10.46298/dmtcs.1343 Brzozowski, Janusz Janusz Brzozowski Davies, Sylvie Sylvie Davies Liu, Bo Yang Victor Bo Yang Victor Liu Most Complex Regular Ideal Languages episciences.org 2016 Computer Science - Formal Languages and Automata Theory contact@episciences.org episciences.org 2016-10-14T21:51:30+02:00 2021-08-23T23:09:16+02:00 2016-10-17 eng Journal article https://dmtcs.episciences.org/1343 arXiv:1511.00157 1365-8050 PDF 1 Discrete Mathematics & Theoretical Computer Science ; Vol. 18 no. 3 ; Automata, Logic and Semantics ; 1365-8050 A right ideal (left ideal, two-sided ideal) is a non-empty language \$L\$ over an alphabet \$\Sigma\$ such that \$L=L\Sigma^*\$ (\$L=\Sigma^*L\$, \$L=\Sigma^*L\Sigma^*\$). Let \$k=3\$ for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (\$L_n \mid n \ge k \$) of right, left, and two-sided regular ideals, where \$L_n\$ has quotient complexity (state complexity) \$n\$, such that \$L_n\$ is most complex in its class under the following measures of complexity: the size of the syntactic semigroup, the quotient complexities of the left quotients of \$L_n\$, the number of atoms (intersections of complemented and uncomplemented left quotients), the quotient complexities of the atoms, and the quotient complexities of reversal, star, product (concatenation), and all binary boolean operations. In that sense, these ideals are "most complex" languages in their classes, or "universal witnesses" to the complexity of the various operations. Comment: 25 pages, 11 figures. To appear in Discrete Mathematics and Theoretical Computer Science. arXiv admin note: text overlap with arXiv:1311.4448