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In this paper we consider two classes of lattice paths on the plane which use north, east, south, and west unitary
steps, beginning and ending at (0,0). We enumerate them according to the number of steps by means of bijective
arguments; in particular, we apply the cycle lemma. Then, using these results, we provide a bijective proof for the
number of directed-convex polyominoes having a fixed number of rows and columns.
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1 Introduction

In the plane Z x Z the following four types of steps are taken into consideration: north steps, (0,1),
east steps, (1,0), south steps, (0,—1), and west steps, (—1,0). Let C denote the set of all lattice paths
which use north, east, south, and west steps, beginning and ending at (0,0) (see Fig. 1 on page 2). Each
path belonging to C has an even number of steps; for n > 0, let (2, denote the set of paths in ¢ having 2n
steps. In this paper we will give a bijective proof that the cardinality of (2, equals, for n > 0,

2n\ 2
(%) @
Let CT (G5, resp.) denote the subset of C (Con, resp.) whose paths remain weakly above the x-axis (see
Fig. 2 on page 2). The path set C* was originally studied in [2], where the authors proved, for n > 0,

()

This result has been considered further by Guy, Krattenthaler, and Sagan in [8] and by Sulanke in [13].
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Fig. 1: A C path with 26 steps.
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Fig. 2: A C* path with 22 steps.

We prove this statement bijectively by applying the well-known cycle lemma, originally introduced in [6],
and then rediscovered and applied many times as in [5] and [10]. In particular our proof first shows

2
2n+1 1 (2n+1) 7 n>0. 3

- '~ - _ -
|Canl = (n+1)2|c2n| 2n+1\ n

It is then straightforward to show that the formulas of (2) and (3) agree.

In the last part of the paper we consider the class of directed-convex polyominoes and the class of
parallelogram polyominoes, each having n+ 1 columns and n+ 1 rows. Narayana [9] was the first to
show, in essence, that the number of parallelogram polyominoes having n+ 1 columns and n+ 1 rows
is equal to the number in (2). Chang and Lin [3], and later Bousquet-Mélou [1, p.111], proved that the
number of directed-convex polyominoes having n+ 1 columns and n+ 1 rows is equal to the number
in (1). In this paper we give a combinatorial proof of the previous statements by establishing bijections
defined on the classes ¢t and C.
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2 About cycles of 2-colored Motzkin paths

The 2-colored Grand Motzkin paths are lattice paths that begin and end on the x-axis and use the rise
step, (1,1), the fall step, (1,—1), and of two types of horizontal steps, (1,0), namely the a-colored and
[3-colored horizontal steps. It is easy to show that the cardinality of the set of 2-colored Grand Motzkin
paths running from (0,0) to (n,0) is the central binomial coefficient, (Zn”) The 2-colored Motzkin paths
are Grand Motzkin paths that remain weakly above the x-axis. The number of 2-colored Motzkin paths of
length n is well known to equal the (n+ 1)th Catalan number, [12, p.219].

/ rise step
N fal step

— a-coloured step

B-coloured step

Fig. 3: A 2-colored Motzkin path with 20 steps.

We will call a 2-colored Grand Motzkin path having the same number of a and {3 steps, a cycle. This
name is suggested by the simple bijection between (2, and the set of Grand Motzkin paths having length
2n that is achieved by the following coding:

S — —_— > -----

Fig. 4: The step transformation of paths of (>, into cycles of length 2n.

For example, the cycle represented in Figure 5 corresponds to the path of Fig. 1 on page 2.

Fig. 5: A cycle having length 26.
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Lemma 1 The number of 2n-length cycles is equal to the central binomial coefficients squared,
2n\ 2
. 4
(%) @
Proof. To prove our claim, we will establish a correspondence between the cycles of length 2n and Grand

Dyck paths of length 4n decomposable as pairs of Grand Dyck paths of length 2n. Let us consider a cycle
of length 2n. We code each step of this cycle with a vector 2 x 1:

( (l) ) for a rise step, ( (1) ) for a fall step,
1 . 0 .
( 1 ) for an a-horizontal step, ( 0 ) for a B-horizontal step.

Therefore, we can represent the cycle by a 2 x n matrix simply by concatenating the n vectors correspond-
ing to its steps. For example, the cycle of Fig. 5 on page 3 can be represented by the matrix:

11 00111000O0O0°0
101111010001/
Moreover, if we code a rise step by 1 and a fall step by 0, then each row of the matrix is a Grand Dyck

path. The concatenation of these two paths gives a Grand Dyck path of length 4n. The previously defined
transformation can be simply inverted. |

0 00O 01 11
0011 01 11

oK
e

011 1
0 0O 0

Fig. 6: The Grand Dyck path corresponding to the cycle of Fig. 5 on page 3.

Let us now examine the set of positive cycles, that is, the set of cycles that remain weakly above the
x-axis. The coding of Fig. 4 ensures us that each path of C,, corresponds to a positive cycle of length 2n.
For example the path in Fig. 2 on page 2 corresponds to that in Fig. 7.

We now combinatorially prove that the number of positive cycles with 2n steps is equal to

2
2n+1 1 (2n+1> ’ n>0. 5)

+ | —
|C2n|—(n+1)2|C2n|—2n+1 n

(We leave the simple analytical proof of (5) to the reader.) Let X2n..1, n > 0 denote the class of paths using
the same steps as the 2-colored Motzkin paths, having the same number of a-colored and [3-colored steps,
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Fig. 7: The positive cycle corresponding to the path in Fig. 2 on page 2.

and running from (0,0) to (2n+1,1). For any path in this class, the number of rise steps exceeds the
number of fall steps by one unit. The same arguments used to prove Lemma 1 will convince the reader
that

2n+1\2
pamal = (1) ©

To have the desired proof of (5) it is sufficient to show
[Xons1| = 20+ 1) [ G- @

The proof of (7) will be neat application of the cycle lemma, as recorded in [7]:

Lemma?2 If < x1,X2...,Xm > is any sequence of integers whose sum is 1, then exactly one of the cyclic
shifts < X1,X2...,Xm >, <X2...,Xm,X1 > ... <Xm,X1---,Xm-1 > has all of its partial sums positive.

In the sequel we will also represent the paths of X2n+1, s (2n + 1)-vectors, obtained by encoding each
rise step with 1, each fall step by —1, each a-colored horizontal step with 2, and each (3-colored horizontal
step with —2. For an arbitrary path P € Xan1, let v(P) denote its vectorial representation.

Since there are (2“n+1)2 paths of Xony1, Lemma 2 implies that exactly 1/(2n + 1) of these paths have a
vectorial representation with all partial sums positive (see Fig. 8 on page 6). Let Jon.1 denote the set of
those paths. We next establish a direct bijection between the positive cycles of length 2n and paths of
Jon+1, thus obtaining (7).

Let P be a positive cycle of length 2n. Moreover, let A be the rightmost point belonging to P such that
the partial sums of the vector v(P) assume the lowest value, say a, —a < 0. Then P can be decomposed in
two sub-paths, L and R, on the left and on the right of A, respectively (see Fig. 9 on page 7). It should be
clear that the vector v(R) has all partial sums positive. We consider the new path P’ formed by transposing
the paths L and R, and adding a rise step between them. We will prove that P’ € Jont1, that is, the vector
v(P’) has all partial sums positive. Let v(L) and v(R) be the vectors encoding L and R respectively. Surely,
the sum of the integers of v(P’) is equal to 1. Suppose that there is a prefix q of v(P’) such that g’s sum is
equal to 0. For the previous considerations g must contain strictly v(R), thus g = (r1,...,rx,1,51,...,5h),
ri,si € {0,1}, v(R) = (ra,...,rx), and h > 1. Therefore, since r1 +...+rc=a> 0 (a= 0 if and only if
v(R) is empty), we must have 1451+ ...+ Sy = —a, and then s + ... +s, = —a— 1. Finally, the vector
s = (s1,...,5h) represents a prefix S of L, such that v(S) = —a — 1, contradicting our initial hypothesis.
Then P’ € Jony1.

The previously defined bijection can be easily inverted as follows: given a path P’ in Jon4 1, let B be P’
rightmost point having the lowest ordinate. The point B divides P’ in two sub-paths, U and V, on the left
and on the right of B, respectively. Let V' be the path obtained from V by deleting the initial rise step, and
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Fig. 8: The cyclic shifts of a path in Xon41 and the the partial sums of the corresponding vectors.

P the path obtained by transposing the paths U and V’; namely, P =V'U. Clearly, P is a positive cycle.
Figure 10 on page 7 shows the bijection between the 3 positive cycles of length 2 and the 3 paths of Js.

3 Bijective results on directed-convex polyominoes

A polyomino is a finite union of elementary cells of the lattice Z x Z, whose interior is connected. Most
of them can be defined by combining two notions: convexity and directed growth. A polyomino is said
to be vertically convex when its intersection with any vertical line is convex. We can define similarly a
notion of horizontal convexity. A polyomino is convex if it is both vertically and horizontally convex. A
polyomino P is said to be directed when every cell of P can be reached from a distinguished cell, called
the root, by a path which is contained in P and uses only north and east unitary steps. A polyomino is
directed-convex if it is both directed and convex (see Fig. 11 (a) on page 8).

A parallelogram polyomino is a polyomino whose boundary consists of two lattice paths that intersect
only initially and finally. The boundary paths, which we call upper and lower path, use the positively
directed unit steps, (1,0) and (0,1) (see Fig. 11, (b) on page 8). Chang and Lin [3], and later Bousquet-
Mélou [1, p.111] used analytic methods to prove that the number of directed-convex polyominoes and the
number of parallelogram polyominoes having g rows and p columns are equal to, respectively,
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Fig. 9: A positive cycle and the corresponding path of Jopy1.
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(The second formula is originally due to Narayana, [9].) In particular, for polyominoes having n+ 1
rows and n+ 1 columns, these formulas reduce to

(2nn>2 10)

Fig. 10: The bijection between the positive cycles of length 2 and Js.
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n+1 n+1

n+1 n+1

(a) (b)

Fig. 11: (a) A directed convex polyomino; (b) a parallelogram polyomino.

1 [/2n+1\?
2n+1( n )’ (11

respectively, that is the numbers in (1), and (2). Let us denote by D\, the class of directed-convex
polyominoes having n rows and n columns and by PP, the class of parallelogram polyominoes having n
rows and n columns. We will reprove (10) this time by simply establishing a bijection between the class
DCnyt1 and 2n-length cycles. Similarly, we will reprove (11) by establishing a bijection from PPy to
the class of positive cycles of length 2n. For this purpose, we define an auxiliary class Hy, of prefixes of
positive cycles, having length 2n, having an equal number of a and (3-colored horizontal steps, and having
a final point with an even ordinate, say 2h, h > 0.

n+1

-->

.
=1

I
v
=
Y
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T
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Fig. 12: A directed convex polyomino and its boundary paths.
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The bijection between D1 and Hn.  Consider a polyomino P € D(C1. Let (k,k) denote the right-
most point on P on the diagonal running from (0,0) to (n+1,n+ 1). We remark that each polyomino P
is uniquely determined by its boundary paths, the upper, say u, and the lower, say I, running from (0,0)
to (k,k) (see Fig. 12), each path consisting in 2n unit steps belonging to {(1,0),(0,1),(-1,0),(0,—1)}.
Moreover, by considering the scheme of Fig. 12 on page 8, one can see that each boundary path can be
represented by means of a binary array of 2n-elements where 0 represents the steps (1,0) and (—1,0) and
1 the steps (0,1) and (0,—1). It follows that the polyomino P can be represented by a 2 x n binary matrix,
where the first row corresponds to the upper boundary path and the second corresponds to the lower one.
For example, the polyomino of Fig. 12 on page 8 can be represented by the matrix:

1 01 0 01
1 00 10 1)

We wish to point out two properties of the upper and lower paths, u and I:

1 0 0
1 1 0

o -

1 1 111
0 0 0 00

o -

1. for every prefix s of u and every prefix v of I, having the same length, we have |s|; > |v|;, with | j|;
defined as the number of occurrences of 1 in j;

Besides, the matrix can be viewed as an array of n vectors 2 x 1. Then, it is possible to represent it as
path P’ belonging to Hp, and whose final point ordinate is equal to 2k, by means of the coding defined for
the cycles in the proof of Lemma 1. For example, Figure 13 represents the Hy, path corresponding to the
polyomino in Fig. 12 on page 8.

Fig. 13: The Hy, path corresponding to the polyomino in Fig. 12 on page 8.

It should be clear that this mapping from directed-convex polyominoes having n+ 1 rows and n+1
columns to the paths of Hy, can be easily inverted. In the special case that P is a parallelogram polyomino
we have |u|, —|l|; = 0; that is, we have the desired correspondence between parallelogram polyominoes
and positive cycles (see Fig. 14 on page 10). We wish to point out that the last bijection is a special case
of a classical bijection between parallelogram polyominoes of perimeter 2n + 4 and 2-colored Motzkin
paths of length 2n [4].
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Fig. 14: A particular case of the bijection is the restriction to parallelogram polyominoes and positive cycles.

The bijection between Hy and 2n-length cycles. Let P’ be a path in H, and let 2k, k > 0, be its final
point ordinate. If k = 0, then P’ is a positive cycle. Otherwise, for every i =0, ...,k — 1 we consider the
vertical side of unitary length (2n,i),(2n,i+ 1). We then draw a horizontal ray to the left from the center
of this side. There are k such rays. Each ray hits for the first time a rise step in P’. We modify P’ by

Fig. 15: The cycle corresponding to the Hy, path in Figure 14.

changing the steps that are hit to fall steps. In this modified path the number of rise step is trivially equal
to the number of fall steps, thus we have obtained the desired cycle (see Fig. 15 on page 10).
This mapping is inverted as follows (see Fig. 16 on page 11). Let Q be a 2n-length cycle and let

—h, h > 0 be the ordinate of the lowest point of Q. From each of the points (0,—%), (0,-1— %), .

(0,-h+1- %), we draw a ray to the right until it hits Q, necessarily at a fall step. Let Q' be the path
obtained from Q in which each hit step is changed to a fall step. The path Q' € Hy, and its final point
ordinate is equal to 2h.

4 Conclusions

In this paper we essentially described:

1. the correspondence among the class of lattice paths using north, south, east, and west steps, begin-
ning and ending at (0,0); the class of 2-colored Motzkin paths having the same number of a and
[3-colored steps; and the class of directed-convex polyominoes having the same number of rows and
columns. That correspondence leads to a combinatorial interpretation of the numbers in (1);

2. the correspondence among the class of lattice paths using north, south, east, and west steps, begin-
ning and ending at (0,0) remaining weakly above the x-axis; the class of 2-colored Motzkin paths
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Fig. 16: From a 2n-length cycle to a Hy, path.

having the same number of a and 3-colored steps, remaining weakly above the x-axis; and the class
of parallelogram polyominoes having the same number of rows and columns. That correspondence
leads to a combinatorial interpretation of the numbers in (3).

We observe that it is possible to generalize the correspondences 1. and 2. to

1. the class of lattice paths using north, south, east, and west steps, beginning at (0,0) and ending in
(p—9,0), p,q € N, made by p+ q— 2 steps, (resp. the paths remaining weakly above the x-axis);

2. the class of 2-colored Motzkin paths of length p+q— 2, such that the difference between the number
of a and -colored steps is equal to p — q (resp. the paths remaining weakly above the x-axis);

3. the class of directed-convex polyominoes having p rows and g columns (resp. the class of parallel-
ogram polyominoes having p rows and g columns)

thus giving combinatorial proofs of the formulas (10) and (11).
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