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Singularity analysis via the iterated kernel
method

Stephen Melczer and Marni Mishna†‡

Department of Mathematics, Simon Fraser University, Burnaby, Canada

Abstract We provide exact and asymptotic counting formulas for five singular lattice path models in the quarter plane.
Furthermore, we prove that these models have a non D-finite generating function.

Résumé Nous présentons des résultats énumératives pour les cinq modèles de marches dans le quart de plan dites
“singulière”. Nous prouvons que ces modéles sont non-holonome.
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1 Introduction
The study of lattice path models restricted to the quarter plane has led to some useful innovations in
enumeration, including applications of boundary value methods [8, 9, 12], powerful and widely applicable
variants of the kernel method [5, 7, 14] and some original computer algebra approaches [3]. In addition
to purely enumerative results, there are also results on asymptotic enumeration and the nature of the
generating function: either rational, algebraic, transcendental D-finite(i), or other.

A key observation of Bousquet-Mélou and Mishna was that lattice path models with small steps re-
stricted to the quarter plane appeared to be naturally partitioned according to the nature of their generating
functions: specifically, they conjectured a test for whether or not the generating function of a given model
would satisfy algebraic or linear differential equations. This property is often correlated to other, more
combinatorial, qualities of a model. Of the 79 non-isomorphic models, 23 are well studied with D-finite
generating functions, 51 are highly suspected to be non D-finite – Bostan et al. proved the excursion
(walks returning to the origin) generating functions are not D-finite [4], and Kurkova and Raschel proved
that the trivariate generating functions marking endpoint [12] are not D-finite. The remaining 5 models are
called singular, and resist both these strategies. Two of these models had been previously considered [14],
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(i) A univariate series is D-finite if it satisfies a linear differential equation with polynomial coefficients. Additionally, a series is
D-finite if and only if its analytic continuation is D-finite.
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where their univariate generating functions were proven to be non D-finite. We apply this strategy, a rel-
atively direct application of the iterated kernel method, a technique modelled on the work of Janse van
Rensburg et al. in [10], and Bousquet-Mélou and Petkovsec [6] to the final 3 models.

Specifically, the present work proves that the remaining cases are not D-finite (and we note a small
correction to the cases already proven). From the method, it is straightforward to determine explicit
generating function expressions and asymptotic counting information, in the process identifying many
potential singularities for each generating function. In each case, we show that the number of singularities
is infinite, and far enough away from the dominating pole that they do not affect the first order asymptotics.
The key difficulty here, as was the case in [14], is the justification that these singularities are true poles
and are not somehow canceled by some quirk of the expression. This is significant because a D-finite
function has a finite number of singularities, and so such a demonstration is a proof of non D-finiteness of
the generating function. In the course of our proofs we revisit some older theorems on polynomials that a
reader faced with a similar problem may find useful.

In summary, for each of the five singular models we take a unified approach to prove formulas for
asymptotic enumeration and determine an explicit expression for the generating function, information
which cannot be determined using other known methods. In addition, we prove that the (univariate)
counting generating functions are not D-finite. This extended abstract presents the main results, and we
we refer the reader to [13] for a completed manuscript.

1.1 The family of singular models
A lattice path model is defined by a set of vectors – the allowable directions in which one can move
along the lattice of non-negative integers. We are particularly interested in models which permit only
“small” steps, that is, the steps are contained in {0,+1,−1}2. We use the notation NW ≡ (−1, 1), N ≡
(0, 1), NE ≡ (1, 1), etc. The family of singular models consists of the following five models, each given
with two different representations:

A = = {NW,NE, SE} B = = {NW,N,E, SE} C = = {NW,N,NE,E, SE}

D = = {NW,N, SE} E = = {NW,N,NE, SE}

Models A and D are the two models considered by Mishna and Rechnitzer, and their strategy, known
as the iterated kernel method, applies to all of these models. Note that the present work corrects an
error found in [14], which does not substantially change the the stated results but which does imply some
additional manipulation for the proof.

For each model S ∈ {A,B, C,D, E} we address the following:

¬ What is the number Sn of walks of length n in the model?

­ How does Sn grow asymptotically when n is large?

® Is the generating function S(t) =
∑
n Snt

n D-finite?

The next section describes how to obtain generating function expressions. This is followed by the
asymptotic analysis and non D-finiteness proofs for the symmetric models. We conclude with a summary
of the analysis of the asymmetric models.
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2 An explicit expression for the generating function
2.1 The functional equation and its kernel
Our central mathematical object is the multivariate generating function Sx,y(t) =

∑
i,j,n sij(n)xiyjtn,

where sij(n) counts the number of walks of length n ending at the point (i, j) with steps from S.
(Throughout, S is our generic step set.) Our goal is to determine properties of S(t) ≡ S1,1(t), the
generating function for the number of walks in the plane.

For each of the five step sets, we associate a polynomial called the kernel; for the step set S, define

KS(x, y) = xy − txy
∑

(i,j)∈S

xiyj .

As we restrict ourselves to small steps, the inventory of the steps has the following form∑
(i,j)∈S

xiyj = xP1(y) + P0(y) +
1

x
P−1(y) = yQ1(x) +Q0(x) +

1

y
Q−1(x). (1)

Thus, KS(x, y) can be regarded as a quadratic in y (respectively x) whose coefficients contain t, x and
the Qi(y) (resp. t, y, and Pi(x)):

KS(x, y) = −txQ1(x) y2 + (x− xtQ0(x)) y − xtQ−1(x). (2)

When the model is clear, we omit the subscript S. One common property of the singular models is that
they contain the stepsNW and SE, and at least one other step – this prevents degeneracy in the quadratic.

Each model admits a functional equation for Sx,y(t). We apply the common decomposition that a walk
is either the empty walk, or a shorter walk followed by a single step. Taking into account the restrictions
on walk location, as well as the fact that substituting x = 0 (respectively y = 0) into the function Sx,y(t)
gives the generating function of walks ending on the y-axis (respectively x-axis), we obtain, as many
others have before us, the functional equation

K(x, y)Sx,y(t) = xy +K(x, 0)Sx,0(t) +K(0, y)S0,y(t). (3)

We are interested in the solutions to the kernel equation of the form:

K(x, Y+(x; t)) = K(x, Y−(x; t)) = K(X+(y; t), y) = K(X−(y; t), y) = 0, (4)

and these algebraic functions are easily determined since the kernel is a quadratic:

Y±(x; t) =
(1− tQ0(x))∓

√
(Q0(x)2 − 4Q1(x)Q−1(x)) t2 − 2Q0(x)t+ 1

2tQ1(x)
(5)

X±(y; t) =
(1− tP0(y))∓

√
(P0(y)2 − 4P1(y)P−1(y)) t2 − 2P0(y)t+ 1

2tP1(y)
. (6)

There are other function pairs which annihilate the kernel, as we shall see. Remark that the boundary value
method begins as we have, with the functional equation (3), but ultimately uses a different parametrization
to represent the roots of the kernel, and from there a very different means to get access to the generating
function.

The generating function has a natural expression in terms of iterated compositions of the Y and X ,
hence the name iterated kernel method.
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2.2 What makes this family special?
Consider the lowest order terms of the roots of the kernel as a power series in t. They are

Y+ = P−1(x)t+O(t2) and Y− =
1

tP1(x)
− P0(x)

P1(x)
+O(t),

where Pr(x) =
∑

(i,r)∈S x
i. Of the 56 (conjectured) non D-finite models only 5 models, precisely the

singular family we are studying, have a lowest order term with a positive power in x and t, implying that
the infinite sum obtained by the iterated kernel method converges. This prevents the method from being
applied to a broader range of models in this context.

2.3 Fast enumeration
Using the series expressions (8) and (9) below, we can generate the firstN terms of S1,0(t) and S1,1(t) for
each model with Õ

(
N3
)

bit-complexity (where the notation Õ(·) suppresses logarithmic factors), which
is an order of magnitude faster than the Õ

(
N4
)

bit-complexity of the naive generation algorithm. The
key lies in utilizing a linear recurrence for 1/Yn that the iterated kernel method generates for each model
(see Table 1). The cost of generating S1,0(t) and S1,1(t) is then dominated by the inversion of the 1/Yn,
which have summands whose bit-size grows linearly, giving the cubic complexity.

Thus, although the generating function is not D-finite, and hence the coefficients do not satisfy a nice
fixed length linear recurrence, we are able to generate the terms in a relatively efficient manner.

3 Symmetric models: A,B, C
3.1 An explicit generating function expression
We focus first on the three models A, B and C, as these models are symmetric about the line x = y. As
such, these models benefit from the relation Sx,0 = S0,x, and Equation (3) can be rewritten as

K(x, y)Sx,y(t) = xy +K(0, y)S0,y(t) +K(0, x)S0,x(t). (7)

Our iterates satisfy Yn+1(x) = Y+(Yn(x)), Y0(x) = x, and consequently, K(Yn, Yn+1) = 0 for
all n by substituting x = Yn(x) into the kernel relation K(x, Y+(x)) = 0. Thus, when we make this
substitution into Equation (7) we find for each n:

0 = Yn(x)Yn+1(x) +K(0, Yn+1(x))S0,Yn+1(x)(t) +K(0, Yn(x))S0,Yn(x)(t).

We can determine an expression for K(0, x)S0,x(t) by taking an alternating sum of these equations since
all of the K(0, Yn(x))S0,Yn(x)(t) terms are canceled for n > 0 in a telescoping sum:

0 =

∞∑
n=0

(−1)n
(
Yn(x)Yn+1(x) +K(0, Yn+1(x))S0,Yn+1(x)(t) +K(0, Yn)S0,Yn(x)(t)

)
= K(0, x)S0,x(t) +

∞∑
n=0

(−1)nYn(x)Yn+1(x).
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We rearrange this and evaluate at x = 1 to express the counting generating function for walks returning
to the axis:

S0,1(t) =
1

t

∞∑
n=0

(−1)nYn(1)Yn+1(1), (8)

as K(0, 1) = −t for each case considered here. This converges as a power series because in each of these
cases Yn(x) = O(tn).

Furthermore, substituting x = 1 and y = 1 into Equation (7) gives the full counting generating function

S(t) =
1− 2tS0,1(t)

1− t|S|
=

1

1− t|S|

(
1− 2

∑
n

(−1)nYn(1)Yn+1(1)

)
. (9)

We address the robustness of this expression as a complex function in Theorem 2, after we are able to
determine an explicit expression for Yn(1) as a rational function of Y1(1).

3.2 Asymptotic Enumeration
In each of these cases, the singularity at 1

|S| is dominant.

Theorem 1 For each model S in {A,B, C}, the sum R(t) :=
∑
n(−1)nYn(1)Yn+1(1) is convergent at

t = 1
|S| . The radius of convergence is bounded below by t = 1

p0+2
√
p1p−1

where pi = Pi(1) = |{(i, r) :

−1 ≤ r ≤ 1, (i, r) ∈ S}|. The dominant singularity for each model S in {A,B, C} is a simple pole at σ,
where 1

σ = |S|, the number of permitted directions in the model. As a consequence, the number of walks
Sn = [tn]S(t) grows asymptotically like

Sn ∼ κS
(

1

σ

)n
+O

((
p0 + 2

√
p1p−1

)n)
,

where each κS is the constant R(σ), which can be calculated to arbitrary precision using Equation (8).

The strategy is to relate the quarter-plane problem to a half-plane problem, which has an explicit general
solution given in [1]. We use the expressions that we find for the generating functions to demonstrate the
convergence; the results are summarized below.

Model Asymptotic estimate for number of walks of length n

A An ∼ κA3n +O
((

2
√

2
)n)

κA = 0.17317888 . . .

B Bn ∼ κB4n +O
((

1 + 2
√

2
)n)

κB = 0.15194581 . . .

C Cn ∼ κC5n +O
((

1 + 2
√

3
)n)

κC = 0.38220125 . . .

3.3 Towards the Non D-Finiteness of A(t), B(t) and C(t)

The set of D-finite functions are closed under algebraic substitution. Thus, to prove that the generating
functions A(t), B(t) and C(t) are not D-finite, it is equivalent to consider these functions evaluated at
t = q/(1 + q2). These turn out to be easier to analyze as the transformation concentrates the singularities
around the unit circle. As such, we shall re-interpret the notation we have introduced this far to be
functions of q directly.
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(b) Step set B
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(c) Step set C

Fig. 1: Plots of the singularities of Y20(1)|t= q

1+q2
for the three symmetric models.

For each model the Yn(1) terms contribute singularities. A quick glance at an example is very sug-
gestive – see Figure 1 for the singularities of Y20(1) in the q-plane for the three different models. The
main difficulty is proving that there is no cancellation; that is, that the singularities in the figure are indeed
present in the generating function. To prove this we follow these steps:

Step 1 Determine an explicit expression for Yn(1);

Step 2 Determine a polynomial σn(q) whose set of roots contains the poles of Yn(1);

Step 3 Determine a region where there are roots of σn(q) that are truly poles of Yn(1);

Step 4 Show that there is no point ρ in that region that is a root of both σn(q) and σk(q) for different n
and k;

Step 5 Demonstrate that S1,0(q/(1 + q2)) has an infinite number of singularities and consequently, it is
not D-finite. It follows that S(t) is not D-finite, by closure under algebraic substitution and the
expression in Equation (9).

3.3.1 Step 1: An explicit expression for Yn

In this section we find an explicit, non-iterated expression for the functions Yn. We follow the method
of [14] very closely, with the exception that we make the variable substitution earlier in the process. As
such, we repeat, that we view all functions as functions of q in this section. From the variable substitution
t = q/(1 + q2) in Equation (3), we re-solve the kernel to ensure control over the choice of the branch in
the solution. Here are the kernels:

KA(x, y) = −q(x2 + 1) y2 + x(1 + q2) y − qx2

KB(x, y) = −q(x+ 1) y2 + x(−qx+ 1 + q2) y − qx2

KC(x, y) = −q(1 + x+ x2) y2 + x(−qx+ 1 + q2) y − qx2.

We denote this generically as K(x, y) = a2y
2 + a1y+ a0, adapting the ai to each particular model. Each

is solved as before to get our initial solutions to K(x, Y (x)) = 0. Great care is taken here to ensure that
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the branch as written remains analytic at 0:

Y A±1(x; q) =
x

2q(1 + x2)
·
(

1 + q2 ∓
√

1− 2(2x2 + 1)q2 + q4
)

Y B±1(x; q) =
x

2q(1 + x)
·
(

1− qx+ q2 ∓
√
q4 − 2q3x+ (x2 − 4x− 2)q2 − 2qx+ 1

)
Y C±1(x; q) =

x

2q(1 + x+ x2)
·
(

1− qx+ q2 ∓
√
q4 − 2q3x− (3x2 + 4x+ 2)q2 − 2qx+ 1

)
.

We define the sequence of iterates {Yn(x)}(n) as before: Yn+1(x) = Y+(Yn(x); q), Y1(x) = Y+(x; q).
For each of these models, examining the coefficients of y in the kernel implies

1

Y−(x; q)
+

1

Y+(x; q)
=
Y−(x; q) + Y+(x; q)

Y−(x; q) · Y+(x; q)
=
−a1/a2

a0/a2
= −a1

a2
. (10)

The iterates compose nicely, since for each model Y− (Y+(x)) = Y+ (Y−(x)) = x.

It turns out to be easier to work with the reciprocal of Yn, so we define Y n = 1
Yn(1) , and view this

as a function of q. Equation (10) then converts into a recurrence after the substitution x = Yn−1(x).
Specifically, this gives a linear recurrence for the reciprocal function, 1

Yn(x) ; we are interested in these
evaluated at x = 1, and the resulting recurrences and their solutions in terms of Y 1 are summarized
below:

S Recurrence Y
S

n(q)

A Y n = (q + 1
q )Y n−1 − Y n−2

(q2−q2n)+q(q2n−1)Y 1

qn(q2−1)

B, C Y n = (q + 1
q )Y n−1 − Y n−2 − 1

q(q−1)(q2n−1)Y
B,C
1 +(q−qn)(2qn+1−qn+q2−2q)
qn(q+1)(q−1)2

Tab. 1: The recurrences and their solutions for models A, B, and C.

Following the same procedure as above, we obtain a generic expression for S1,0(t), the generating
function for the number of walks which return to the axis for model S, which can be applied to all three
symmetric walks:

S1,0

(
q

1 + q2

)
= (q + 1/q)

∞∑
n=0

(−1)nY Sn (1)Y Sn+1(1; q). (11)

Our careful choice of branches now implies that this is a formal power series. (Remark, this was not
the case in [14].) Our expression is robust – an application of the ratio test implies the sum converges
everywhere, except possibly on the unit circle and at the poles of the Yn.

Proposition 2 For S ∈ {A,B, C} the sum (q+1/q)

∞∑
n=0

(−1)nY Sn (1)Y Sn+1(1) is convergent for all q ∈ C

with |q| 6= 1, except possibly at the set of points defined by the singularities of the Y Sn (1) for all n.
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3.3.2 Step 2: The singularities of Y S
n (1)

In order to argue about the singularities, we find a family of polynomials σn(q) that the roots of Y n
satisfy. The polynomials in Table 2 are obtained by manipulating the explicit expressions given above.
Unfortunately, extraneous roots are introduced during the algebraic manipulation when an equation is
squared to remove the square root present. In fact, the extraneous roots are exactly those which correspond
to a negative sign in front of the square root. If one defines Y −1 = Y − and Y −n = Y −1 ◦ Y −(n−1) for
n > 1, then using the argument above one can check that Y −n satisfies the same recurrence relation as
Y n, up to a reversal of the sign in front of the square root. Thus, we see that the set of roots of σn(q) is
simply the union of the sets of roots of Y n and Y −n.

S σn(q)

A αn(q) = q4n + q2n+2 − 4q2n + q2n−2 + 1

B βn(q) =
(
q2n−1 + (q3 − 2q2 − 2q + 1)qn−2 + 1

) (
q2n+1 + (q3 − 2q2 − 2q + 1)qn−1 + 1

)
C γn(q) = q2(1 + q2 − q)(1 + q4n) + q(q2 − 3q + 1)(q + 1)2(qn + q3n)

+q2n(1− q2 − 4q + 14q3 − 4q5 − q4 + q6)

Tab. 2: The singularities of Y S
n in the q-plane satisfy the polynomial σn(q)

Furthermore, we can show that these roots are dense around the unit circle using the results of Beraha,
Kahane, and Weiss – specifically, a weakened statement of the Main Theorem of [2].

Corollary 3 The roots of the families of polynomials {αn(q)}, {βn(q)}, and {γn(q)} are dense around
the unit circle.

In addition, we can show that αn(q) and γn(q) have no roots on the unit circle, except possibly q = ±1,
and if q is a root of βn(q) on the unit circle not equal to 1 then

arg q ∈
[
π − arccos

(√
2− 1

2

)
, π

)⋃[
−π,−π + arccos

(√
2− 1

2

))
≈ [2.7, 3.1) ∪ [−2.7,−3.1).

This is complimented by the fact that Rouche’s Theorem implies the roots converge to the unit circle as n
approaches infinity.

3.3.3 Step 3: Verify that Yn(1) has some singularities
At this point we have not yet completely established that the Yn(1) actually have singularities. Theoreti-
cally, it is possible that all the roots were added in our manipulations to determine σn(q) for the different
models. As we mentioned above, the roots of σn(q) are either singularities of Yn(1) or singularities of
Y−n(1). Thus, we prove Lemma 4 which describes at least some region where we are certain to find roots
of Y n. Experimentally, it seems that the roots are evenly partitioned so that roots outside the unit circle
belong to Y n and those inside the unit circle belong to Y −n, but we do not prove this.

Lemma 4 If arg(q) ∈ (−π/2,−3π/8) ∪ (3π/8, π/2) then Y
S

n = Y
S

−n|q 7→1/q for all n, for S ∈
{A,B,C}. Consequently (using Corollary 3), for an infinite number of n each of Y An , Y

B
n , and Y Cn

admit at least one singularity in the complex q-plane in that region.

The proof requires only basic manipulations of the formulas. Thus, we can ensure an infinite source of
potential singularities for these generating functions.
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3.3.4 Step 4: The singularities are distinct
We characterize the roots which are shared between Yn and Yk for the three models.

For each of the three models we find the roots of the numerators of our explicit expressions in Table 1
as quadratics in qn. This determines functions r1(q) and r2(q), independent of n, such that qnc = r1(qc)
or qnc = r2(qc) at any pole qc of Yn. Furthermore, suppose qc is also a pole of Yk for k 6= n so that
qkc = r1(qc) or qkc = r2(qc). It is immediate that if qkc = r1(qc) = qnc or qkc = r2(qc) = qnc then qc
must be on the unit circle. Otherwise, we may assume without loss of generality that qnc = r1(qc) and
qkc = r2(qc). Each model can be considered separately to prove the following result:

Proposition 5 For modelsA and C, if qc is a pole of Yn which lies off the unit circle then it is not a pole of
Yk for k 6= n. For model B, if qc is a pole of Yn off the unit circle then it is not a pole of Yk for |k−n| > 1.

3.3.5 Step 5: The generating function is not D-finite
Now we tie up all the arguments.

Theorem 6 The generating functions A(t), B(t), and C(t) of walks in the quarter plane with steps from
A, B, and C, respectively, are not D-finite.

Proof: As argued above, it is sufficient to prove the non D-finiteness of S1,0(t) evaluated at t = q/(1+q2)
for each model. In Lemma 4 we have shown that Y An (1), Y Bn (1), and Y Cn (1) admit singularities off the
unit circle for an infinite number of n. One can show that the singularities are not canceled in the two
summands of (11) containing Y An and Y Cn (respectively the four summands containing Y Bn−1, Y Bn , and
Y Bn+1) so that, as they lie off the unit circle where the remaining summands are analytic by Proposition 5,
they give an infinite number of singularities of A1,0, B1,0, and C1,0. 2

4 Asymmetric models
The asymmetric models are not substantially different, but when we iterate, we have more functions to
keep track of, and eventually cancel. Aside from some irritating bookkeeping, there is no main obstacle
to following the strategy of the symmetric models.

4.1 An explicit generating function expression
To obtain the generating function expressions we follow the same path as in the symmetric case: we
generate a sequence of equations, each which annihilates the kernel. This opens up the possibility of a
telescoping sum expression from which we can find an expression for the generating function of walks
returning to the axis in terms of iterates of two functions. An explicit expression for these iterates is
obtained by solving some very simple recurrences. We complete these steps for the asymmetric models
in this section.

As before, we begin with the main functional equation (3), make the substitution t = q/(1 + q2), and
re-arrange to get the kernel equations:(

xy(1 + q2)− qy2 − qxy2 − qx2
)
Dx,y(t) = xy(1 + q2)− qx2Dx,0(t)− qy2D0,y(t)(

xy(1 + q2)− qy2 − qxy2 − qx2y2 − qx2
)
Ex,y(t) = xy(1 + q2)− qx2Ex,0(t)− qy2E0,y(t),

with kernels KD(x, y) = −q(1 + x)y2 + (q2 + 1)xy − qx2

KE(x, y) = −q(1 + x+ x2)y2 + (1 + q2)xy − qx2.
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As there is no longer an x = y symmetry, we solve the kernels as functions of both x and y; that is, we
find Y (x) satisfying K(x, Y (x)) = 0 and also X(y) satisfying K(X(y), y) = 0. We have some choice
over how we split the solutions over different branches. One such choice of branches is:

XD
±(y; q) =

y

2q
·
(
1− qy + q2 ∓

√
q4 − 2q3y + (y2 − 2)q2 − 2qy + 1

)
Y D
±(x; q) =

x

2q(1 + x)
·
(
1 + q2 ∓

√
q4 − 4q2x− 2q2 + 1

)
.

XE
±(y; q) =

y

2q(1 + y2)
·
(
1− qy + q2 ∓

√
q4 − 2q3y − (3y2 + 2)q2 − 2qy + 1

)
Y E
±(x; q) =

x

2q(1 + x+ x2)
·
(
1 + q2 ∓

√
q4 − 2(2x2 + 2x+ 1)q2 + 1

)
.

Next, as we described in the introductory summary, we repeatedly alternate the substitution of the X and
Y and create two related sequences of functions:

χn(x) = X+(Y+(χn−1(x); q); q), χ0(x) = x and Υn(y) = Y+(X+(Υn−1(x); q); q), Υ0(y) = y.

Simple substitutions yield the kernel relations K(χn(x), Y+(χn(x))) = K(X+(Υ(y)),Υ(y)) = 0,
amongst others. As before, we generate an infinite list of relations by substituting x = χn(x), y =
Y+(χn(x)), and then a second infinite list using the substitutions x = X+(Υ(y)), y = Υ(y). Again,
we form a telescoping sum, and after some manipulation this results in an expression for the generating
functions returning to the axis. For S ∈ {D,E} we have:

Sx,0

(
q

1 + q2

)
=

q

1 + q2

∑
n≥0

χn(x) · (Y+(χn(x))− Y+(χn−1(x)))︸ ︷︷ ︸
∆L(x;q)

(12)

S0,y

(
q

1 + q2

)
=

q

1 + q2

∑
n≥0

X+(Υn(y)) · (Υn(y)−Υn+1(y))︸ ︷︷ ︸
∆R(y;q)

. (13)

The two models have identical structure in their generating function, and differ only in their respective
functions X1 and Y1. Our greatest challenge at this point is keeping track of the various parts:

χ′0(x) = Y1(x), χ′n(x) = Y1 (χn(x)) , Υ′n(y) = X1 (Υn(y)) , Υ′0(y; q) = X1(y)

∆L,0 = χ′0(x), ∆L,n(x) = χ′n(x)− χ′n−1(x), ∆R,0 = Υ0(y), ∆R,n(y) = Υn(y)−Υn+1(y)

For each model, we isolate the left and right hand sides: LSx (q) = qx2Sx,0(q/(1 + q2)) and RSy (q) =
qy2S0,y(q/(1 + q2)) so that

KS(x, y)Sx,y(q/(1 + q2)) = xy(1 + q2)− LSx (q)−RSy (q).

Similar to previous cases, we can use the coefficients ofKS(x, y) and the two identities Y±1 (X∓1(y)) =
y and X±1 (Y∓1(x)) = x to form the paired up recurrences for the multiplicative inverses of these func-
tions. Here we use the notation that F = 1

F :

χ±n = (q + 1/q)χ′±(n−1) − χ±(n−1) − 1, χ′±n = (q + 1/q)χ′±n − χ±(n−1)

Υ±n = (q + 1/q)Υ′
S

±(n−1) −Υ
S

±(n−1), Υ′
S

±n = (q + 1/q)Υ
S

±n −Υ′
S

±(n−1) − 1.
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These recurrences are easily solved, as before, as closed form expressions. Again, we can verify that we
have suitable expressions for the analytic continuation of the generating functions for D and E . These
expressions are well suited to exact enumeration, as in the symmetric case, and they also yield asymptotic
enumeration formulas.

Theorem 7 (Mishna and Rechnitzer [14]; Proposition 16) IfDn denotes the number of walks with steps

from D staying in the positive quarter plane, then Dn ∼ κD 3n
√
n

(1 + o(1)) where 0 < κD ≤
√

3
π .

Theorem 8 The function E(t) has a simple singularity at t = 1/4, where it has a residue of value
κE ∈

[
122
525 ,

7
10

]
. The number, En, of walks taking steps in E and staying in the positive quarter plane

grows asymptotically as En = κE · 4n +O
(
(1 + 2

√
2)n
)
.

Computational evidence given by calculating the series for E1,0(1/4) and E0,1(1/4) to a large number
of terms implies that the value of the growth constant is approximately 0.2636, which is consistent with
the growth of computationally generated values of En for large n.

4.2 The generating functions D(t) and E(t) are not D-finite
The additional sums that arise in our expressions for D(t) and E(t) do not change our fundamental
strategy, demonstrating an infinite set of singularities, but here we actually have a simpler argument in
hand. In both cases the series L1(q) has an infinite source of singularities on the imaginary axis, at each
of which R1(q) is analytic.

Lemma 9 Both of the functions χDn (q) and χEn (q) have a root on the imaginary axis between i and 2i,
when n is even.

Proof: First, we show that the roots of χDn (q) satisfy the polynomial

ωDn =
(
q4n+2 + q2n+4 − 4q2n+2 + q2n + q2

)2
and that the roots of χEn (q) satisfy the polynomial

ωEn = q2
(
q4 − q2 + 1

) (
q8n + 1

)
+2q2(q4−4q2 +1)

(
q6n + q2n

)
+(q8−10q6 +24q4−10q2 +1)q4n.

The rest is straightforward manipulation as in [14]. 2

A sampling of these singularities is given in Figure 2.

1 1.125 1.25

(a) Step set D

1 1.125 1.25

(b) Step set E

Fig. 2: The modulus of the purely imaginary singularities of D(t) and E(t), coming from χ2n for n = 1, . . . , 100.

Theorem 10 Neither the generating function D(t) nor the generating function E(t) for walks in the
quarter plane with steps from D and E , respectively, are D-finite.
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5 Conclusion
This work addresses a family of lattice path models that have resisted other powerful approaches. There
should also be other models, with larger step sizes or in higher dimensions, to which this method may be
suitable. We intend to seek them out and to try to apply this method, ideally automating as much as is
possible. Finally, we are always in a search to understand the combinatorial nature of D-finite functions.
Are there properties inherent to these classes from which we should be able immediately to predict the
nature of the generating function? Where does the intuition lie?
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