimum
monochromatic or multicolored path and tree partition problems, restricted to graphs avoiding some in-
duced subgraphs.
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Appendix A
This section contains an explanation to a problem in reference [24].

In Section 2 of the paper, the authors proved that the MCLP problem is NP-complete for diamond-
free edge-colored graphs where each color is assigned to at most 3 edges. They designed a polynomial
algorithm to approximate MCLP problem in a diamond-free graphG, within a performance ratio lnm+1,
where m is the size of the largest monochromatic clique in G.

However, the algorithm given actually works for monochromatic-diamond-free graphs, instead of diamond-
free graphs.

The key problem lies in the proof of Lemma 2.2 in the paper. In the lemma, it is firstly proved that
any two maximal cliques do not share an edge in a diamond-free graph. And it is assumed that when the
diamond-free graph is edge-colored, two maximal monochromatic cliques do not share an edge. However,
this does not always hold. For example, let H be an edge-colored K4 with all edges colored red but one
colored blue. ThenH is diamond-free. But the two maximal monochromatic cliques inH share a common
edge.

However, if the input graph G is monochromatic-diamond-free, we can use similar arguments as in
the proof of Lemma 2.2 to prove that any two maximal monochromatic cliques in G do not share an
edge. Furthermore, the two algorithms given in Section 2 and Theorem 2.3 are valid for monochromatic-
diamond-free edge-colored graphs, instead of diamond-free edge-colored graphs.

It is not hard to see that in the proof of Theorem 2.1, when reducing an instance of the Exact Cover By
3-Sets problem to an instance of the MCLP problem, the graphs constructed are not only diamond-free
but also monochromatic-diamond-free. Therefore, we can strengthen Theorem 2.1 as below.
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Theorem A.1 MCLP is NP-complete, even if the input graphG is diamond-free, monochromatic-diamond-
free and each color is assigned to at most 3 edges.

In the other parts of Section 2, we can replace all “diamond-free ”with “monochromatic-diamond-free ”,
and change the proof of Lemma 2.2 accordingly. In particular, Lemma 2.2 becomes:

Theorem A.2 The above algorithm can output a largest monochromatic clique for any monochromatic-
diamond-free graph G in polynomial time.

And the two algorithms given should work on monochromatic-diamond-free graphs to find an approxi-
mation solution of MCLP problem in polynomial time, with a performance ratio lnm+ 1, where m is the
size of the largest monochromatic clique in the input graph G.
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