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The objective of this paper is to find in a setting of n sequential observations of objects a good online policy to select the κ best
of these n uniquely rankable objects. This focus is motivated by the fact that it is hard to find closed form solutions of optimal
strategies for general κ and n. Selection is without recall, and the idea is to investigate threshold functions which maintain all
present information, that is thresholds which are functions of all selections made so far. Our main interest lies in the asymptotic
behaviour of these thresholds as n→ ∞ and in the corresponding asymptotic performance of the threshold algorithm.
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1 Introduction
The so-called secretary problem is a classical problem of optimal stopping on a sequence of rankable observations.
It is the problem of choosing the best of n rankable options appearing in random arrival order with probability
1/n! each. It was first solved by Lindley [8] in 1961. See e.g. Ferguson [7] for an interesting review. This is
the special case κ = 1 of the problem we consider here, namely to find with one stop without recall the best of
n uniquely rankable objects or options. Arguably the shortest solution to this problem is provided by the more
general odds-theorem of optimal stopping (Bruss [2]). The optimal strategy is to wait until the threshold index
s ∈ N and to accept the first relative rank 1 from s onwards (if any). Here s is defined as the largest m ∈ N such
that

∑n
j=m rj ≥ 1 where rj denotes the odds of the jth event being a candidate for stopping. If no such m exists,

then s := 1 by definition.
For the classical secretary problem rj = (1/j)/(1 − 1/j) = 1/(j − 1) because the best candidate among the

first j is the jth in chronological order with probability 1/j. The corresponding win probability is then

Vn =
s− 1

n

n−1∑
j=s−1

1

j
.

Putting s := s(n) it is well-known that limn→∞ sn/n = 1/e. Vn has the same limit as the function sn/n, namely
1/e. Interestingly, (Bruss [3]), the value 1/e is also the precise lower bound in much more general problems of
stopping with maximum probability on any last specific event. For further generalizations for the case κ = 1 see
the review by Dendievel [6].
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κ best choices

The problem of making sequentially the κ best choices, or in short the κ-best problem, is to find an efficient
stopping rule to select (all) the κ best objects online from a sequence of n objects. The study of this problem is the
main objective of the present paper. Indeed, if κ > 1 then the optimal solution as well as the limiting behaviour of
the thresholds seem difficult. Actually, one would not expect such a difficulty because one might expect a tractable
recursive structure. Some recursive structure is there, of course, but a little reflection shows that once one has
selected 1 ≤ κ′ < κ objects, the optimal continuation does not only depend κ − κ′ but also on the values of the
chosen ones. This difficulty motivated several authors before, and the present paper complements earlier results
by Vanderbei [13] and Tamaki [12] by an independent approach rather than really solving it. However, as we shall
argue, this complement has interest on its own.

The problem is mathematically interesting. We agree that there are probably not many situations in everyday
life where our model would directly fit (except for κ = 1 or κ = 2). However, we know of several people who
have tried to get answers and found the problem untractable. We felt that one should not give up and try to give at
least an (arguably) good answer.

Related work

Platen [9] studies the problem of choosing a fixed number of objects (secretaries) from a sequence of n but
his objective function is different. He thinks of the rank k as generating the cost k and considers the problem of
minimizing the sum of the cost of all selections. Notice that this is different from the problem of minimizing the
expected rank as studied by Chow et al [5] and also again quite different from our problem of maximizing the
expected payoff of one if and only if all the κ best objects are chosen, and zero otherwise. Platen also considers
more general payoff (cost) functions, but, motivated by thinking of secretary problems, limits his interest to additive
functions, which do not apply to our problem.

A more weakly related problem has been studied by Rose [10] for the case κ = 2. Rose introduces in the same
model two decision makers, one of which is defined as dominant. The objective is to select the two best objects,
the best one being assigned to the dominant decision maker. Rose considers a strategy as successful if and only
if both decision makers reach their goal under the online assignment constraint. Hence here the optimal success
probability should be (and is, as we shall see) smaller than in our problem without assignments. Note also that the
concurrent assignment constraint gives Roses’ problem quite a different character.

Another κ- choice problem was studied by Ano et al. [1] who maximise the probability of finding the best (only)
candidate with κ available sequential choices. Szajowski and Lebek [11] solve an interesting related investment
problem for κ = 2.

Wilson [15] generalizes the model of Rose for general κ, also with simultaneous online assignment of ranks.
The paper displays important optimality conditions for general κ, but closed-form solutions seem now to become
hard.

Specifically related work of Tamaki and Vanderbei

Tamaki [12] looks at the same problem for κ = 3 and shows that, interestingly, in contrast to the case κ = 1
(secretary problem) and the case κ = 2 the optimal strategy is now no longer simple. Here simple means that,
for the κ selections, the strategy waits until a threshold index sk and selects then consecutively the next k (if
possible) record candidates. Tamaki’s observation of the non-simplicity of the optimal rule for κ = 3 (and κ ≥ 3)
is important in this context because it gives additional motivation to the work of the approach presented in this
paper as well as to earlier work of Vanderbei [13] described below.

Vanderbei [13] studies the corresponding problem without online assignments with an original approach by
formulating the problem as a control problem defined on a Markov chain. An explicit solution is found for n
even and κ = n/2. The corresponding optimal win probability equals 1

n/2+1 . For general κ, this article confines
its interest to studying a simple sub-optimal solution. Thus Vanderbei studies the same problem as ours but the
approach is different. As far as we understand, Vanderbei’s sufficient condition (see the last line of [13] p.481) is
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not a sufficient condition in the set of strategies which we consider. Indeed, we need in general also information
about 2-records, 3-records, up to (κ− 1)-records, where a s-record is a candidate which is at the time of its arrival
of relative rank s. Having said this we see by Theorem 5.1 of [13] that the sufficient condition we require is implicit
by the definition of “marginal”, and the definition of the sets T and S′, so that our strategies may coincide. A closer
comparison between approaches is difficult, however, since Vanderbei’s approach leads to a difference-differential
equation (see (5.3) in [13]) whereas our approach is purely algorithmic. Without being able to say more in definite
terms, we think of our contribution as of being an attractive alternative to Vanderbei’s result and as a way of access
to a good solution for general κ.

Let us finally mention another interesting result by Vanderbei [14]. In this paper, he considers a minor variant
of this classical secretary problem. He wishes to pick not the best but the second best postdoc (the best is going
to Harvard). In this case, an explicit solution can be given both for the optimal strategy and the associated optimal
success probability. The probability of success is k0(n − k0)/(n(n − 1)), where k0 = bn/2c. Clearly, as n goes
to infinity, the probability of success tends to 1/4. Hence, it is easier to pick the best than the second best, a
phenomenon which is not only true in several other selection problems but, often enough, felt to be true in real life.

2 Algorithm
The approach to the algorithm we will propose consists of two parts: firstly, defining a suitable strategy, secondly,
computing sequentially the necessary parameters we have to plug in. We are interested in understanding the
asymptotic form of an optimal or, at least, efficient, strategy, and its corresponding value as n→∞.

The κ choices threshold strategy:
Our strategy, based on thresholds, is defined as follows:
we use κ thresholds: 1 ≤ j1 < j2 < . . . < jκ ≤ n. The way we compute these thresholds will be characterized

later on. It will turn out that there are no general closed forms for the optimum values for these thresholds.
Following Vanderbei’s terminology, we define first two kinds of candidates:

1. compulsory candidates i.e. candidates whom we must retain, given the relative ranks of the candidates we
have already chosen. For instance, if we have chosen so far ` candidates, with relative ranks 1 < 2 < . . . < `
(relative rank 1 corresponds to the best candidate seen so far, rank 2 to the second best seen so far, etc.), we
must retain any candidate with relative rank ≤ `.

2. marginal candidates i.e. candidates whose relative rank is equal to `+ 1.

According to our strategy, we first choose the first record (if any) arriving at position u1 ≥ j1. This is done for
all possible values of j1 where j1 is some index between 1 and n. We then compute for each possible position u1
an optimal threshold j2(u1) ≥ u1. The reason behind this is that we have two possibilities, namely:

1. We observe a compulsory candidate at position u2 < j2. We take this candidate and we start again the
strategy at position u2, with a new threshold j3(u2). The strategy iterates then this procedure accordingly
over the position values. At this stage it is difficult to say already more, and the details are postponed to the
beginning of Sec.4.

2. We do not observe any compulsory candidate before j2. Then, from j2 on, we retain a compulsory candidate
or a marginal candidate (if any) at position u2. We now start again the strategy at position u2, with a new
threshold j3(u2) and, as before, we iterate the procedure.

Examples
To give an example, we first define the 2-choice strategy. We define a (j1, j2)-strategy as the policy to act as

follows:

1. wait until index j1 without any action;
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2. select, from j1 onwards, the first record (if any). Thereafter instructions will split according to two possibil-
ities:

3. (a) if we select only one record value up to a certain index j2 ∈ (u1, n) then we accept a record value or
2-record value after j2,

or else,

(b) we select two consecutive records up to j2 (if any.)

For κ = 3, the definition of a (j1, j2, j3)-strategy if κ = 3 is in principle analogous but, again, it is better to
postpone the details to the beginning of Sec.4. The corresponding optimal thresholds are denoted by j∗1 , j

∗
2 , j
∗
3 .

The order of computation is backwards.
The asymptotic results for κ = 2 and κ = 3 are summarized in the following theorem:

Theorem 2.1 • With j∗1 = j∗1 (n), j
∗
2 = j∗2 (n), the optimal thresholds j∗1 and j∗2 for the case κ = 2 satisfy the

asymptotic relationship

j∗1/n→ χ∗1 = −e−1/2W (− exp(−3 + e1/2)) = 0.2291147286 . . .

where W (x) is the Lambert’s function ,

j∗2/n→ χ∗2 = e−1/2 = 0.6065306596 . . . ,

The asymptotic success probability of the (j∗1 , j
∗
2 )-strategy equals 0.2254366561 . . .

• In the case κ = 3 , the corresponding asymptotic relationships are

j∗1/n→ χ∗1 = .1666171752 . . . ,

j∗2/n→ χ∗2 = −e−1/3W (− exp(−5/2 + e1/3)) = .4369818602 . . . ,

j∗3/n→ χ∗3 = e−1/3 = .7165313106 . . . ,

and the asymptotic success probability of the (j∗1 , j
∗
2 , j
∗
3 )-strategy equals .1625200069 . . .

Our computational technique can be extended to any κ. We will illustrate the optimal thresholds computation and
analyze the performance, i.e. the success probability of our algorithm for the cases κ = 2, κ = 3.

3 The case κ = 2

Let us first compute j2(u1) ≥ u1, given u1.
As explained in Sec.1, we have two possibilities: u1 < j2 ≤ u2, or, alternatively, u1 < u2 < j2.

The probability of success of the first case is given by

n∑
u2=j2

j2−1∏
k=u1+1

(
1− 1

k

) u2−1∏
`=j2

(
1− 2

`

)
2

u2

n∏
s=u2+1

(
1− 2

s

)

=

n∑
u2=j2

u1
n

2

u2 − 2

j2 − 2

n− 1
=: u1F1(j2) say .

To see this note that after index j2, we have two possible types of candidates, a compulsory or a marginal candidate
at position u2. After u2, we must exclude any compulsory candidate.
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We note that u1F1(j2) is unimodal in j2 because u1F1(j2)− u1F1(j2 + 1) yields after a few steps of simplifi-
cation the form

1

n(n− 1)
2u1

1−
n∑

u2=j2+1

1

u2 − 2


which changes sign at most once according to the value j2.

The probability of success of the second case is given by

j2−1∑
u2=u1+1

u2−1∏
k=u1+1

(
1− 1

k

)
1

u2

n∏
`=u2+1

(
1− 2

`

)

=

j2−1∑
u2=u1+1

u1
n(n− 1)

=: u1F2(u1, j2),

with F2(u1, j2) :=
j2 − u1 − 1

n(n− 1)
.

Here we note that after u1 and before j2, we have one possible compulsory candidate at position u2. After u2,
we must exclude any compulsory candidates. u1F2(u1, j2) is clearly monotone in j2 because it is, as seen in the
last sum term, affine linear in j2. Consequently u1F1(j2) + u1F2(u1, j2) is unimodal in j2 because the sum of a
unimodal function and an affine linear function is unimodal.

Of course, F2(u1, j2) is quite simple here, but, viewing general κ, we prefer to keep the general notation.
As n → ∞, we use the Euler Maclaurin formula to replace sums by integrals (see also the continuous-time

model Tamaki [12]). Moreover, we use continuous variables u′1 := u1/n, u
′
2 := u2/n, . . .. By a slight abuse of

notations, in order to simplify our expressions, we will continue to use u1, u2, . . . as continuous time variables.
Also, to avoid any confusion, we will use the notation χk for the (continuous) asymptotic of jk/n.

Since both parts contributing to the win probability have the same factor u1, it now suffices to maximize the sum
F1(j2) + F2(u1, j2), conditioning on u1, that is we must maximize the asymptotic expression

V1(u1, χ2) :=

∫ 1

χ2

2
χ2

u2
du2 +

∫ χ2

u1

1du2 = −u1 + χ2 − 2χ2 ln(χ2). (1)

This gives χ∗2 = e−1/2 = 0.6065306596 . . ..
We note that V1(u1, χ2) can be seen as the sum of two functions ϕ1(u1) and ϕ2(χ2) namely ϕ1(u1) + ϕ2(χ2).

Since dϕ2(χ2)
dχ2

= 1− 2 ln(χ2)− 2 is monotone in χ2, the function ϕ2 is unimodal. From now on, the unimodality
will sometimes be derived in the continuous model. A plot of ϕ2(χ2) is given in Figure 1.

We must now compute j1. But we note that the first record can occur after j∗2 . It is clear from the unimodality
of ϕ(χ2), that, asymptotically, j2(u1) is then exactly given by u1. Actually

• j2(u1) = j∗2 if u1 < j∗2 ,

• j2(u1) = u1 if u1 ≥ j∗2 .

So we obtain the following success probability P (j1) = P1(j1) + P2(j1), with, on the one hand

u1 < j∗2 : P1(j1) =

j∗2−1∑
u1=j1

u1−1∏
i=j1

(
1− 1

i

)
1

u1
u1[F1(j

∗
2 ) + F2(u1, j

∗
2 )]

=

j∗2−1∑
u1=j1

j1 − 1

u1 − 1
[F1(j

∗
2 ) + F2(u1, j

∗
2 )], (2)
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Fig. 1: ϕ2(χ2)

and on the the other hand

j∗2 ≤ u1 < u2 : P2(j1) =

n−1∑
u1=j∗2

n∑
u2=u1+1

u1−1∏
i=j1

(
1− 1

i

)
1

u1

u2−1∏
`=u1+1

(
1− 2

`

)
2

u2

n∏
s=u2+1

(
1− 2

s

)

=

n−1∑
u1=j∗2

n∑
u2=u1+1

2

u2 − 2

j1 − 1

n

1

n− 1
. (3)

Note that (3) is again affine linear in j1. Therefore, if P1(j1) defined in (2) is unimodal in jj then P (j1) =
P1(j1)+P2(j1) is unimodal in j1 because the sum of an affine linear function and a unimodal function is unimodel.
However, since j1 figures in (2) both in the numerator and as the starting point of summation we cannot decide
upon unimodality of P1(j1) without being able to quantify the summands [F1(j

∗
2 ) + F2(u1, j

∗
2 )].

However, we cannot do this, that is, here the problem becomes circular. Motivated by staying in line with our
determination to keep things tractable (see also below) and to focus our interest on the asymptotic case as n→∞,
we disregard in this place the problem of unimodality for all n. (Here it is good to know that unimodality, which
is a sufficient condition for our approach to be solid, need not be necessary!)

The asymptotic total success probability is, independently of the problem of unimodality, always of interest and
readily accessible, namely

V2(χ1) = χ1

∫ χ∗
2

χ1

1

u1
V1(u1, χ

∗
2)du1 + χ1

∫ 1

u1=χ∗
2

∫ 1

u2=u1

2

u2
du2du1

= χ1

[
χ1 − 2 ln(χ1)e

−1/2 − 5e−1/2 + 2
]
.

Maximizing V2(χ1) then yields the asymptotically optimal threshold

χ∗1 = −e−1/2W (− exp(−3 + e1/2)) = 0.2291147286 . . .

where W (x) is the Lambert function, that is the solution of

W (x)eW (x) = x.
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We use its principal branch which is analytic at 0. This leads from the above to V2(χ∗1) = 0.2254366561 . . . and
the value χ∗1 is unique since V2(χ1) is unimodal in χ1. A plot of V2(χ1) is given in Figure 2.
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Fig. 2: V2(χ1)

We have compared, for n = 500, V2(χ1) with P (j1). This is shown in Figure 3 (line=V2(χ1), box= P (j1)).
This is quite satisfactory. The relative error at j∗1 is given by V2(χ

∗
1)

P (j∗1 )
− 1 = −0.0033478319 . . . .

Remark on the circular part of the problem

How good is the approximation for finite n? Here the problem is the same as above; the mentioned circular part
problem persists. We do not know, and we cannot do better because we would have to know the optimal strategy
and its precise value.

However, there are good reasons to be optimistic. The few comparisons we could do with simplified problems
(comparisons with upper bounds or lower bound stemming from problems for which we know the optimal strategy
and its value) suggest that the resulting values should not be far off the optimum. Moreover, the asymptotic
behaviour (see Fig. 3) of the values seems very nice.

Similarly, we cannot guarantee that the use of the asymptotic j∗2 is mathematically rigorous. What we can say is
that we do not see what may go wrong in doing so, and, in the worst case, our results are at least lower bounds for
the optimal success probability.

4 The case κ = 3
The strategy for general κ proceeds as follows. Assume that we are at time u ∈ [j∗k , j

∗
k+1),

• if we have already chosen k− 1 candidates or less, we select a compulsory or marginal candidate (if any) in
[u, j∗k+1);

• if we have already chosen more than k−1 candidates, we select a compulsory candidate (if any) in [u, j∗k+1).
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Fig. 3: Comparison, for n = 500 of V2(χ1) (line) with P (j1) (box).

The initial condition is the following: for u ∈ [j∗1 , j
∗
2 ), the marginal candidate is the first record, by definition.

Let us now consider the case κ = 3. We must first compute j3(u2) ≥ u2, given u2 (at this time, we have selected
the second candidate). Again, we have two possibilities: u2 < j3 ≤ u3, or, alternatively, u2 < u3 < j3.

The probability of success of the first case is given by

n∑
u3=j3

j3−1∏
s=u2+1

(
1− 2

s

) u3−1∏
t=j3

(
1− 3

t

)
3

u3

n∏
v=u3+1

(
1− 3

v

)

=

n∑
u3=j3

3

u3 − 3

n∏
s=u2+1

(
1− 2

s

)
j3 − 3

n− 2
=:

n∏
s=u2+1

(
1− 2

s

)
F3(j3) say,

Note that this expression is unimodal in j3 if and only if

g(j3) :=
3

n− 2

n∑
u3=j3

1

u3 − 3
(j3 − 3)

is unimodal in j3. This is true if

h(j) :=

 n∑
u=j

j − 3

u− 3

−
 n∑
u=j+1

(j − 3) + 1

u− 3


changes, as a function of j, at most once its sign. An easy calculation shows that

h(j) = 1−
n∑

u=j+1

1

u− 3



Sequential selection of the κ best out of n rankable objects 9

so that h(j) is monotone increasing in j.
The probability of success of the second case is given by

j3−1∑
u3=u2+1

u3−1∏
s=u2+1

(
1− 2

s

)
2

u3

n∏
t=u3+1

(
1− 3

t

)

=

j3−1∑
u3=u2+1

2

n− 2

n∏
s=u2+1

(
1− 2

s

)
=:

n∏
s=u2+1

(
1− 2

s

)
F4(u2, j3) say,

which is clearly monotone in j3. Asymptotically, from F3(j3)+F4(u2, j3), conditioning on u2, we must maximize,
with respect to the index χ3, the function

V3(u2, χ3) :=

∫ 1

χ3

3
χ3

u3
du3 +

∫ χ3

u2

2du3 = −2u2 + 2χ3 − 3χ3 ln(χ3).

Note the similarity with V1 given in equation (1). This gives χ∗3 = e−1/3 = .7165313106 . . .. Again we note that
V3(u2, χ3) has the form ϕ3(u2) + ϕ4(χ3), and that ϕ4(χ3) is unimodal in χ3.

We must now compute j2(u1) ≥ u1 given u1. But we note that the relevant position u2 can occur after j∗3 . It is
then clear, from the unimodality of ϕ4(χ3), that, asymptotically, j3(u2) is then exactly given by u2. Actually,

• j3(u2) = j∗3 , u2 < j∗3 ,

• j3(u2) = u2, u2 ≥ j∗3 .

We have now to consider the following cases:

• u1 < j2 ≤ u2 < j∗3 ,

• u1 < j2 < j∗3 < u2 < u3,

• u1 < u2 ≤ j2 < j∗3 .

This leads respectively to

P3(u1, j2) =

j∗3−1∑
u2=j2

j2−1∏
k=u1+1

(
1− 1

k

) u2−1∏
`=j2

(
1− 2

`

)
2

u2

n∏
s=u2+1

(
1− 2

s

)
[F3(j

∗
3 ) + F4(u2, j

∗
3 )]

=

j∗3−1∑
u2=j2

2

u2 − 2

u1
n

j2 − 2

n− 1
[F3(j

∗
3 ) + F4(u2, j

∗
3 )],

Note the similarity with equation (2),

P4(u1, j2) =
n−1∑
u2=j∗3

n∑
u3=u2+1

j2−1∏
k=u1+1

(
1− 1

k

) u2−1∏
`=j2

(
1− 2

`

)
2

u2

u3−1∏
s=u2+1

(
1− 3

s

)
3

u3

n∏
t=u3+1

(
1− 3

t

)

=

n−1∑
u2=j∗3

n∑
u3=u2+1

6

u3 − 3

u1
n

j2 − 2

(n− 1)(n− 2)
,

Note the similarity with equation (3),

P5(u1, j2) =

j2−1∑
u2=u1+1

u2−1∏
k=u1+1

(
1− 1

k

)
1

u2

n∏
s=u2+1

(
1− 2

s

)
[F3(j

∗
3 ) + F4(u2, j

∗
3 )]
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=

j2−1∑
u2=u1+1

u1
n(n− 1)

[F3(j
∗
3 ) + F4(u2, j

∗
3 )].

Asymptotically, conditioning on u1, we must then maximize

V4(u1, χ2) =

∫ χ∗
3

χ2

2
χ2

u2
V3(u2, χ

∗
3)du2 +

∫ 1

u2=χ∗
3

∫ 1

u3=u2

6
χ2

u3
du3du2 +

∫ χ2

u1

V3(u2, χ
∗
3)du2

= −3e−1/3u1 + u21 + 3χ2
2 + 6χ2 − 6e−1/3χ2 ln(χ2)− 11χ2e

−1/3.

This gives χ∗2 = −e−1/3W (− exp(−5/2 + e1/3)) = .4369818602 . . .. Again we note that V4(u1, χ2) has the
form ϕ5(u1) + ϕ6(χ2) and ϕ6(χ2) is unimodal in χ2.

We now compute j1. We note that u1 can occur after j∗2 . It is then clear, from the unimodality of ϕ6(χ2), that,
asymptotically, j2(u1) is then exactly given by u1. Actually now the split in the index j∗2 is given by

• j2(u1) = j∗2 , u1 < j∗2 ,

• j2(u1) = u1, u1 ≥ j∗2 .

We obviously need a concise notation for all cases we will consider (this will of course be applied to cases κ ≥ 4).
The idea is to create a bijection between the different cases and an urn model. Indeed, the adequate model here
is the Bose-Einstein urn model, that is balls correspond to chosen candidates u1, u2, . . . and urns to intervals
[jk, jk+1− 1]. We throw κ indistinguishable balls into κ ordered urns labelled 1, 2, . . . , κ. The number of possible
cases is given by

(
2κ−1
κ

)
for example 10 cases for κ = 3. We next label the balls in increasing order. Denote then

by (α1, α2, α3) the urn labels of balls (1, 2, 3). For instance, the case (1, 3, 3) corresponds to j1 ≤ u1 < j∗2 <
j∗3 ≤ u2 < u3 because it means that the arrival time u1 falls in the first urn defined by the borders j1 and j∗2 − 1
and the second and third candidate fall in the third urn with bounds j∗3 and n. The corresponding probability is
given by

j∗2−1∑
u1=j1

n−1∑
u2=j∗3

n∑
u3=u2+1

u1−1∏
i=j1

(
1− 1

i

)
1

u1

j∗2−1∏
k=u1+1

(
1− 1

k

) u2−1∏
`=j∗2

(
1− 2

`

)
2

u2
×

×
u3−1∏
s=u2+1

(
1− 3

s

)
3

u3

n∏
t=u3+1

(
1− 3

t

)
.

We will not detail the tedious, but routine computations corresponding to our 10 cases. We provide only the
final asymptotic integrals.

For this we must maximize the success probability V5(χ1) = χ1[K1 +K2 +K3 +K4 +K5] with

cases (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3) :

K1 =

∫ χ∗
2

χ1

1

u1
V4(u1, χ

∗
2)du1,

case (2, 2, 3) :

K2 =

∫ χ∗
3

u1=χ∗
2

∫ χ∗
3

u2=u1

∫ 1

u3=χ∗
3

6
χ∗3
u2u3

du3du2du1,

case (2, 3, 3) :

K3 =

∫ χ∗
3

u1=χ∗
2

∫ 1

u2=χ∗
3

∫ 1

u3=u2

6
1

u3
du3du2du1,
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case (2, 2, 2) :

K4 =

∫ χ∗
3

u1=χ∗
2

∫ χ∗
3

u2=u1

∫ χ∗
3

u3=u2

4
1

u2
du3du2du1,

case (3, 3, 3) :

K5 =

∫ 1

u1=χ∗
3

∫ 1

u2=u1

∫ 1

u3=u2

6
1

u3
du3du2du1.

Maximizing V5(χ1) leads to an equation of the type

C1χ
2
1 + C2χ1 + C3 ln(χ1) + C4 = 0,

where Ci depends on χ∗2, χ
∗
3. This equation does not have an explicit solution.

However, if we introduce a “ generalized” Lambert function W1(x, y) as being defined by

W1e
yW1+W

2
1 = x,

then we can express χ∗1 as

χ∗1 = C5W1(x, y),

x = e−C4/C3/C5,

y = C2C5/C3,

C5 =
√
C3/C1.

Numerically, this gives χ∗1 = .1666171752 . . . and the success probability V5(χ∗1) = .1625200069 . . . Again,
V5(χ1) is unimodal in χ1.

We note that the much easier problem of predicting an index from which onwards we have exactly three record
values has an optimal value of 0.22404 . . . See Bruss and Paindaveine [4], Sec. 6, equation (13):

V (`) =
``

`!e`
,

` = 3 :V (3) =
9

2
e−3 = 0.22404 . . . .

Note that the three very best coincide with the last three record values only if the absolute ranks 3, 2, and 1 appear
exactly in that order. There is a clear difference between 0.22404... and the lower bound of .1625200...we obtained
for getting the three very best under optimal play. Still, to know now that is actually not that much harder to get
the three very best is at least not evident at all.

5 Conclusion
It is in the nature of the studied problem that even asymptotic answers are already computationally involved. Still,
this provides a feasible access. Using similar simple probabilistic arguments, we can compute a set of asymptotic
thresholds and the final success probability for any κ. Further work would be to build a computer algebra system
which could mechanically compute the different cases and the corresponding asymptotic probabilities. This com-
puter algebra should bring the relevant involved functions in a sufficient tractable form to prove the unimodality
for all κ in the asymptotic continuous case. (Remember that unimodality is only a sufficient condition and perhaps
not needed.) This would be all we need to prove asymptotic optimality also for the case κ ≥ 4.

Hence there remain two interesting open problems:
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6 Open problems

PROBLEM 1: Is our procedure for finding the κ best secretaries out of n candidates optimal for all κ?

PROBLEM 2: Can this procedure be extended to the case where κ depends on n?
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