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Kazhdan–Lusztig polynomials of boolean
elements
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Abstract. We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic ana-
logue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig
theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan num-
bers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups,
this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application
of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean
elements.

Résumé. Nous donnons des formules combinatories pour les polynômes de Kazhdan-Lusztig et leurs analogues
parabolique de type q pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig
theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules
utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas
des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de
permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré
pour la variété de Schubert de booléen éléments.
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1 Introduction
In their fundamental paper Kazhdan and Lusztig (1979) defined, for every Coxeter group W , a family
of polynomials, indexed by pairs of elements of W , which have become known as the Kazhdan–Lusztig
polynomials of W (see, e. g., (Humphreys, 1990, Chapter 7) or (Björner and Brenti, 2005, Chapter 5)).
These polynomials play an important role in several areas of mathematics, including the algebraic geom-
etry and topology of Schubert varieties and representation theory (see, e. g., (Björner and Brenti, 2005,
Chapter 5), and the references cited there). In particular, their coefficients gives the dimensions of the
intersection cohomology modules for Schubert varieties (see, e. g., Kazhdan and Lusztig (1980)).

In order to find a method for the computation of the dimensions of the intersection cohomology modules
corresponding to Schubert varieties inG/P , where P is a parabolic subgroup of the Kac-Moody groupG,
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(Deodhar (1987)) introduced two parabolic analogues of these polynomials which correspond to the roots
x = q and x = −1 of the equation x2 = q + (q − 1)x. These parabolic Kazhdan–Lusztig polynomials
reduce to the ordinary ones for the trivial parabolic subgroup and are also related to them in other ways
(see, e. g., Proposition 2.2 below). Besides these connections the parabolic polynomials also play a
direct role in several areas including the theories of generalized Verma modules (Casian and Collingwood
(1987)), tilting modules (Soergel (1997a), Soergel (1997b)) and Macdonald polynomials(Haglund et al.
(2005a), Haglund et al. (2005b)).

The purpose of this work is to give explicit combinatorial product formulas for all (parabolic and ordi-
nary) Kazhdan-Lusztig polynomials indexed by pairs of boolean elements (see Section 2 for the definition)
in all Coxeter groups whose Coxeter graph is a tree. Our results show that all such polynomials have non-
negative coefficients, conjectured by Kazhdan and Lusztig (1979), and give a combinatorial interpretation
of them in terms of Catalan numbers and the Coxeter graph of the group. In the case of classical Weyl
groups, this combinatorial interpretation can be restated in terms of excedances and other statistics of
(signed) permutations. Our results also confirm a conjecure of Brenti on the parabolic Kazhdan-Lusztig
polynomials of type q (see Corollary 3.3 below).

2 Definitions, notation and preliminaries
We let P := {1, 2, 3, . . . }, N := P∪{0}, Z := N∪{−1,−2, . . . }. For all m,n ∈ Z, m ≤ n we set
[m,n] := {m,m+ 1, . . . , n} and [n] := [1, n]. Given a set A we denote by #A its cardinality.

We follow (Stanley, 1997, Chapter 3) for poset notation and terminology. In particular, given a poset
(P,≤) and u, v ∈ P we let [u, v] := {w ∈ P |u ≤ w ≤ v} and call this an interval of P . We say that v
covers u, denoted u / v (or, equivalently, that u is covered by v) if #[u, v] = 2.

We follow Humphreys (1990) for general Coxeter groups notation and terminology. Given a Coxeter
system (W,S) and u ∈ W we denote by l(u) the length of u in W , with respect to S, i. e. the minimal
length of words si1 · · · sik = u whose alphabet is S (such minimal words are called reduced). Given
u, v ∈W we denote by l(u, v) = l(v)− l(u). We let DR(u) := {s ∈ S|l(us) < l(u)} the set of the right
descents of u, DL(u) := {s ∈ S|l(su) < l(u)} the set of the left descents of u and we denote by ε the
identity of W . Given J ⊆ S we let WJ the parabolic subgroup generated by J and

W J := {u ∈W |l(su) > l(u) for all s ∈ J} (1)

Note that W ∅ = W (the above definition is a little bit different from the classical one given in (Björner
and Brenti, 2005, Definition 2.4.2)). IfWJ is finite, then we denote by w0(J) its longest element. We will
always assume that W J is partially ordered by Bruhat order. Recall (see e.g. (Humphreys, 1990, Chapter
5.9 and 5.10)) that this means that x ≤ y if and only if for one reduced word of y (equivalently for all)
there exists a subword that is a reduced word of x. Given u, v ∈W J , u ≤ v we let

[u, v]J := {w ∈W J |u ≤ w ≤ v},

and [u, v] := [u, v]∅.
For J ⊆ S, x ∈ {−1, q} and u, v ∈ W J we denote by P J,x

u,v (q) the parabolic Kazhdan–Lusztig poly-
nomials in W J of type x (we refer the reader to Deodhar (1987) for the definitions of these polynomials,
see also Proposition 2.2 below). We denote by Pu,v(q) the ordinary Kazhdan–Lusztig polynomials.
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For u, v ∈ W J let µJ,q(u, v) be the coefficient of q
1
2 (l(u,v)−1) in P J,q

u,v (q) (so µJ,q(u, v) = 0 when
l(v) − l(u) is even). It is well known that if u, v ∈ W J then µJ,q(u, v) = µ(u, v), the coefficient of
q

1
2 (l(u,v)−1) in Pu,v(q) (see Corollary 2.1 below). The following result is due to Deodhar, and we refer

the reader to Deodhar (1987) for its proof.

Proposition 2.1 Let (W,S) be a Coxeter system, J ⊆ S, and u, v ∈ W J , u ≤ v. Then for each
s ∈ DR(v) we have that

P J,q
u,v (q) = P̃u,v − M̃u,v (2)

where

P̃u,v =


P J,q
us,vs + qP J,q

u,vs if us < u;
qP J,q

us,vs + P J,q
u,vs if u < us ∈W J ;

0 if u < us 6∈W J .

and
M̃u,v =

∑
u≤w<vs|ws<w

µ(w, vs)q
l(w,v)

2 P J,q
u,w(q).

The parabolic Kazhdan–Lusztig polynomials are related to their ordinary counterparts in several ways,
including the following one, which may be taken as their definition in most cases.

Proposition 2.2 Let (W,S) be a Coxeter system, J ⊆ S and u, v ∈W J . Then we have that

P J,q
u,v (q) =

∑
w∈WJ

(−1)l(w)Pwu,v(q).

Moreover, if WJ is finite, then
P J,−1
u,v (q) = Pw0(J)u,w0(J)v(q).

A proof of this result can be found in Deodhar (1987) (see Proposition 3.4, and Remark 3.8). Since for
all w ∈WJ and u ∈W J we have l(wu) = l(w) + l(u) by (Björner and Brenti, 2005, Proposition 2.4.4),
then the degree of Pwu,v(q) in Proposition 2.2 is less than 1

2 (l(u, v) − 1) except when w = ε. Therefore
we have

Corollary 2.1 For any J ⊆ S and u, v ∈W J we have

µJ,q(u, v) = µ(u, v).

Proposition 2.3 Let (W,S) a Coxeter system and J ⊆ S. Let u, v ∈W J and s ∈ DR(v).

a) If us 6∈W J then P J,q
u,v (q) = 0;

b) if us ∈W J then P J,q
us,v(q) = P J,q

u,v (q);

c) if µ(u, v) 6= 0 then DR(v) ⊆ DR(u) and DL(v) ⊆ DL(u).

In the rest of the paper we will consider parabolic Kazhdan–Lusztig polynomials of type q. Therefore
we will write P J

u,v instead of P J,q
u,v .

Let (W,S) be any Coxeter system and t be a reflection in W . Following Marietti (Marietti (2002),
Marietti (2006) and Marietti (2010)), we say that t is a boolean reflection if it admits a boolean expression,
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which is, by definition, a reduced expression of the form s1 · · · sn−1snsn−1 · · · s1 with sk ∈ S, for all
k ∈ {1, . . . n} and si 6= sj if i 6= j. We say that u ∈W is a boolean element if u is smaller than a boolean
reflection in the Bruhat order. Let v be a reduced word of a boolean element and s ∈ S, we denote by
v(s) the number of occurrences of s in v.

Given a Coxeter system (W,S), the Coxeter graph of W is a graph whose vertex set is S and two
vertices s, s′ are joined by an edge if ss′ 6= s′s. We label this edge with m(s, s′), the smallest positive
integer such that (ss′)m(s,s′) = ε (m(s, s′) = ∞ if there is no such integer). We say that W is a tree-
Coxeter group if its Coxeter graph is a tree.

fai o nuova sezione o breve intro For any generator si ∈ S we denote by Si = S \ {si} and by
com(si) the subset of S which contains all elements commuting with si different from si.

Lemma 2.1 Let u, v ∈ W J such that siu, siv ∈ W J
Si (i. e. there exist reduced words for u, v starting

with si and with no other occurrences of si). Then

P J
u,v = P J∩com(si)

siu,siv .

Lemma 2.2 Let u, v ∈W J be such that u, siv ∈WSi (i. e. there are no occurrences of si in any reduced
expression of u and siv). Then

P J
u,v =

{
P J
u,siv if siv ∈W J

0 otherwise

We now introduce a family of numbers which are used in the next section. The Catalan triangle is a
triangle of numbers formed in the same manner as Pascal’s triangle, except that no number may appear
on the left of the first element (see (OEI, sequence A008313)).

1
1

1 1
2 1

2 3 1
5 4 1

5 9 5 1
14 14 6 1

14 28 20 7 1
42 48 27 8 1

Let h ≥ 1. We set

fh(q) =

[h2 ]∑
i=0

C(h, i)q[
h
2 ]−i

where [h] denotes the integer part of h and C(h, i) is the i-th number in the h-th row (here we start the
enumeration from 0). For example f4(q) = 2q2 + 3q + 1; f7(q) = 14q3 + 14q2 + 6q + 1. Note that in
the first column we find the classical Catalan numbers (see (OEI, sequence A008313) for details).
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3 Parabolic Kazhdan–Lusztig polynomials
Let (W,S) be a tree-Coxeter group. Let t = si1 · · · sin−1sinsin−1 · · · si1 be a boolean reflection. Consider
the Coxeter graph G and represent it as a rooted tree with root the vertex corresponding to the generator
sin . In this paper all the roots will be depicted on the right of their graphs. In Figure 1 we give the Coxeter
graph of the affine Weyl group D̃11.

•s11

•s10

•s2

•s1

•s9

•s3

•s8

•s4

•s7

•s5

•s6

Fig. 1: The Coxeter graph of D̃11 with root s6, corresponding to the reflection t =
s1s2 · · · s5s10s11s9s8s7s6s7s8s9s11s10s5 . . . s2s1.

According to such rooted graph we say that sj is on the right (respectively on the left) of si if and only
if there exists an edge joining them and the only path from si to sn contains sj .

Let w be a word in the alphabet S and s ∈ S. We denote by w(s) the number of occurrences of s in
w. Let u, v ∈ W be such that u, v ≤ t. Let u, v be the unique reduced expressions of u, v satisfying the
following properties

• v is a subword of s1 · · · , sn−1snsn−1 · · · s1 and if i is such that v(si) = 1 and v(sj) = 0, where sj
is the only element on the right of si, then we choose the subword with si in the leftmost admissible
position;

• u is a subword of v and if i is such that u(si) = 1 and u(sj) = 0, we apply the same above rule.

Here we give an example. Let t = s1s2 · · · s5s10s11s9s8s7s6s7s8s9s11s10s5 . . . s2s1 in D̃11, see
Figure 1. Let v = s4s5s10s11s6s7s8s9s5s4s2s1 and u = s8s6s1 then v = s1s2s4s5s10s11s6s7s8s9s5s4
and u = s1s6s8.

Now we give a graphical representation of the pair (v, u). We start from the rooted tree of the Coxeter
graph and we substitute for each vertex a table with one column and two rows. In the first row we write
v(sj) (sj is the element associated to the vertex); in the second row we write u(sj). In the case v(sj) = 1,
it is possible that sj is on the left or on the right of sn (the root) as subword of t. We distinguish the two
cases by writing 1l if sj is on the left of sn, and 1r otherwise. By convention we write 1l in the root sn if
v(sn) 6= 0. We apply the same rule to the second row. Moreover, in the first row, we use capital letter R
instead of r if the second row of the column to the right does not contain 0.

We mark the column corresponding to sj with ◦ if j ∈ J and with × if j 6∈ J . Finally, if a vertex sj
has only one vertex on the left then we write the two corresponding columns in same table. In Figure 2
we give the graphical representation of the pair (v, u) in D̃11, with J = {s5, s7}.
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×
1l
0

×
1l
1l

×
1l
0

×
1l
0

× × ◦
0 2 2
0 0 0

× × ◦
1R 1r 1R
0 1r 0

×
1l
1l

Fig. 2: Diagram of (v = s1s2s4s5s11s10s6s7s8s9s5s4, us1s6s8) in D̃11.

In the sequel a symbol ∗ denotes the possibility to have arbitrary entries in the cell. A symbol such as
6 1l, 6 0, etc. means that the value in the cell is not 1l, 0, etc. Moreover we will be interested in subdiagrams
of such representations, i. e. diagrams obtained by deleting one or more columns. Since the order of the
tables from top to bottom is not important (while the order from left to right is fundamental), we use the
following notation

 ∗
a
b

n

∗
c
d

∗
a
b

∗
e
f

to mean
...

...

∗
a
b

∗
c
d

∗
e
f

... (3)
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where the column with entries a, b is repeated n times. Now we give all the definitions necessary to
Theorem 3.1.

Given a pair (v, u) in W , we let ah(u, v) be the number of subdiagrams in the diagram of (u, v) of one
of the following type:

 ∗
6 2
∗

n

×
1∗
0 ∗

2
6 2

h+1

;

 ∗
6 2
∗

n

×
2
0 ∗

2
6 2

h

;

 ∗
x
y

n

◦
1R
0 ∗

2
6 2

h+1

;

 ∗
6 2
∗

n

∗
1l
1l

◦
1∗
0

 ∗
2
6 2

h+1

;

 ∗
6 2
∗

n

∗
1l
1l

◦
2
0

 ∗
2
6 2

h

;

We define bh(u, v) be the number of subdiagrams in the diagram of (u, v) of one of the following type:

 ∗
x
y

n

◦
1l/r
0 ∗

2
6 2

h+1

;

 ∗
x
y

n

◦
2
0 ∗

2
6 2

h

.
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We set c(u, v) be the number of subdiagrams in the diagram of (u, v) of one of the following type:

 ∗
x
y

n ◦
2
0

;

 ∗
x
y

n

◦
1l
0

∗
∗
0

;

 ∗
x
y

n

◦
1r
0

∗
2
6 2

;

 ∗
x
y

n ◦
1r
0

;

 ∗
x
y

n

◦
1l
0

∗
2
6 2

;

 ∗
x′

y′

n ◦
2
1r

;

 ∗
x′

y′

n

◦
1l
1l

∗
2
6 2

.

Finally, we set c′(u, v) be the number of subdiagrams of the diagram of (u, v) of the following type: ∗
x′

y′

n

◦
∗
1l

∗
2
1l

.
m(s,s’)=3
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In all previous diagrams n is an arbitrary non–negative integer and (x, y) ∈ P1, (x′, y′) ∈ P1 ∪ P2 with
P1 = {(1l, 0), (1r, 0), (1r, 1r), (2, 1r)}, P2 = {(1R, 0), (1R, 1r), (2, 0)}. In each diagram (x, y), (x′, y′),
(6 2, ∗) or (2, 6 2) are not necessarily the same pair for all n ≥ 0 (or h ≥ 0) columns. We can now state the
main result of this work.

Theorem 3.1 Let J ⊆ S, u, v ∈W J and set c(u, v) = c(u, v) + c′(u, v). We have

P J
u,v(q) =

{ ∏
h≥1 f

ah

h+1(fh+1 − 1)bh if c(u, v) = 0

0 otherwise

Corollary 3.1 Let J ⊆ S, u, v ∈ W J with l(v) − l(u) ≥ 3 odd. Then µ(u, v) 6= 0 if and only if the
entries in each column of the diagram of (u, v) are equal except for exactly one subdiagram which is

 ∗
2
1l

h+1 ∗
6 0
0

or

 ∗
2
1l

h ∗ ∗
2 . . . 2
0 . . . 0

In this case µ(u, v) = C([h+1
2 ]), the [h+1

2 ]-th Catalan number.

In the case of the classical Kazhdan–Lusztig polynomials, Theorem 3.1 becomes much simpler.

Corollary 3.2 Let W be a tree-Coxeter group and u, v ∈ W be boolean elements. Then Pu,v(q) =∏
h≥1 f

ah

h+1, where ah is defined before Theorem 3.1.

For example, the Kazhdan–Lusztig polynomial of the pair (u, v) depicted in Figure 2 is P J
u,v = f2(q)−

1 = q, since ah = 0 for all h ≥ 0, b1 = 1 and bh = 0 for all h 6= 1.

Remark 3.1 Theorem 3.1 implies result in (Marietti, 2010, Theorem 5.2).

We give the following easy consequence of Theorem 3.1 which proves, in the case of boolean elements, a
conjecture of Brenti (private communication).

Corollary 3.3 Let I ⊆ J and u, v ∈W J . Then

P J
u,v(q) ≤ P I

u,v(q)

in the coefficientwise comparison.

cita solo atilde

4 Poincaré polynomials
Given v ∈ W , let Fv(q) =

∑
u≤v q

l(v)Pu,v . It is well known that, if W is any finite Coxeter or affine
Weyl group, Fv(q) is the intersection homology Poincaré polynomial of the Schubert variety indexed by
v (see Kazhdan and Lusztig (1980)). In this section we compute the Poincaré polynomial for any boolean
element in a Coxeter group whose Coxeter graph is a tree with at most one vertex having more than two
adjacent vertices (such groups include all classical finite Coxeter and affine Weyl groups except Ãn and
D̃n).
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Let v ∈ W be a boolean element and consider the diagram of (εW , v). For convenience we will not
depict the second row of each column which is always 0 and we omit all symbols ×. We will call it the
diagram of v.

Let v be a boolean element and let s be the element of S associated to one of the leftmost vertices in the
diagram of v. We set F \v,s =

∑
ql(v)Pu,v where the sum runs over all elements u ≤ v such that u(s) 6= 0

and F 0
v,s =

∑
ql(v)Pu,v where the sum runs over all elements u ≤ v such that u(s) = 0.

Now consider a diagram d. Delete all entries equal to 0 and delete all edges whose left vertex is not
a cell containing 2. Let d1, . . . , dk be the remaining connected components. We refer to them as the
essential components of d.

2 1l 0

2

2

1r 2 2

1

2 1l

2

2

1r 2 2

1

Fig. 3: A diagram and its essential components.

Lemma 4.1 Let v ∈W be a boolean element and let d be the diagram of v. Let d1, . . . , dk be the essential
components of the diagram d and v1, . . . , vk be the boolean reflections corresponding to d1, . . . , dk. Then

Fv(q) =

k∏
i=1

Fvi(q).

Proposition 4.1 Let W be a Coxeter group such that its Coxeter graph is a tree and all vertices except
at most one have degree less than 3. Denote with w such exceptional vertex. Let v ∈ W be a boolean
element. Then

Fv(q) = (1 + q + q2)k−1
(
q(1 + q)h+1 + fh(q)

)
(1 + q)l(v)−2k−h−2,

where k is the number of essential components of the diagram d of v with at least two vertices and h is
the number of entries equal to 2 in the adjacent cells of w (also consider the cell on the right).

The formula is also true when there is no vertex of degree greater than 2: in this case let w be any vertex
of degree 2.
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