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The permutations by decimation problem is thought to be applicable to computer graphics, and raises interesting
theoretical questions in combinatory theory. We present the results of some theoretical and practical investigation
into this problem. We show that sequences of this form are O

�
n2 � in length, but finding optimal solutions can be

difficult.
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1 Introduction
One of the most fundamentals objects of combinatorics is perhaps Sn – the set of all permutations of an
alphabet of size n. This paper investigates a new problem concerning Sn - the strings containing Sn by
decimation. Decimation means that each permutation is formed by deleting entries in the string. This
investigation has focused on strings of minimal length satisfying the decimation constraint. These strings
are refered to these as being optimal solutions. Optimal solutions are not necessarily unique – for example,
the reversal of a optimal solution is also an optimal solution.

This problem is applicable to a computer graphics rendering. Abstract formulations will be presented,
followed by some simple algorithms for generating non-optimal solutions. It will be shown that the opti-
mal solution length is n2 � 2n � 4. Techniques for obtaining optimal solutions are investigated, including
exhaustive trial-and-error and Genetic Algorithm (GA) evolution of solution strings. Variations such as
alternating groups, and r-permutations of n are also discussed. Applications and related problems such as
de Bruijn sequences are presented, followed by the results of computer searches.

2 Statement of the problem
2.1 Formalization of the problem
An is the set of n elements � a � b �������	� n 
 , and Sn the set of the n! permutations of An. L � n � as the set of
solution strings containing Sn by decimation. A solution is denoted Lm, where Lm 
 L � n � and m ��� Lm � .
A string x is contained by decimation in y iff y � λ x1 λ x2 λ ����� λ x � x � λ, where xi is the ith element of x,
and λ ��� An ��� . The problem is to determine the smallest m for which Lm exists.
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2.2 DFA Formulation

The problem may also be formulated in terms of deterministic finite automata (DFA) from the field of
Computer Science[16]. DFA’s consist of finite sets of states and alphabet, and transition function for each
input character for each state. The language of a machine M, denoted L � M � are the inputs that leave M in
a valid finshing state.

Figure 1 illustrates a DFA accepting all strings containing abc by decimation. The machine begins
processing in the start state, denoted by the arrow at S1. The accepting finish state is denoted by the
double circle, at S4. Six appropriately configured DFA’s could be used to perform a decimation test for
the six permutations of three objects. The problem is to determine the shortest input string accepted by
all n! DFA’s, corresponding to each permutation of n objects. A related problem is the construction the
simplest possible DFA accepting all permutations of n objects by decimation.
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Fig. 1: State machine representation.

2.3 Optimal solution of simple cases

Denoting decimated elements with ‘ � ’, optimal solutions for n � 2 � 3:

� n � 2, L3 � aba since S2 are contained by decimation:

1. ab��� ab

2. � ba � ba

� n � 3, L7 � abcacba since S3 are contained by decimation:

1. abc��������� abc

2. a � c��� b��� acb

3. � bca ������� bca

4. � b� ac ����� bac

5. ��� ca � b��� cab

6. ��� c��� ba � cba

Exhaustive search by means of computer programs have verified that no shorter solutions exist.
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2.4 Some properties of L � n �
Properties of L � n � and Lm provided here without proof:

� �L � n � � � ∞, since Lm � x 
 L � n � , where x 
 An

� � Lm ��� n

� s1 � x � x � s2 
 L � n ��� s1 � x � s2 
 L � n � , where x 
 An and s1, s2 
 An �
2.5 Solutions of length n2

A solution may be formed by concatenating n copies of s, where s 
 Sn. Denoting ‘ � ’ as the concatenation
operator: s � s � ����� � s. Since the length of s is n, the length of solutions in this form is n2.

Solutions in this form can be shown to contain Sn by decimation. s contains all n characters, ensuring
that the o’th copy of s will cater for the o’th character of any element of Sn. This property is illustrated in
Figure 2.
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Fig. 2: Basis for solution sequence of length n2.

2.6 Solutions of length n2 � n � 1
The solution algorithm described previously may be further refined. Rather than concatenating n copies
of any s 
 Sn, any sequence of elements of Sn may be used : s1 � s2 � ����� � sn. This generalization still ensures
that Sn are contained by decimation, since each copy contains all n characters.

The flexibility allows exploitation of redundancy. Any repeated character in a solution can be regarded
redundant, since no such sequence occurs in Sn. Neighbouring blocks may be selected so that redundant
entries are introduced.

One possible scheme is to select sx and sy so that concatenations sx � sy or sy � sx introduce redundancy.
The first entry in sx should be the same as the last entry in sy, and vice versa. Examples for n � 2 � 3 :

� n � 2, sx � ab and sy � ba :

sx � sy � ab ba � aba

� n � 3, sx � abc and sy � cba :

sx � sy � sx � abc cba abc � abcbabc

As illustrated in Figure 3, n � 1 entries may be removed, resulting in a solution length of n2 � n � 1.
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Fig. 3: Basis for solution sequence of length n2 � n � 1.

3 Experimental results
3.1 Generate and test strategy
A brute-force means of finding optimal solutions is by generating every possible sequence of a particular
length and testing whether it contains all permutations by decimation. The execution time of this algorithm
is proportional to the size of the search space, and the number of decimation tests required for each
candidate.

The size of the search space is nl , where n is the number of objects, and l is the length of the candidate
solutions. The maximum number of decimation tests is n! - candidates are rejected as soon as a decimation
test fails.

The following table illustrates the cost of exhaustive search for n � 5. The explosive growth of possibile
candidates means that this approach is only useful for n � 5.

n l nl n! nln! CPU Time
1 1 1 1 1 � 0 sec
2 3 8 2 16 0.04 sec
3 7 2 � 187 6 13 � 122 0.50 sec
4 12 16 � 7M 24 403M 27 sec

3.2 Testing normalized string space
It is possible to dramatically reduce the size of the search space by taking advantage of properties of
optimal solutions. Two criteria are described here which reduce the search space without excluding any
optimal solutions.

� Normalised strings are in the form
a � a 
 � b � a � b 
 � c � a � b � c 
 � d � ���
Normalised strings have the property that no element may appear until all ‘lower’ elements have
appeared. At least one ‘a’ must appear somewhere to the left of the first ‘b’, and ‘b’ to the left
of ‘c’, and so on. Any string can be normalised by defining an appropriate one-to-one relation.
Similarly, any normalised string may be converted to n! other strings via one-to-one relations. It is
proposed that searching normalised string space is sufficient for finding optimal solutions, based on
the observation that the normalisation of any solution is also a solution. This reduces the size of the
search space by a factor of (roughly) n!.
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� Optimal solutions do contain a repetition of an object. Candidates such as ‘abba’ do not need to
included in the seach space.

Normalised with No Repeats (NNR) is defined as being the set of normalised strings containing no
repetitions. NNR may be generated algorithmically as follows:

Inactive List = { a,b,c,... }
Active List = {}
Initial Sequence = {}

GenerateNNR(inactive,active,sequence)
{

if sequence length is L,
output sequence

otherwise
if inactive list length is non-empty

pop X from inactive list
push X to active list
GenerateNNR(inactive,active,sequence+X)

if active list length is non-empty
for each X in active list

if X is not last element of sequence
GenerateNNR(inactive,active,sequence+X)

}

The following table illustrates the size of the NNR search space in comparision to the naive search
space. This provides a feasible search space for n � 5, an incremental improvement at best.

n l nl NNR CPU Time
1 1 1 1 0.00 sec
2 3 8 1 0.00 sec
3 7 2 � 187 31 0.07 sec
4 12 16 � 7M 28,501 1.69 sec
5 19 2 � 1013 3 � 109 18 hour

3.3 Genetic Algorithm approach

Based on an abstract model of biological evolution, the Genetic Algorithm[4][9] (GA) is a general adaptive
search technique. A population of candidate solutions are evolved under selective pressure towards better
solutions. This selective pressure often takes the form a fitness function (or objective function). Genetic
operators such as sexual reproduction and mutation are applied to produce subsequent generations of
candidates.

A GA for this problem has been implemented, using the GAlibrary C++ Genetic Algorithm Library by
MIT. The GA is configured as follows:
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� The fitness function defined as being the number of elements of Sn contained by decimation.

� The size of candidates is kept constant.

� The built-in genetic operators of crossover and mutation are used.

� Elitest selection strategy.

This approach has been found to useful for finding solutions for any n. Several issues were considered,
regarding GA application to this problem:

� The discrete fitness function is a problem when many equally fit solutions exist in the population.
It is not clear whether a continuous or less granular fitness function can be formulated. One idea
would be to penalise longer-living candidates.

� It appears to be more efficient to evolve a large population of equally fit candidates than to breed
more intensively from a smaller pool. This implies an elitest selection strategy that retains a per-
centile of candidates for the next generation.

� Some characterisation of the search space would be expected to improve the tuning of the GA
search. It is not clear, for example, whether every candidate of a particular fitness is of equal
‘distance’ from being a solution. Also, it is not clear whether global maxima are located in the
vicinity of local maxima.

� Careful tuning of the configuration can improve the rate of convergence of the GA. This is a
painstaking process, and it seems that a meta-GA could be used for this purpose.

Some results produced by the GA are as follows:

n length P G s
2 3 ?? ?? aba
3 7 ?? ?? abcabac
4 12 200 � ? � 19 abdcabdacdba
5 19 500 57 acbedacbeadcbaecdab
6 28 1000 102 badce f bdaecb f eadbce f abdace f b

where P is the number of agents of the population at each generation, G is the number of generation
needed to obtain the string s �

4 Generation of solutions
4.1 Optimal solutions
Theorem : A minimal normalized string containing by decimation the elements of Snhas the following
pattern :a � n 
 a � n � 1 
 a ����� a � n � 1 
 a � n 
 a, where the gaps � n 
 and � n-1 
 are filled by repeating the string
bcd...nbcd...n until is possible.

First minimal normalized strings are : a, aba, abcabca, abcdabcadbca, abcdeabcdaebcadebca.
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Lemma : For n � 4 the minimal normalized strings for one, two and three letters are : a, aba and
abcabca. The same pattern as those described by the theorem.

Proof: Exhaustive computation on the normalized strings.

Proof of the theorem by induction
For n � 4, we use the minimal strings of the lemma. For n � 3, we use the following algorithm to

construct minimal strings : at first we take the string Pn � 1 then we put as a prefix the string abcd ����� n and
after we put in the radical n � 3 times the letter n just after the letter n � 1.

1 letter , P1 of length 1 : a
2 letters, P2 of length 3 : aba
3 letters, P3 of length 7 : abcabca
4 letters, P4 of length 12 : ��������� a � bcda ��� bcad ��� bca
5 letters, P5 of length 19 : ����������� abcdea � bcdae � bcade � bca
6 letters, P6 of length 28 : abcde f abcdea f bcdae f bcade f bca

All the Pk for k � n are minimal strings containing by decimation the elements of Sk. Now we construct
our Pnwith the previous method and we consider the n different classes of permutations : n ��������� ��� n �����
� �	��� n ���
������� n ��� �������
� n � ���
���
��� n. All the permutations of the first class are obviously contained
by Pn because if we delete the letters n of the radical of Pn we obtain Pn, and we know that it is optimal.
All the permutations of the second class are obviously contained by Pn because the prefix contains the
n � 1 letters and the remain contains obviously the n � 2 letters of the permutation and this is also optimal
by construction. For this two classes we used the first occurrence of the letter n which is at the end of the
prefix. For the next classes ��� n �
�
� � ����� if it is necessary we use the second occurrence of the letter n and
so on. For the last class of permutation ��������� n we use the last occurrence of the letter n because after
this letter we have only bca which is replaced at the beginning by the prefix abcd ����� n so this class is also
contained by decimation in Pn.

So starting with Pn � 1 which is a minimal string we put the optimal prefix abcd ����� n in the set of normal-
ized strings and at the end we use n � 3 times the letter n which is also optimal.

Corollary : For n � 3 we have Card � Pn � � n2 � 2n � 4.

Proof : By construction for n � 3 we have :
Card � Pn � � n � Card � Pn � 1 � � n � 3 and P4 � 12.

5 Origins, Applications and Related problems
5.1 The border crossing problem
A traveller intends to travel from Portugal to Germany via Spain and France. At each border crossing,
they must present the appropriate paperwork to the guard, in order to be allowed to continue their journey.
Unfortunately, the traveller can only understand English, and does not know which document should be
offered to each guard. They are also too distracted to remember which document had been accepted at
previous check-points.
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The traveller holds three documents, for entry into Spain, France in Germany. What is the optimal
sequence of presentation of documents in order to travel from Portugal, to Spain, to France, and finally
Germany? The solution is SFSGSFS, a sequence which contains every permutation of the three documents
by decimation.

5.2 Application to Computer Graphics
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�

�

��� � ���

Fig. 4: Trickle Algorithm Surface Sorting.

Three dimensional computer graphics is generally concerned with the formation of an image relating to
a three dimensional model. One stage of this process is determining the visible surface for each pixel on
the screen. There are several known methods of solving this problem, which can be considered as kinds
of sorting algorithms. Sometimes a complete ordering is required, while in others only the closest surface
is required. The Z-buffer algorithm is one well known solution this problem.
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Fig. 5: CSG Algorithm based on sequence of subtractions.

A central problem in CSG and solid modelling is determining the surfaces satisfying volumetric con-
straints. This may be resolved either on an object or pixel basis. Image-space approaches use per-pixel
classification of surfaces with respect to volumes to determine visible surfaces[15]. A solid modelling
operation may be formulated in terms of volumetrically subtracting a number of convex volumes from
a convex volume. The image is formed by volumetrically subtracting each volume in sequence. The



On Minimal Strings Containing the Elements of Sn by Decimation 173

Trickle[2] algorithm sorts subtracted volumes from front to back, as illustrated in Figure 4. An alternative
is to subtract in a sequence that caters for any ordering of volumes, from front to back, as in Figure 5.
This sequence is equivalent to one containing Sn by decimation. In Figure 5, subtracting in the sequence
aba ensures a correct result, regardless of the ordering of the volumes.

5.3 Alternating Groups

A variant of the problem is to find minimal strings containing An by decimation. An is the alternating
group, the group of even or odd permutations. The reader is referred to Conway[1] and Kargapolov[8] for
the definition and properties of An. Computer programs have found the following solutions for the even
alternating group:

n length solution optimal
1 1 a yes
2 2 ab yes
3 5 abcab yes
4 10 abcdacbdac yes
5 17 abcdeabcdaecbdaec yes
6 26 acbde f cabedc f badecb f daceb f unknown
7 38 abdce f gbacedb f cagebdac f bgaedcba f gdecba unknown

5.4 Related Problems

The binary de Bruijn sequence is the sequence of 2n bits a1a2 ����� a2n such that each binary string of size n
is somewhere in the string s, contiguously. These sequences have been called Ourobourean Rings by Ian
Stewart[14]. The word Ourobouros comes from an ancient Egyptian representation of a snake swallowing
its tail and is has a particular meaning in ancient alchemical works. Generalising this definition, we are
concerned with n-ary sequences whose elements are drawn from the alphabet � 0 � 1 �������	� n � 1 
 � A n � ary
de Bruijn sequence of span v is cyclic sequence of length nv such that every possible v-tuples occurs
precisely once in a period of the de Bruijn sequence, as a contiguous part. For example, a 2 � ary de
Bruijn sequence of span 2 is 010.

A problem that can be solved with Ouroborean Rings is the Baltimore Hilton Inn problem[3]. A cipher
lock system uses a 4 digit code to allow access. Assuming that the code consists of digits from 0 to 9,
there are 104 possible codes for the lock. An attacker may try every possible combination, requiring 4 � 104

keypresses, or 2 � 104 on average. But since the lock opens whenever the correct code is the last 4 digits,
fewer keypresses are required. The best sequence of attack is the Ouroborean ring associated with the
lock. (Length?)

These sequences are called full length nonlinear shift register cycles by Fredricksen[3]. The first solu-
tion was offered by Flye-Sainte Marie in the last century[10]. An important application of the Ouroborean
rings is the generation of pseudo-random binary sequences of maximal length[6]. Other applications have
a long history[14],[3].
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6 Results

6.1 Length of Optimal Solutions

The length of the shortest known solution for each n is presented in the following table:

n 1 2 3 4 5 6 7 8 9

Sn 1 3 7 12 19 28* 39* 52* 67*
An 1 2 5 10 17 26* 38*

6.2 r-permutation Optimal Solutions

A variation of the problem is to find strings containing r-permutations of An. That is, permutations of r
selections from An. The following table contains the length of the shortest known solution for each n and
r.

n 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 3 5 7 9 11 13 15* 17*
3 7 10 13 16 19* 22* 25*
4 12 16 20* 24* 28* 32*
5 19 24* 29* 35* 40*
6 28* 35* 41*
7 39*
8 52*
9 67*

6.3 Optimal Solutions

Solutions that are known to be optimal are listed here in normalised form.

n l solution

2 3 aba
3 7 abcabac

abcabca
abcacba
abcbabc
abcbacb
abacaba
abacbab
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n l solution

4 12 abcdabcadbac
abcdabcadbca
abcdabcadcba
abcdacbadbca
abcdacbadcab
abcdacbadcba
abcdbacbdabc
abcdbacbdacb
abcdbacbdcab

5 19 abcdeabcdaebcadbcea
6 28 abcde f abcdea f bcdae f bcade f bca
7 39 abcde f gabcde f agcdbea f gdcbaegdc f abcde f ga
8 52 abcde f ghabcde f gahcd f beagcd f bhae f gdcbahedc f gabcde f gha
9 67 abcde f ghiabcde f ghaibcde f gahibcde f aghibcdea f ghibcdae f ghibcade f ghibca

7 Conclusion and Further Work

7.1 Conclusion

The problem of sequences containing permutations by decimation has been defined and investigated. The
lower bound for the length of solutions has been found to be n2 � 2n � 4 for n � 3. Some methods of
searching for solutions by means of computer software have been investigated, including use of a genetic
algorithm. Some optimal solutions for 1 � n � 9 have been found. An algorithm for generating sub-
optimal solutions of length n2 � n � 1 has been presented.

7.2 Further Work

We believe that there is scope for further investigation of several issues in relation to the permutations by
decimation problem.

Characterisation of the search space could improve methods of finding optimal solutions. The distribu-
tion or structure of solutions throughout the search-space is only vaguely understood. Also, it is not known
how the number of objects affects the number of unique solutions, or the probability that a neighbourhood
contains one.

The robustness and performance of the Genetic Algorithm search could certainly be improved, by
considering features of the search space and optimising GA parameters. A meta-GA design, allowing
dynamic optimisation of the search is one proposed improvement. There are many other variations to the
manner in which the GA may be configured, few of which have been invesigated.

It is anticipated that application to the problem of CSG rendering [15],[5],[2] will be the major area of
work resulting from this research.
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