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Asymptotic properties of some minor-closed
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Abstract. Let A be a minor-closed class of labelled graphs, and let Gn be a random graph sampled uniformly from

the set of n-vertex graphs of A. When n is large, what is the probability that Gn is connected? How many components

does it have? How large is its biggest component? Thanks to the work of McDiarmid and his collaborators, these

questions are now solved when all excluded minors are 2-connected.

Using exact enumeration, we study a collection of classes A excluding non-2-connected minors, and show that their

asymptotic behaviour is sometimes rather different from the 2-connected case. This behaviour largely depends on the

nature of the dominant singularity of the generating function C(z) that counts connected graphs of A. We classify our

examples accordingly, thus taking a first step towards a classification of minor-closed classes of graphs. Furthermore,

we investigate a parameter that has not received any attention in this context yet: the size of the root component. This

follows non-gaussian limit laws (beta and gamma), and clearly deserves a systematic investigation.
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1 Introduction

We consider simple graphs on the vertex set {1, . . . , n}. A set of graphs is a class if it is closed under

isomorphisms. A class of graphs A is minor-closed if any minor of a graph of A is in A. To each such

class one can associate a set E of excluded minors: an (unlabelled) graph is excluded if its labelled versions

do not belong to A, but the labelled versions of each of its proper minors belong to A. A remarkable result

of Robertson and Seymour states that E is always finite [19].

For a minor-closed class A, we study the asymptotic properties of a random graph Gn taken uniformly

in An, the set of graphs of A having n vertices: what is the probability pn that Gn is connected? More

generally, what is the number Nn of connected components? What is the size Sn of the root component,

that is, the component containing the vertex 1? Or the size Ln of the largest component?

Thanks to the work of McDiarmid and his collaborators, a lot is known if all excluded graphs are 2-

connected: then pn converges to constant larger than 1/
√
e, Nn converges in law to a Poisson distribution,

n−Sn and n−Ln converge in law to the same discrete distribution. Details are given in Section 3. If some
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Fig. 1: Top: the 3-star, the triangle K3, the bowtie and the diamond. Bottom: A caterpillar and the 4-spoon.

excluded minors are not 2-connected, the properties of Gn may be rather different (imagine we exclude the

one edge graph...). This paper takes a preliminary step towards a classification of the possible behaviours

by presenting an organized catalogue of examples. We refer to [7] for more examples, complete proofs

and Boltzmann samplers for our classes of graphs.

For each class A that we study, we first determine the generating functions C(z) and A(z) that count

connected and general graphs of A, respectively. The minors that we exclude are always connected, which

implies that A is decomposable: a graph belongs to A if and only if all its connected components belong

to A. In particular, A(z) = exp(C(z)). Our exact and asymptotic results make extensive use of the

Excluded C(ρ) Sing. lim pn number Nn root largest Refs. and

minors of C(z) of comp. comp. Sn comp. Ln methods

2-connected < ∞ ? ≥ e−
1

2 O(1) n− Sn n− Ln [1, 16]

< 1 Poisson → disc. → disc. [17]

a spoon, < ∞ (1− ze)3/2 > 0 id. id. id. Sec. 8

but no tree ≤ e−
1

2 sing. an.

∞ simple 0
√
n

√
n

√
n log n Sec. 5

(path forests) pole gaussian xe−x Gumbel saddle

∞ id. 0 id. id. ? Sec. 5

(caterpillar for.) saddle

∞ id. 0 id. id. ? Sec. 5

(max. deg. 2) (+ log) saddle

∞ log 0 log n n PD(1)(1/4) Sec. 6

(+
√

) gaussian 1
4 (1− x)−

3

4 sing. an.

∞ 1/
√

0 n1/3 n2/3 ? Sec. 7

gaussian 2
√

x/πe−x saddle

Tab. 1: Summary of the results: for each quantity Nn, Sn and Ln, we give the limit law (or its density) and an

estimate of the expected value when it diverges (up to a constant). The symbol PD(1)(1/4) stands for the first

component of a Poisson-Dirichlet distribution of parameter 1/4.
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techniques of Flajolet and Sedgewick’s book [11]: symbolic combinatorics, singularity analysis, saddle

point method, and their application to the derivation of limit laws. We recall a few basic principles in

Section 2, but then we only sketch the proofs, at best. We also need and prove two general results of

independent interest related to the saddle point method (Theorems 3 and 4).

Our results are summarized in Table 1. A first dichotomy emerges: when C(z) is finite at its radius

of convergence ρ, the properties of A are qualitatively the same as in the 2-connected case (for which

C(ρ) is known to converge), except that the limit of pn can be arbitrarily small (Section 8). When C(ρ)
diverges, a whole variety of behaviours can be observed, depending on the nature of the singularity of

C(z) at ρ (Sections 5 to 7): the probability pn tends to 0 at various speeds; the number Nn of components

goes to infinity at various speeds (but is invariably gaussian after normalization); the size Sn of the root

component follows, after normalization, non-gaussian limit laws (gamma or beta). We only study the size

Ln of the largest component in a few cases. Much remains to be done in this direction.

Let us conclude with a few words on the size of the root component. It appears that this parameter,

which can be defined for any exponential family of objects, has not been studied systematically yet, and

follows interesting (i.e., non-gaussian!) continuous limit laws, after normalization. We are currently

working on such a systematic study, in the spirit of what Bell et al. [4] and Gourdon [13] did for the

number of components and the largest component, respectively. This project is also reminiscent of the

study of the 2-connected root component in a planar map [3], which also leads to non-gaussian limit laws.

2 Generatingfunctionology for graphs
Let E be a finite set of (unlabelled) connected graphs that forms an antichain with respect to the minor

order. Let A be the set of labelled graphs that do not contain any element of E as a minor. By An

we denote the subset of A formed of graphs having n vertices and by an the cardinality of An. The

associated exponential generating function (g.f.) is A(z) =
∑

n≥0 anz
n/n!. We use similar notation

(cn and C(z)) for the subset C of A consisting of (non-empty) connected graphs. Since the excluded

minors are connected, A is decomposable, and A(z) = exp(C(z)). Several refinements of this series are

of interest, for instance the g.f. that keeps track of the number of (connected) components as well:

A(z, u) =
∑

G∈A
uc(G) z

|G|

|G|! = exp(uC(z)),

where |G| is the size of G (the number of its vertices) and c(G) the number of its components. We denote

by Nn the number of components in a (uniform) random graph Gn of An. Clearly,

P(Nn = i) =
[zn]C(z)i

i![zn]A(z)
and E(Nn(Nn − 1) · · · (Nn − i+ 1)) =

[zn]C(z)iA(z)

[zn]A(z)
. (1)

Several general results provide a limit law for Nn if C(z) satisfies certain conditions: for instance the re-

sults of Bell et al. [4] that require C(z) to converge at its radius; or the exp-log schema of [11, Prop. IX.14,

p. 670], which requires C(z) to have a logarithmic singularity. We use them when applicable, and prove

a new result of this type, which applies when C(z) diverges with an algebraic singularity (Theorem 4).

We also study the size r(G) of the root component (the component containing the vertex 1). Let

Ā(z, v) =
∑

G∈A,G 6=∅
vr(G)−1 z|G|−1

(|G| − 1)!
= C ′(zv)A(z). (2)
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The choice of |G| − 1 instead of |G| slightly simplifies some calculations. Note that Ā(z, 1) = A′(z).
Denoting by Sn the size of the root component in Gn, we have

P(Sn = k) =
ckan−k

(

n−1
k−1

)

an
and E((Sn − 1) · · · (Sn − i)) =

[zn−i−1]C(i+1)(z)A(z)

n[zn]A(z)
. (3)

Surprisingly, this parameter has not been studied before. Our examples lead to non-gaussian limit laws

(gamma or beta, cf. Propositions 7 or 12). In fact, the form (2) of the generating function shows that this

parameter is bound to give rise to interesting limit laws, as both the location and nature of the singularity

change as v moves to 1− ε to 1+ ε. Using the terminology of [11, Sec. IX.11], a phase transition occurs.

We are currently working on a systematic study of this parameter for exponential objects.

3 Classes defined by 2-connected excluded minors

We assume here that the class A excludes at least one minor, and that all excluded minors are 2-connected.

This includes the class of forests, series-parallel graphs, planar graphs, and many more. Many results are

known in this case. The general picture is that A shares many properties with the class of forests.

Proposition 1 The series C(z) and A(z) = eC(z) are finite at their (positive) radius of convergence ρ.

Moreover, the sequence (an/n!)n is smooth, meaning that nan−1/an tends to ρ as n grows.

The probability that Gn is connected tends to 1/A(ρ), which is clearly in (0, 1). In fact, this limit is

also larger than or equal to 1/
√
e. This value is reached when A is the class of forests.

The fact that ρ > 0 is due to Norine et al. [18], and holds for any proper minor-closed class. The next

results are due to McDiarmid [16]. The fact that 1/A(ρ) ≥ 1/
√
e , or equivalently, that C(ρ) ≤ 1/2, was

proved independently in [1] and [14].

For forests, all results are well-know (see for instance [11, p. 132]). We have C(z) = T (z)−T (z)2/2,
where T (z) = zeT (z) counts rooted trees. The series T , C and A have radius ρ = 1/e, and A(ρ) =

√
e.

The nature of the singularity of C(z) at ρ depends on the class: (1 − z/ρ)3/2 for forests (and more

generally, for subcritical minor-closed classes [8]), but (1 − z/ρ)5/2 for planar graphs. We refer to [12]

for a more detailed discussion that applies to classes that exclude 3-connected minors.

Proposition 2 The random variable Nn−1 converges in law to a Poisson distribution of parameter C(ρ):

P(Nn = i+ 1) → C(ρ)i

i!eC(ρ)
.

The random variables n− Ln and n− Sn both converge to a discrete limit distribution X given by

P(X = k) =
1

A(ρ)

akρ
k

k!
. (4)

Proof: The first two results (on Nn and Ln) are due to McDiarmid [16, Cor. 1.6]. The third one is in

fact equivalent to the second (the root component is, with high probability, the largest one), but we give

here an independent proof, as we will recycle its ingredients later for some classes of graphs that avoid

non-2-connected minors. Let k ≥ 0 be fixed. By (3),

P(Sn = n− k) =
cn−kak

(

n−1
k

)

an
=

ak
k!

cn−k

an−k

(n− 1)!an−k

(n− k − 1)!an
.
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By Proposition 1, the term cn−k/an−k, which is the probability that Gn−k is connected, converges to

1/A(ρ). Moreover, the sequence an/n! is smooth, so that
(n−1)!an−k

(n−k−1)!an
converges to ρk. The result follows.

2

4 General tools: Hayman admissibility and extensions

We consider in Sections 5 to 7 minor-closed classes of graphs such that C(z) diverges at its radius of

convergence ρ. This often results in A(z) diverging rapidly at ρ, and leads us to estimate an using the

saddle point method, or rather, a black box that applies to Hayman-admissible (or H-admissible) series:

see [11, Thm. VIII.4, p. 565]. These series have useful closure properties [ibid., p. 568]. Here is one that

we did not find in the literature.

Theorem 3 Let A(z) = F (z)G(z) where F (z) and G(z) are power series with real coefficients and radii

of convergence 0 < ρF < ρG ≤ ∞. Assume that F (z) has non-negative coefficients and is H-admissible,

and that G(ρF ) > 0. Then A(z) is H-admissible.

We will also need a uniform version of Hayman-admissibility for series of the form euC(z).

Theorem 4 Let C(z) be a power series with non-negative coefficients and radius of convergence ρ. As-

sume A(z) = eC(z) has radius ρ and is H-admissible. Define

b(r) = rC ′(r) + r2C ′′(r) and V (r) = C(r)− (rC ′(r))2

rC ′(r) + r2C ′′(r)
.

Assume that, as r → ρ,

V (r) → +∞,
C(r)

V (r)3/2
→ 0, b(r)1/

√
V (r) = O(1). (5)

Then A(z, u) := euC(z) satisfies Conditions (1)–(6), (8) and (9) of [10, Def. 1]. If Nn is a sequence of

random variables such that

P(Nn = i) =
[zn]C(z)i

i![zn]eC(z)
,

then the mean and variance of Nn satisfy:

E(Nn) ∼ C(ζn), V(Nn) ∼ V (ζn), (6)

where ζ ≡ ζn is the unique solution in (0, ρ) of the saddle point equation ζC ′(ζ) = n. Moreover, the

normalized random variable
Nn−E(Nn)√

V(Nn)
converges in law to a standard normal distribution.

Proof: We carefully check the eight conditions (the only that do not come for free are (2) and (3)). As

explained in [10] just below Theorem 2, they give the estimates (6) of E(Nn) and V(Nn) and imply the

existence of a gaussian limit law. 2

We finish with a simple but useful result on products of series [5, Thm. 2].

Proposition 5 Let F (z) =
∑

n fnz
n and G(z) =

∑

n gnz
n be power series with radii of convergence

0 ≤ ρF < ρG ≤ ∞, respectively. Suppose that G(ρF ) 6= 0 and fn−1/fn approaches a limit (which is

necessarily ρF ) as n → ∞. Then [zn]F (z)G(z) ∼ G(ρF )fn.
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5 Forests of paths or caterpillars: a simple pole

Let A be a decomposable class (for instance defined by excluding connected minors), with g.f. A(z) =
exp(C(z)). Assume that C(z) has a unique dominant singularity ρ, which is an isolated simple pole:

C(z) =
α

1− z/ρ
+D(z), where D(ρ) = β (7)

and D has radius of convergence strictly larger than ρ. Of course, we assume α > 0.

Proposition 6 If the above conditions hold, then, as n → ∞,

cn ∼ n!αρ−n and an ∼ n!
α1/4eα/2+β

2
√
πn3/4

ρ−ne2
√
αn. (8)

In particular, the probability that Gn is connected tends to 0 at speed n3/4e−2
√
αn.

Proof: The asymptotic behaviour of cn follows from [11, Thm. IV.10, p. 258]. For an, we first write

A(z) = F (z)G(z) with F (z) = exp

(

α

1− z/ρ

)

and G(z) = eD(z), (9)

where G(z) has radius strictly larger than ρ. To estimate the coefficients of F , we apply the ready-to-use

results of Macintyre and Wilson [15, Eqs. (10)–(14)], according to which, for α > 0 and γ ≥ 0,

[zn]
1

(1− z)γ
exp

(

α

1− z

)

∼ α1/4eα/2

2
√
πn3/4

(n

α

)γ/2

e2
√
αn. (10)

This gives

fn := [zn]F (z) ∼ α1/4eα/2

2
√
πn3/4

ρ−ne2
√
αn.

In particular, fn−1/fn tends to ρ, so that we can apply Proposition 5 to (9) and conclude. 2

Proposition 7 Assume (7) holds.

1. The mean and variance of Nn satisfy:

E(Nn) ∼
√
αn, V(Nn) ∼

√
αn/2, (11)

and the random variable
Nn−

√
αn

(αn/4)1/4
converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n → ∞,

E(Si
n) ∼ (i+ 1)!(n/α)i/2.

Consequently, the normalized variable Sn/
√

n/α converges in distribution to a gamma(2) law, of density

xe−x on [0,∞). A local limit law also holds: for x > 0 and k = ⌊x
√

n/α⌋,

√

n/α P(Sn = k) ∼ xe−x.
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Proof: 1. We apply Theorem 4. The H-admissibility of A(z) follows from Theorem 3, using (9) and the

H-admissibility of exp(α/(1− z/ρ)) (see [11, p. 562]). Conditions (5) are then readily checked, using

C(r) ∼ α

1− z/ρ
, b(r) ∼ 2α

(1− z/ρ)3
and V (r) ∼ α

2(1− z/ρ)
.

We thus conclude that the normalized version of Nn converges in law to a standard normal distribution.

For (11), we use (6) with the saddle point estimate ζn = ρ− ρ
√

α/n+O(1/n).
2. We apply (3), with

C(i+1)(z) =
α(i+ 1)!

ρi+1(1− z/ρ)i+2
+D(i+1)(z). (12)

As in the proof of Proposition 6, we combine Proposition 5, (9) and (10) to obtain

an
(n− 1)!

E((Sn − 1) · · · (Sn − i)) = α(i+ 1)!
α1/4eα/2+β

2
√
πn3/4

(n

α

)i/2+1

ρ−ne2
√
αn.

Combined with (8), this gives the limiting ith moment of Sn. Since these moments characterize the above

gamma distribution, we conclude [11, Thm. C.2] that Sn/
√

n/α converges in law to this distribution.

For the local limit law, we simply combine the first part of (3) with (8). 2

We now apply these results to two classes for which C(z) has a simple pole: forests of paths, and forests

of caterpillars (a caterpillar is a tree made of a simple path to which leaves are attached; see Figure 1).

Proposition 8 The generating functions of paths and of caterpillars are respectively

Cp(z) =
z(2− z)

2(1− z)
and Cc(z) =

z2(ez − 1)2

2(1− zez)
+ zez − z2

2
.

For both series, Condition (7) is satisfied and Propositions 6 and 7 hold. For paths we have ρ = 1,

α = 1/2 and β = 0. For caterpillars, ρ ≃ 0.567 is the only real such that ρeρ = 1,

α =
(1− ρ)2

2(1 + ρ)
≃ 0.06 and β =

ρ
(

10 + 3 ρ− 4 ρ2 − ρ3
)

4 (1 + ρ)
2 ≃ 0.59.

For forests of paths, we have also studied the size Ln of the largest component.

Proposition 9 In forests of paths, the size of the largest component converges to a Gumbel distribution:

P

(

Ln −
√

n/2 log n
√

n/2
< x

)

→ exp

(

−e−x/2

√
2

)

.

Proof: The generating function of paths of size less than k is C [k](z) = z/2 + (z − zk)/(2(1− z)). We

then use Cauchy’s formula and a saddle point approach. 2

Graphs with maximal degree 2: a simple pole plus a logarithm. Let A be the class of graphs avoiding

the 3-star. The connected components of such graphs are paths and cycles. The series C(z) has now, in

addition to a simple pole, a logarithmic singularity at its radius. The logarithm changes the asymptotic

behaviour of the numbers an, but the other results remain unaffected. The proofs are very similar to the

above ones.
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Proposition 10 The generating function of connected graphs of A is

C(z) =
z(2− z + z2)

4(1− z)
+

1

2
log

1

1− z
.

The generating function of graphs of A is A(z) = eC(z). We have, for large n,

cn =
n!

2
+

(n− 1)!

2
and an ∼ n!

1

2
√
eπn1/2

e
√
2n.

In particular, the probability that Gn is connected tends to 0 at speed n1/2e−
√
2n.

The number of components and the size of the root component behave as in Proposition 7, with α = 1/2.

6 Excluding the diamond and the bowtie: a logarithm dominates

Let A be the class of graphs avoiding the diamond and the bowtie (shown in Figure 1). The connected

components are trees or unicyclic graphs, and have been counted a long time ago by Wright [20].

Proposition 11 Let T (z) = zeT (z) be the g.f. of rooted trees. The g.f. of connected graphs of A is

C(z) =
T

2
− 3T 2

4
+

1

2
log

1

1− T
.

The generating function of graphs of A is A(z) = eC(z). As n → ∞,

cn ∼ n!
en

4n
and an ∼ n!

1

(2e)1/4Γ(1/4)

en

n3/4
. (13)

In particular, the probability that Gn is connected tends to 0 at speed n−1/4 as n → ∞.

Proof: A connected graph of A is either an (unrooted) tree (with g.f. T − T 2/2), or consists of a cycle,

in which each vertex is replaced by a rooted tree. The generating function of cycles is

Cyc(z) =
1

2

∑

n≥3

zn

n
=

1

2

(

log
1

1− z
− z − z2

2

)

, (14)

and this gives the expression of C(z). We then estimate cn and an via singularity analysis [11, VI.4]. 2

Proposition 12 1. The mean and variance of Nn satisfy E(Nn) ∼ V(Nn) ∼ log n/4, and the random

variable
Nn−logn/4√

logn/4
converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n → ∞,

E(Si
n) ∼

Γ(5/4)i!

Γ(i+ 5/4)
ni.
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Consequently, the normalized variable Sn/n converges in distribution to a beta law, of density (1 −
x)−3/4/4 on [0, 1]. A local limit law also holds: for x ∈ (0, 1) and k = ⌊xn⌋,

nP(Sn = k) ∼ 1

4
(1− x)−3/4.

3. The normalized variable Ln/n converges in law to the first component of a Poisson-Dirichlet distribu-

tion of parameter 1/4.

Proof: Once the singular expansion of C(z) is obtained, the first result follows from [11, Prop. IX.14,

p. 670]. To study the moments of Sn, we apply (3). Using T (z) = zeT (z), we obtain, for i ≥ 1,

C(i+1)(z) ∼ i!

4

(

e

1− ze

)i+1

.

The estimate of the ith moment of Sn then follows again from singularity analysis. Since these moments

characterize the above beta distribution, we conclude [11, Thm. C.2] that Sn/n converges in law to this

distribution. For the local limit law, we start from (3), and use (13).

Finally, the third result follows from general results on logarithmic structures [2]. 2

Remark. A subdominant term in
√
1− ze occurs in the expansion of C(z), but has no influence on the

asymptotic results. They would be the same (with possibly different constants) for any C(z) having a

purely logarithmic singularity.

7 Excluding the bowtie: a singularity in (1− z/ρ)−1/2

We now denote by A the class of graphs avoiding the bowtie (shown in Figure 1).

Proposition 13 Let T (z) = zeT (z) be the g.f. of rooted trees. The g.f. of connected graphs in A is

C(z) =
T 2
(

1− T + T 2
)

eT

1− T
+

1

2
log

(

1

1− T

)

+
T
(

12− 54T + 18T 2 − 5T 3 − T 4
)

24(1− T )
.

As n → ∞,

cn ∼ n!
e− 5/4√

2π

en√
n

and an ∼ n!
(e− 5/4)1/6e19/8−11e/3

√
6π

en

n2/3
e3(e−5/4)2/3n1/3/2.

Proof: This is the most delicate enumeration result of the paper. We have

C(z) = T (z)− T (z)2/2 + C̄(T (z)),

where C̄(z) counts graphs with minimal degree 2 avoiding the bowtie. After studying the properties of

these graphs, we conclude that they are either cycles, or K4 with one edge possibly replaced by a chain of

vertices of degree 2, or the graphs of Figure 2. Counting these various classes gives C̄(z), and thus C(z).
2



608 M. Bousquet-Mélou, and K. Weller

at least one vertex

≥ 2

at least two vertices

. . . . . .

Fig. 2: Some graphs avoiding the bowtie. The white vertex is optional.

Proposition 14 1. The mean and variance of Nn satisfy:

E(Nn) ∼ (e− 5/4)2/3n1/3, V(Nn) ∼
2

3
(e− 5/4)2/3n1/3,

and the random variable
Nn−E(Nn)√

V(Nn)
converges in law to a standard normal distribution.

2. For i ≥ 0, the ith moment of Sn satisfies, as n → ∞,

E(Si
n) ∼

Γ(i+ 3/2)

Γ(3/2)

(

2n2/3

(e− 5/4)2/3

)i

.

Consequently, the normalized variable (e−5/4)2/3Sn/(2n
2/3) converges in distribution to a gamma(3/2)

law, of density 2
√
xe−x/

√
π on [0,∞). A local limit law also holds: for x > 0 and k = ⌊x 2n2/3

(e−5/4)2/3
⌋,

2n2/3

(e− 5/4)2/3
P(Sn = k) ∼ 2

√

x

π
e−x.

8 When trees dominate: C(z) converges at ρ
Let A be a decomposable class of graphs (for instance, a class defined by excluding connected minors)

with set of components C. Assume that C contains all trees (counted by T − T 2/2), and that

C(z) = T (z)− T (z)2/2 +D(z), (15)

where D(z) has radius strictly larger than 1/e (the radius of T ). We say that A is dominated by trees.

Some examples are presented below. In this case, the properties that hold for forests (Section 3) still hold,

except that the limit of cn/an is now smaller than 1/
√
e.

Proposition 15 Assume A is dominated by trees. As n → ∞,

cn ∼ n!
en√

2πn5/2
and an ∼ A(1/e)cn.

In particular, the probability that Gn is connected tends to 1/A(1/e) = e−1/2−D(1/e).

The asymptotic behaviours of Nn, Ln and Sn are described by Proposition 2, with ρ = 1/e.

Proof: The asymptotic behaviours of cn and an are obtained via singularity analysis. For Nn, we can

either start from (1) and apply singularity analysis, or use directly [4, Thm. 2]. For Sn, the two ingredients

used in the proof of Proposition 2, namely smoothness of an/n! and convergence of cn/an, still hold here.

For Ln, we use the fact that the root component is with high probability the biggest one. 2

We now give examples where trees dominate.
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Proposition 16 Let k ≥ 1. Let A be a minor-closed class of graphs containing all trees, but not the

k-spoon (shown in Figure 1). Then A is dominated by trees, and the results of Proposition 15 apply.

Proof: We partition the set C of connected graphs of A into three subsets: the set of trees, counted by

T − T 2/2, the set C1 of unicyclic graphs (counted by C1), and finally the set C2 containing graphs with

at least two cycles (counted by C2). We prove that C1 has radius strictly larger than 1/e, and that C2 is

entire. 2

Proposition 17 Let Tk be the g.f. of rooted trees of height less than k. That is, Tk = zeTk−1 with T1 = z.

Let A(k) be the class of graphs avoiding the diamond, the bowtie and the k-spoon. Then (15) holds with

D(z) ≡ D(k)(z) =
1

2

(

log
1

1− Tk(z)
− Tk(z)−

Tk(z)
2

2

)

.

The class A(k) is dominated by trees, and Proposition 15 applies. In particular, the probability that a

random graph of A(k)
n is connected tends to 1/A(k)(1/e) as n → ∞. This value tends to 0 as k increases.

By specializing the proof of Proposition 13, we have also counted graphs avoiding the 2-spoon.

Proposition 18 The g.f. of connected graphs avoiding the 2-spoon satisfies (15) with

D(z) =
1

2

(

log
1

1− zez
− zez − z2e2z

2

)

+
z4

4!
+ z2e2z

(

ez − 1− z − z2

4

)

.

9 Final comments

The nature of the dominant singularities of C(z) is clearly a central parameter of the class, as the

quantities Nn and Sn seem to depend largely on it (see Table 1). Is it possible to determine the nature of

this singularity from the properties of the excluded minors? For instance, C(ρ) is finite when all excluded

minors are 2-connected, but Section 8 shows that this happens as well with non-2-connected minors.

Which excluded minors give rise to a simple pole in C(z)? to a logarithmic singularity? to a singularity

in (1− z/ρ)−1/2?

Other parameters. We have focussed on certain parameters that are well understood for 2-connected

excluded minors. But others have been investigated in different contexts: the number of edges, the size of

the largest 2-connected component, the distribution of vertex degrees [6, 8, 9, 12]. When specialized to

the theory of minor-closed classes, these papers generally assume that all excluded minors are (at least)

2-connected. Including (some of) these parameters in our results may be the topic of future work.
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