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The unreasonable ubiquitousness of
quasi-polynomials†

Kevin Woods

Oberlin College, Oberlin, Ohio, USA

Abstract. A function g, with domain the natural numbers, is a quasi-polynomial if there exists a period m and polyno-
mials p0, p1, . . . , pm−1 such that g(t) = pi(t) for t ≡ i mod m. Quasi-polynomials classically – and “reasonably” –
appear in Ehrhart theory and in other contexts where one examines a family of polyhedra, parametrized by a variable
t, and defined by linear inequalities of the form a1x1 + · · ·+ adxd ≤ b(t).

Recent results of Chen, Li, Sam; Calegari, Walker; and Roune, Woods show a quasi-polynomial structure in several
problems where the ai are also allowed to vary with t. We discuss these “unreasonable” results and conjecture a gen-
eral class of sets that exhibit various (eventual) quasi-polynomial behaviors: sets St that are defined with quantifiers
(∀, ∃), boolean operations (and, or, not), and statements of the form a1(t)x1 + · · · + ad(t)xd ≤ b(t), where ai(t)
and b(t) are polynomials in t. These sets are a generalization of sets defined in the Presburger arithmetic. We prove
several relationships between our conjectures, and we prove several special cases of the conjectures.

Résumé. Une fonction g, ayant les entiers naturels pour domaine, est un quasi-polynôme si il existe un entier m et
des ploynômes p0, p1, . . . , pm−1 tels que g(t) = pi(t) pour t ≡ i mod m. Les quasi-polynômes apparaissent dans
la théorie d’Erhart, ainsi que dans d’autres contextes où l’on s’intéresse à des familles de polyhèdres paramétrisées
par une variable t, et définies par des inégalités linéaires de la forme a1x1 + · · ·+ adxd ≤ b(t).

Des résultats récents de Chen, Li, Sam; Calegari, Walker; et Roune, Woods exhibent une structure de quasi-polynôme
dans plusieurs problèmes où les ai peuvent aussi varier en fonction de t. Nous nous intéressons à ces cas ”non-
raisonnables” et nous conjecturons l’existence d’une classe générale d’ensembles qui exhibent divers (possiblement)
comportement de type quasi-polynômes : il s’agit des ensembles St qui sont définis en termes de quantifieurs (∀,
∃), d’opérateurs booléens (conjonction, disjonction, négation), et d’énoncés de la forme a1(t)x1 + · · ·+ ad(t)xd ≤
b(t), où ai(t) et b(t) sont des polynômes en la variable t. Ces ensembles généralisent des ensembles définis dans
l’arithmétique de Presburger. Nous démontrons plusieurs relations entre nos conjectures, ainsi que plusieurs cas
spéciaux de ces mêmes conjectures.
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1 Reasonable Ubiquitousness
In this section, we survey classical appearances of quasi-polynomials (though Section 1.3 might be new
even to readers already familiar with Ehrhart theory). In Section 2, we survey some recent results
where the appearance of quasi-polynomials is more surprising. In Section 3, we make several conjec-
tures generalizing these “unreasonable” results. We state theorems relating these conjectures and state
theorems proving certain cases. In particular, we conjecture that any family of sets St – defined with
quantifiers (∀, ∃), boolean operations (and, or, not), and statements of the form a(t) · x ≤ b(t) (where
a(t) ∈ Q[t]d, b(t) ∈ Q[t], and · is the standard dot product) – exhibits eventual quasi-polynomial be-
havior, as well as rational generating function behavior. Of course, reasonable people may disagree on
what is unreasonable; the title is a play on “The unreasonable effectiveness of mathematics in the natural
sciences” Wigner (1960).

For reasons of space, proofs are omitted here; they are in the full version of this paper, available on the
author’s website. We use bold letters such as x to indicate multi-dimensional vectors.

Definition 1 A function g : N → Q is a quasi-polynomial if there exists a period m and polynomials
p0, p1, . . . , pm−1 ∈ Q[t] such that

g(t) = pi(t), for t ≡ i mod m.

Example 2

g(t) =

⌊
t+ 1

2

⌋
=

{
t
2 if t even,
t+1
2 if t odd,

is a quasi-polynomial with period 2.

This example makes it clear that the ubiquitousness of quasi-polynomials shouldn’t be too surprising:
anywhere there are floor functions, quasi-polynomials are likely to appear. We will generally be concerned
with integer-valued quasi-polynomials, those quasi-polynomials whose range lies in Z. Note that Example
2 demonstrates that such quasi-polynomials may still require rational coefficients.

1.1 Ehrhart theory
Perhaps the most well-studied quasi-polynomials are the Ehrhart quasi-polynomials:

Theorem 3 (Ehrhart, 1962) SupposeP is a polytope (bounded polyhedron) whose vertices have rational
coordinates. Let g(t) be the number of integer points in tP , the dilation of P by a factor of t. Then g(t)
is a quasi-polynomial, with period the smallest m such that mP has integer coordinates.

Example 4 Let P be the triangle with vertices (0, 0),
(
1
2 , 0
)
, and

(
1
2 ,

1
2

)
. Then

g(t) = #(tP ∩ Z2) =

(
bt/2c+ 1

)(
bt/2c+ 2

)
2

=

{
(t+ 2)(t+ 4)/8 if t even,
(t+ 1)(t+ 3)/8 if t odd,

(1)

is a quasi-polynomial with period 2.
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t ≤ s ≤ 2t 0 ≤ 2t ≤ s 0 ≤ s ≤ t

Fig. 1: Polyhedra defined in Example 5 for various (s, t) ∈ N2.

Writing tP from this example as

{(x, y) ∈ R2 : 2x ≤ t, y − x ≤ 0, −y ≤ 0}

suggests a way to generalize this result: for t ∈ Nn, let St be the set of integer points, x ∈ Zd, in a
polyhedron defined with linear inequalities of the form a · x ≤ b(t), where a ∈ Zd and b(t) is a degree 1
polynomial in t.

Example 5 Let

Ss,t =
{

(x, y) ∈ Z2 : 2y − x ≤ 2t− s, x− y ≤ s− t, x, y ≥ 0
}
.

For a fixed (s, t), Ss,t is the set of integer points in a polyhedron in R2. As (s, t) varies, the “constant”
term of these inequalities change, but the coefficients of x and y do not; in other words, the normal
vectors to the facets of the polyhedron do not change, but the facets move “in and out”. In fact, they can
move in and out so much that the combinatorial structure of the polyhedron changes. Figure 1 shows the
combinatorial structure for different (s, t) ∈ N2. Using various methods, Beck (2004) and Verdoolaege
and Woods (2008) compute that

g(s, t) = |Ss,t| =


s2

2 − b
s
2cs+ s

2 + b s2c
2 + b s2c+ 1 if t ≤ s ≤ 2t,

st− b s2cs−
t2

2 + t
2 + b s2c

2 + b s2c+ 1 if 0 ≤ 2t ≤ s,
t2

2 + 3t
2 + 1 if 0 ≤ s ≤ t.

In this example, the function g(s, t) is a quasi-polynomial (in this multivariate case, one must con-
sider both s and t modulo some periods), at least piecewise. Sturmfels (1995) effectively proved this
generalization of Ehrhart theory:

Theorem 6 Let St be the set of integer points, x ∈ Zd, in a polyhedron defined with linear inequalities
a · x ≤ b(t), where a ∈ Zd and b(t) is a degree 1 polynomial in Z[t]. Then g(t) = |St| is a piecewise-
defined quasi-polynomial, where the finite number of pieces are polyhedral regions of parameter space.

Sections 2 and further will predominantly be concerned with univariate functions. Being a univariate
piecewise quasi-polynomial g : N→ Q is equivalent to eventually being a quasi-polynomial; that is, there
exists a T such that for all t ≥ T , g(t) agrees with a quasi-polynomial.
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1.2 Generating functions
Classic proofs of Ehrhart’s Theorem (Theorem 3) use generating functions. To prove that a function g(t)
is a quasi-polynomial of period m, it suffices (see Section 4.4 of Stanley, 2012) to prove that the Hilbert
series

∑
t∈N g(t)yt can be written as a rational function of the form

p(y)

(1− ym)d
,

where p(y) is a polynomial of degree less than md. For g(t) = |tP | with P the triangle in Example 4, we
can see that ∑

t∈N
g(t)yt = 1 + y + 3y2 + 3y3 + 6y4 + · · · = 1 + y

(1− y2)3
. (2)

Indeed, these proofs of Ehrhart’s Theorem start by considering the generating function
∑

t∈N,s∈tP∩Zd xsyt

(where xs = xs11 · · ·x
sd
d ) and substituting in x = (1, . . . , 1) to get the Hilbert series. For P in Example 4,∑

t∈N,s∈tP∩Zd

xsyt = 1 + y + (1 + x1 + x1x2)y2 + (1 + x1 + x1x2)y3 + (1 + · · ·+ x21x
2
2)y4 + · · ·

=
1 + y

(1− y2)(1− x1y2)(1− x1x2y2)
,

as can be checked by expanding as a product of infinite geometric series. Substituting x1 = x2 = 1 yields
the Hilbert series in Equation 2.

Definition 7 We call any generating function or Hilbert series a rational generating function if it can be
written in the form

p(x)

(1− xb1) · · · (1− xbk)
,

where p is a Laurent polynomial over Q and bi ∈ Zd are lexicographically positive (first nonzero entry is
positive), .

While we will generally be assuming that the generating functions are for subsets of Nd, we need bi to
be lexicographically positive rather than simply in Nd \ {0} for examples like the following:

Example 8 Let S =
{

(x, y) ∈ N2 : x+ y = 1000
}

. While y1000 + xy999 + · · ·+ x1000 is a legitimate
generating function, it makes more sense to write it as

y1000 − x1001y−1

1− xy−1
.

If b is lexicographically negative, then

1

1− xb
=
−x−b

1− x−b

with −b is lexicographically positive. Having b lexicographically positive guarantees that 1/(1− xb) =

1 + xb + x2b + · · · is the Laurent series convergent in a neighborhood of x = (e−ε, e−ε
2

, . . . , e−ε
d) for

sufficiently small ε.
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In Section 3, we will use a different generating function: for fixed t, examine the generating function∑
s∈tP∩Zd xs. In the triangle from Example 4, this gives us(

1 + x1 + x21 + · · ·+ x
bt/2c
1

)
+
(
x1 + x21 + ·+ x

bt/2c
1

)
x2 + · · ·+

(
x
bt/2c
1

)
x
bt/2c
2 .

In general, powerful tools such as Brion’s Theorem (Brion, 1988) help us compute a compact form for
this generating function; see Verdoolaege and Woods (2008) for more details. In this example, we can
verify directly, by expanding the fractions as products of geometric series, that

∑
s∈tP∩Zd

xs =
1

(1− x1)(1− x1x2)
− x

bt/2c+1
1

(1− x1)(1− x2)
+

x
bt/2c+1
1 x

bt/2c+2
2

(1− x2)(1− x1x2)
. (3)

Given this generating function, we can count the number of integer points in tP by substituting in
x = (1, . . . , 1). Substituting x1 = x2 = 1 into Equation 3, we see that (1, 1) is a pole of these fractions.
Fortunately, getting a common denominator and applying L’Hôpital’s rule to find the limit as x1 and x2
approach 1 will work, and it is evident that the differentiation involved in L’Hôpital’s rule will yield a
quasi-polynomial in t as the result; careful calculation will show that it matches Equation 1.

1.3 Presburger arithmetic
So far, our examples have been integer points in polyhedra. A key property of such sets is that they can be
defined without quantifiers. However, even for sets defined with quantifiers, we end up with reasonable
appearances of quasi-polynomials.

Definition 9 A Presburger formula is a boolean formula with variables in N that can be written using
quantifiers (∃,∀), boolean operations (and, or, not), and linear (in)equalities in the variables. We write a
Presburger formula as F (u) to indicate the the free variables u (those not associated with a quantifier).

Presburger (1929) (see Presburger, 1991, for a translation) examined this first order theory and proved
it is decidable.

Example 10 Given t ∈ N, let

St =
{
x ∈ N : ∃y ∈ N, 2x+ 2y + 3 = 5t and t < x ≤ y

}
.

We can compute that

St =

{{
t+ 1, t+ 2, . . . ,

⌊
5t−3
4

⌋}
if t odd, t ≥ 3,

∅ else.

This set has several properties, cf. Section 3:

1. The set of t such that St is nonempty is {3, 5, 7, . . .}. This set is eventually periodic.

2. The cardinality of St is

St =

{⌊
5t−3
4

⌋
− t if t odd, t ≥ 3,

0 else,

which is eventually a quasi-polynomial of period 4.
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3. When St is nonempty, we can obtain an element of St with the function x(t) = t + 1, and x(t) is
eventually a quasi-polynomial.

3a. More strongly, when St is nonempty, we can obtain the maximum element of St with the function
x(t) = b(5t− 3)/4c, and x(t) is eventually a quasi-polynomial.

4. We can compute the generating function∑
s∈St

xs =

{
xt+1 + xt+2 + · · ·+ xb(5t−3)/4c if t odd, t ≥ 3,
0 else,

=


xt+1 − xb(5t−3)/4)c+1

1− x
if t odd, t ≥ 3,

0 else.

We see that, for fixed t, this generating function is a rational function. Considering each residue
class of t mod 4 separately, the exponents in the rational function can eventually be written as
polynomials in t.

Versions of these properties always hold for sets defined in Presburger arithmetic. For example, Woods
(2012) gave several properties of Presburger formulas that hold even for sets defined with multivariate
parameters, t ∈ Nn:

Theorem 11 (from Theorems 1 and 2 of Woods, 2012) Suppose F (s, t) is a Presburger formula, with
s and t collections of free variables. Then

• g(t) = #
{
s ∈ Nd : F (s, t)

}
is a piecewise quasi-polynomial,

•
∑

s,t:F (s,t) x
syt is a rational generating function, and

•
∑

t∈Nn g(t)yt is a rational generating function.

Property 4 from Example 10 can be proved in general by using Theorem 11 to write
∑

s,t:F (s,t) x
syt as

a rational generating function and applying Theorem 29. The proof of Theorem 26 then shows that all of
the other properties follow, though the exact definitions of these properties are only stated in Section 3 for
a univariate parameter, t ∈ N.

2 Unreasonable Ubiquitousness
We now turn to the inspiration for this paper. Three recent results exhibit quasi-polynomial behavior,
in situations that seem “unreasonable”. In particular, all three involve sets St defined by inequalities
a(t) · x ≤ b(t), where a(t) is a polynomial in t; that is, the normal vectors to the facets change as t
changes. First we give an example showing that, unlike in Section 1, it is now important that we restrict
to only one parameter, t.

Example 12 Define Ss,t =
{

(x, y) ∈ N2 : sx+ ty = st
}

. Then Ss,t is an interval in Z2 with endpoints
(t, 0) and (0, s), and

|Ss,t| = gcd(s, t) + 1.

There is no hope for simple quasi-polynomial behavior here, as the cardinality depends on the arithmetic
relationship of s and t.
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2.1 Three results
This first result most directly generalizes Ehrhart Theory. Chen, Li, and Sam (2012) prove that, if St is
the set of integer points in a polytope defined by inequalities of the form a(t) · x ≤ b(t), then |St| is
eventually a quasi-polynomial.

Theorem 13 (Theorem 2.1 of Chen et al., 2012) Let A(t) be an r × d matrix, and b(t) be a column
vector of length r, all of whose entries are in Z[t]. Assume Pt = {x ∈ Rd : A(t)x ≤ b(t)} is eventually
a bounded set (a polytope). Then |Pt ∩ Zd| is eventually a quasi-polynomial.

Note that this can be equivalently phrased (Theorem 1.1 of Chen et al., 2012) using equalities A(t)x =
b(t), where x is constrained to be nonnegative, or it can be phrased (Theorem 1.4 of Chen et al., 2012) by
listing the vertices of Pt as rational functions of t.

Calegari and Walker (2011) were similarly concerned with the integer points in polyhedra defined by
A(t)x ≤ b(t). Rather than counting |Pt ∩Zd|, they wanted to find the integer hull of Pt, that is, the set of
vertices of the convex hull of Pt ∩ Zd.

Theorem 14 (Theorem 3.5 of Calegari and Walker, 2011) Let vi(t) be vectors in Qd whose coordi-
nates are rational functions of size O(t), and let Pt be the convex hull of the vi(t). Then there exists a
modulus m and functions pij : N → Zd with polynomial coordinates such that, for 0 ≤ i < m and for
sufficiently large t ≡ i mod m, the integer hull of Pt is {pi1(t),pi2(t), . . . ,piki(t)}.

This theorem could be similarly phrased using facet definitions of the polyhedra, rather than vertex
definitions. That the vertices are O(t) (grow no faster that ct for some constant c) is important for the
proof, though Calegari and Walker conjecture that the theorem still holds without this restriction.

A third recent result concerns the Frobenius number.

Definition 15 Given a1, . . . , ad ∈ N, let S be the semigroup generated by the ai, that is,

S = {a ∈ N : ∃λ1, . . . , λd ∈ N, a = λ1a1 + · · ·+ λdad}.

If the ai are relatively prime, then S contains all sufficiently large integers, and the Frobenius number is
defined to be the largest integer not in S.

Now we let ai = ai(t) vary with t. Roune and Woods (2012) prove that, if the ai(t) are linear functions
of t, then the Frobenius number is eventually a quasi-polynomial, and they conjecture that this is true if
the ai(t) are any polynomial functions of t:

Theorem 16 Let ai(t) ∈ Z[t] have degree at most one and be eventually positive. Then the set of t
such that the ai(t) are relatively prime is eventually periodic, and, for such t, the Frobenius number is
eventually given by a quasi-polynomial.

Example 17 Consider a1(t) = t, a2(t) = t+ 3. These are relatively prime exactly when t ≡ 1, 2 mod 3.
Since there are only two generators, a well-known formula (seemingly due to Sylvester, 1884) gives that
the Frobenius number is

a1a2 − a1 − a2 = t2 + t− 3.

Note that Theorem 16 utilizes sets defined with quantifiers; Presburger arithmetic seems a good place
to look for generalizations encompassing these three results.
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2.2 Common tools
Each of these three results has their own method for proving quasi-polynomial behavior, but there are
several common tools needed. Chen et al. (2012) and Calegari and Walker (2011) independently prove
Theorems 18 through 22, and Calegari and Walker (2011) prove Theorem 23.

Theorem 18 (Division Algorithm) Given f(t), g(t) integer-valued polynomials,

1. if deg g > 0, there exist integer-valued quasi-polynomials q1(t) and r1(t) such that f(t) = q1(t)g(t)+
r1(t), with deg r1 < deg g, and

2. if g 6= 0, there exist integer-valued quasi-polynomials q2(t) and r2(t) such that f(t) = q2(t)g(t) +
r2(t), with eventually 0 ≤ r2(t) < |g(t)|.

These are both useful results, and only slightly different. For example, suppose f(t) = 2t − 3 and
g(t) = t. Then Statement 1 is a traditional polynomial division algorithm: f = 2g + −3. Statement
2, however, is a numerical division algorithm: f = 1g + (t − 3), and the remainder t − 3 is between 0
and g as long as t ≥ 3. In other words, if we have found q1 and r1, but we eventually have r1(t) < 0,
then we should use quotient q2 = q1 − sgn(g) and remainder r2 = |g| + r1 instead, as eventually
0 ≤ |g(t)|+ r1(t) < |g(t)|.

The main subtlety in proving Statement 1 of this theorem is the following: Suppose f(t) = t2 + 3t
and g(t) = 2t + 1. Then the leading coefficient of g does not divide the leading coefficient of f , and the
traditional polynomial division algorithm would produce quotients that are not integer-valued. Instead,
we look at tmodulo the leading coefficient of g; for example, if t = 2s+1, substituting gives f(2s+1) =
4s2 + 10s+ 3 and g(2s+ 1) = 4s+ 3, and now the leading term does divide evenly.

The division algorithm in hand, one can prove some stronger results:

Theorem 19 (Euclidean Algorithm and gcds) Let f and g be integer-valued quasi-polynomials. Then
there exists integer-valued quasi-polynomials p(t), q(t), and d(t) such that gcd

(
f(t), g(t)

)
= d(t) and

d(t) = p(t)f(t) + q(t)g(t).

This is obtained by repeated applications of the division algorithm.

Example 20

gcd(2t+ 1, 5t+ 6) = gcd(t+ 4, 2t+ 1) = gcd(7, t+ 4) =

{
7 if t ≡ 3 mod 7,
1 else.

Similarly, repeated application of the Euclidean algorithm can produce the Hermite or Smith normal
forms of matrices. We won’t define those here, but they are important, for example, in producing a basis
for lower-dimensional sublattices of Zd (see Newman, 1972).

Theorem 21 (Hermite/Smith Normal Forms) Given a matrix A(t) with integer-valued quasi-polyno-
mial entries, the Hermite and the Smith Normal forms, as well as their associated change-of-basis matri-
ces, also have quasi-polynomial entries.

The following theorem is obvious, but is repeatedly used.

Theorem 22 (Dominance) Suppose f, g ∈ Q[t] with f 6= g. Then either eventually f(t) > g(t) or
eventually g(t) > f(t).
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Repeated use of this property, for example, shows that the combinatorial structure of a polyhedron Pt

eventually stabilizes, when Pt is defined by A(t)x ≤ b(t).
Rational functions commonly appear in these results. For example, if a polyhedron is defined by

A(t)x ≤ b(t), a vertex will be a point where several of these inequalities are equalities, i.e., the solu-
tion to some A′(t)x = b′(t), where A′(t) is a full-rank d × d matrix of polynomials in t. Solving for x
using the adjunct matrix of A′ will result in x(t) given as a rational function of t. For large t, the behavior
of a rational function is predictable:

Theorem 23 (Rounding) Let f(t), g(t) ∈ Z[t]. Then f(t)/g(t) converges to a polynomial, and bf(t)/g(t)c
is eventually a quasi-polynomial.

3 Conjectures
Let St ⊆ Nd be a family of subsets of natural numbers. We now discuss some properties that it would be
nice (though unreasonable!) for such sets to have; cf. Example 10.

Property 1: The set of t such that St is nonempty is eventually periodic.

This is the weakest of the properties we will discuss, but an important one, as it is related to the decision
problem – “Is there a solution?”

Property 2: There exists a function g : N→ N such that, if St has finite cardinality, then g(t) = |St|, and
g(t) is eventually a quasi-polynomial. The set of t such that St has finite cardinality is eventually
periodic.

This is the property found in Theorem 13, where St is the set of integer points in a polytope defined by
inequalities a(t) · x ≤ b(t). Theorems 14 and 16, on the other hand, are not about counting points but
about finding points:

Property 3: There exists a function x : N → Nd such that, if St is nonempty, then x(t) ∈ St, and the
coordinate functions of x are eventually quasi-polynomials. The set of t such that St is nonempty
is eventually periodic.

This function x(t) acts as a certificate that the set is nonempty. But we may want to go further and pick
out particular elements of St:

Property 3a: Given c ∈ Zd, there exists a function x : N → Nd such that, if maxy∈St
c · y exists, then

it is attained at x(t) ∈ St, and the coordinate functions of x are eventually quasi-polynomials. The
set of t such that the maximum exists is eventually periodic.

This corresponds to Theorem 16, where we want to find the Frobenius number, the maximum element of
the complement of the semigroup. On the other hand, we may want to list multiple elements of the set:

Property 3b: Fix k ∈ N. There exist functions x1, . . . ,xk : N → Nd such that, if |St| ≥ k, then
x1(t), . . . ,xk(t) are distinct elements of St, and the coordinate functions of xi are eventually quasi-
polynomials. The set of t such that |St| ≥ k is eventually periodic.
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If there is a uniform bound on |St|, then this property can be used to enumerate all elements of St, for all
t. This is the content of Theorem 14. Property 2 is about counting all solutions and Properties 3/3a/3b are
about obtaining specific solutions, and so they seem somewhat orthogonal to each other. The following
property, we shall see, unifies them:

Property 4: There exists a period m such that, for t ≡ i mod m,

∑
s∈St

xs =

∑ni

j=1 αijx
qij(t)

(1− xbi1(t)) · · · (1− xbiki
(t))

,

where αij ∈ Q, and the coordinate functions of qij ,bij : N→ Zd are polynomials with the bij(t)
lexicographically positive.

For what sets St can we hope for these properties to hold? Here is a candidate:

Definition 24 A family of sets St is a parametric Presburger family if they can be defined over the natural
numbers using quantifiers, boolean operations, and inequalities of the form a(t)·x ≤ b(t), where b ∈ Z[t]
and a ∈ Z[t]d.

We conjecture that these properties do, in fact, hold for any parametric Presburger family:

Conjecture 25 Let St be a parametric Presburger family. Then Properties 1, 2, 3, 3a, 3b, and 4 all hold.

Note that one can define a family St of subsets of Zd rather than of Nd, though one must be more
careful when talking about generating functions. For example, the set Z has generating function

· · ·+ x−1 + 1 + x1 + x2 + · · · = x−1

1− x−1
+

1

1− x
= − 1

1− x
+

1

1− x
= 0.

See, for example, Barvinok (2008) for more details.
As evidence that Property 4 is interesting, we will show that it generalizes both 2 and 3/3a/3b:

Theorem 26 Let St be any family of subsets of Nd. We have the following implications among possible
properties of St.

2
�%

4

(0

+3

+3

3a +3 3 +3 1

3b

<D

As a final relationship between these properties, we note that, for the class of parametric Presburger
families, 3, 3a, and 3b are equivalent:

Theorem 27 Suppose all parametric Presburger families have Property 3. Then all parametric Pres-
burger families have Properties 3a and 3b.

Theorem 27 is a weaker implication than Theorem 26, which holds for a single family St in isolation. To
prove that 3 “implies” 3a and 3b, on the other hand, we will need to create new families S′t using additional
quantifiers or boolean operators, and we need to know that these new families still have Property 3.

Finally, we give evidence that these properties might actually hold. We can show that they all hold for
two broad classes of parametric Presburger families:
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Theorem 28 Suppose St is a parametric Presburger family such that either

(a) St is defined without using any quantifiers, or

(b) St is defined using only inequalities of the form a ·x ≤ b(t), where b(t) is a polynomial (that is, the
normal vector, a, to the hyperplane must be fixed).

Then Properties 1, 2, 3, 3a, 3b, and 4 all hold.

We isolate a piece of the proof of Part (b), in order to point out that Property 4 is a weaker property
than we might hope for, but seems to be as strong a property as we can get. Indeed, we might hope that∑

t∈N,s∈St
xsyt is a rational generating function. Theorem 11 shows that this is true for sets defined in

the normal Presburger arithmetic, and the following theorem shows that this implies Property 4.

Theorem 29 Suppose Sp, for p ∈ Nn, is a family of subsets of Nd. If
∑

p∈Nn,s∈Sp
xsyp is a rational

generating function, then there is a finite decomposition of Nn into pieces of the form P ∩ Zn (with P a
polyhedron) such that, considering the p in each piece separately,

∑
s∈Sp

xs =
∑
i

εi
xqi(p)

(1− xbi1) · · · (1− xbiki )
,

where εi = ±1, bij ∈ Zd are lexicographically positive, and the coordinate functions of qi : Nn → Zd

are degree 1 quasi-polynomials in p.

In general, however,
∑

t∈N,s∈St
xsyt will not be a rational generating function:

Example 30 Let St be the set {(s1, s2) ∈ N2 : ts1 = s2}. Then∑
s∈St

xs = 1 + x1x
t
2 + x21x

2t
2 + · · · = 1

1− x1xt2

is a rational generating function with exponents depending on t, so Property 4 is satisfied. Nevertheless,

∑
t∈N,s∈St

xsyt =
1

1− x1
+

y

1− x1x2
+

y2

1− x1x22
+ · · ·

cannot be written as a rational function.

To prove that it cannot be so written, note that the set
{

(s1, s2, t) : s ∈ St

}
cannot be written as a

finite union of sets of the form P ∩ (λ + Λ), where P is a polyhedron, λ ∈ Z3 and Λ ⊆ Z3 is a lattice;
Theorem 1 of Woods (2012) then implies that

∑
t∈N,s∈St

xsyt is not a rational generating function.
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Danny Calegari and Allen Walker. Integer hulls of linear polyhedra and scl in families. preprint, 2011.
URL http://arxiv.org/abs/1011.1455.

Sheng Chen, Nan Li, and Steven V. Sam. Generalized Ehrhart polynomials. Trans. Amer. Math. Soc., 364
(1):551–569, 2012. URL http://dx.doi.org/10.1090/S0002-9947-2011-05494-2.
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