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Gelfand Models for Diagram Algebras:
extended abstract

Tom Halverson†

Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105 USA

Abstract. A Gelfand model for a semisimple algebra A over C is a complex linear representation that contains each
irreducible representation of A with multiplicity exactly one. We give a method of constructing these models that
works uniformly for a large class of combinatorial diagram algebras including: the partition, Brauer, rook monoid,
rook-Brauer, Temperley-Lieb, Motzkin, and planar rook monoid algebras. In each case, the model representation is
given by diagrams acting via “signed conjugation” on the linear span of their vertically symmetric diagrams. This
representation is a generalization of the Saxl model for the symmetric group, and, in fact, our method is to use the
Jones basic construction to lift the Saxl model from the symmetric group to each diagram algebra. In the case of the
planar diagram algebras, our construction exactly produces the irreducible representations of the algebra.

Résumé. Un modèle de Gelfand pour une algèbre semi-simple A sur C est une représentation linéaire complexe qui
contient chaque représentation irréductible de A avec multiplicité exactement un. Nous fournissons une méthode
de construction explicite de ces modèles qui fonctionne de manière uniforme pour une grande classe d’algèbres
de schéma combinatoire, y compris: la partition, Brauer, rook-monoid, rook-Brauer, Temperley-Lieb, Motzkin, et
algèbres planaires rook monoid. En chaque cas, la représentation du modèle est donnée par les diagrammes agissant
par “conjugaison signé” sur l’espace engendré par les diagrammes verticalement symétriques. Cette représentation
est une généralisation du modèle Saxl pour le groupe symétrique, et, en fait, notre méthode est d’utiliser le “Jones
basic construction” pour étendre le modèle Saxl du groupe symétrique à chaque algèbre diagramme. Dans le cas des
algèbres de diagrammes planaires, notre construction produit exactement les représentations irréductibles de l’algèbre.

Keywords: Gelfand model; multiplicity-free representation; symmetric group; partition algebra; Brauer algebra;
Temperley-Lieb algebra; Motzkin algebra; rook-monoid

1 Introduction
A famous consequence of Robinson-Schensted-Knuth (RSK) insertion is that the set of standard Young
tableaux with k boxes is in bijection with the set of involutions in the symmetric group Sk (the permuta-
tions σ ∈ Sk with σ2 = 1). Furthermore, these standard Young tableux index the bases for the irreducible
CSk modules, so it follows that the sum of the degrees (dimensions) of the irreducible Sk modules equals
the number of involutions in Sk. This suggests the possibility of a representation of the symmetric group
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on the linear span of its involutions which decomposes into irreducible Sk-modules such that the multi-
plicity of each irreducible is exactly 1. Indeed, Saxl [?] and Kljačko [?] have constructed such a module.
In this representation, the symmetric group acts on its involutions by a twisted, or signed, conjugation
(see Section 3). A combinatorial construction of this module was studied recently by Adin, Postnikov,
and Roichman [?] and extended to the rook monoid and related semigroups in [?]. A representation for
which each irreducible appears with multiplicity one is called a Gelfand model (or, simply, a model),
because of the work in [?] on models for complex Lie groups.

In [?] the RSK algorithm is extended to work for a large class of well-known, combinatorial diagram
algebras including the partition, Brauer, rook monoid, rook-Brauer, Temperley-Lieb, Motzkin, and planar
rook monoid algebras. A consequence [?, (5.5)] of this algorithm is that the sum of the degrees of the
irreducible representations of each of these algebras equals the number of horizontally symmetric basis
diagrams in the algebra. This suggests the existence of a model representation of each of these algebras
on the span of its symmetric diagrams, and the main result of this paper is to produce a such a model.

Let Ak denote one of the following unital associative C-algebras: the partition, Brauer, rook monoid,
rook-Brauer, Temperley-Lieb, Motzkin, or planar rook monoid algebra. Then Ak has a basis of diagrams
and a multiplication given by diagram concatenation. The algebra Ak depends on a parameter x ∈ C
and is semisimple for all but a finite number of choices of x. When Ak is semisimple, its irreducible
modules are indexed by a set ΛAk , and for λ ∈ ΛAk , we let Aλk denote the irreducible Ak-module labeled
by λ. We construct, in a uniform way, an Ak-module MAk which decomposes into irreducibles as MAk

∼=⊕
λ∈ΛAk

Aλk , where the multiplicity of each irreducible module is exactly one.

Our model representation is constructed as follows. For a basis diagram d, we let dT be its reflection
across its horizontal axis and say that a diagram t is symmetric if tT = t. A basis diagram d acts on
a symmetric diagram t by “signed conjugation”: d · t = sign(d, t) dtdT , where sign(d, t) is the sign
on the permutation of the fixed blocks of t induced by conjugation by d (see Section 4 for details). In
each example, our basis diagrams are assigned a rank, which is the number of blocks in the diagram that
propagate from the top row to the bottom row. We let Mr

Ak
be the linear span of the symmetric diagrams

of rank r and our model is the direct sum MAk = ⊕kr=0M
r
Ak

.
The diagram algebras in this paper naturally form a tower A0 ⊆ A1 ⊆ · · · ⊆ Ak, and we are able to use

the structure of the Jones basic construction of this tower to derive our model. Each algebra contains a
basic construction ideal Jk−1 ⊆ Ak such that Ak ∼= Jk−1 ⊕ Ck, where Ck ∼= CSk for nonplanar diagram
algebras and Ck ∼= C1k for planar diagram algebras. The ideal Jk−1 is in Schur-Weyl duality with one of
Ak−1 or Ak−2 (depending on the specific diagram algebra). In this setup, we are able to take a model for
each Cr, 0 ≤ r ≤ k, and lift them to a module for Ak.

For the planar diagram algebras – the Temperley-Lieb, Motzkin, and planar rook monoid algebras –
the algebra C ∼= C1k is trivial and the model is trivial. It follows that Mr

Ak
is irreducible and that signed

conjugation produces a complete set of irreducible modules for the planar algebras. For the nonplanar
diagram algebras, the algebra is C ∼= CSk, and we use the Saxl model for Sr. In this case Mr

Ak
is further

graded as Mr
Ak

= ⊕fMr,f
Ak

, where Mr,f
Ak

is the linear span of symmetric diagrams of rank r having f “fixed
blocks” and Mr,f

Ak
decomposes into irreducibles labeled by partitions λ ` r having f odd parts.

Besides being natural constructions, these model representations are useful in several ways. (1) In
a model representation, isotypic components are irreducible components, so projection operators map
directly onto irreducible modules without being mixed up among multiple isomorphic copies of the same
module. (2) A key feature of our model is that we give the explicit action of each basis element of Ak on
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the basis of Mr,f
Ak

. For small values of k, and for all values of k in the planar case, these representations are
irreducible or have few irreducible components. Thus, in practice, the model provides a natural and easy
way to compute the explicit action of basis diagrams on irreducible representations. (3) Gelfand models
are useful in the study of Markov chains on related combinatorial objects; see, for example, Chapter 3F
of [?] and the references therein, as well as [?], [?].

2 The Partition Algebra and its Diagram Subalgebras
For k ∈ Z>0, let Pk denote the set of set partitions of {1, 2, . . . , k, 1′, 2′, . . . , k′}. We represent a set
partition d ∈ Pk by a diagram with k vertices in the top row, labeled 1, . . . , k, and k vertices in the bottom
row, labeled 1′, . . . , k′. We then assign edges in this diagram so that its connected components equal the
underlying set partition d. For example, the following is a diagram d ∈ P12,

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

7

7′

8

8′

9

9′

10

10′

11

11′

12

12′

=

{
{1, 3, 4′, 6′}, {2}, {4, 7}, {5, 1′, 5′}, {6, 9′}, {8, 7′},
{9, 10, 12′}, {11}, {12, 10′}, {2′, 3′}, {8′, 11′}

}
.

We refer to the parts of a set partition as blocks, so that the above diagram has 11 blocks. The diagram of
d is not unique, since it only depends on the underlying connected components.

Multiply two set partition diagrams d1, d2 ∈ Pk as follows. Place d1 above d2 and identify each vertex
j′ in the bottom row of d1 with the corresponding vertex j in the top row of d2. Remove any connected
components that live entirely in the middle row and let d1 ◦ d2 ∈ Pk be the resulting diagram. For
example, if

d1 = and d2 =

then

d1 ◦ d2 = = .

Diagram multiplication is associative and makes Pk(x) a monoid with identity 1k =
· · ·
· · · .

Now let x ∈ C, define P0(x) = C, and for k ≥ 1, let Pk(x) be the C-vector space with basis Pk. If
d1, d2 ∈ Pk, let κ(d1, d2) denote the number of connected components that are removed from the middle
row in computing d1 ◦ d2, and define

d1d2 = xκ(d1,d2) d1 ◦ d2. (1)

In the multiplication example of the previous section κ(d1, d2) = 1 and d1d2 = x(d1 ◦ d2). This product
makes Pk(x) an associative algebra with identity 1k.
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We say that a block B in a set partition diagram d ∈ Pk is a propagating block if B contains vertices
from both the top and bottom row of d; that is, both B ∩ {1, 2, . . . , k} and B ∩ {1′, 2′, . . . , k′} are
nonempty. The rank of d ∈ Pk (also called the propagating number) is

rank(d) =
(

the number of propagating blocks in d
)
. (2)

For each k ∈ Z>0, the following are subalgebras of the partition algebra Pk(x):

CSk = C-span{ d ∈ Pk | rank(d) = k},
Bk(x) = C-span{ d ∈ Pk | all blocks of d have size 2},

Rk = C-span
{
d ∈ Pk

∣∣∣∣ all blocks of d have at most one vertex in {1, . . . k}
and at most one vertex in {1′, . . . k′}

}
,

RBk(x) = C-span{ d ∈ Pk | all blocks of d have size 1 or 2}.

Here, CSk is the group algebra of the symmetric group, Bk(x) is the Brauer algebra, Rk is the rook
monoid algebra [?], and RBk(x) is the rook-Brauer algebra [?], [?].

A set partition is planar if it can be represented as a diagram without edge crossings inside of the rect-
angle formed by its vertices. The planar partition algebra [?] is PPk(x) = C-span{ d ∈ Pk | d is planar }.
The following are the planar subalgebras of Pk(x):

C{1k} = CSk ∩ PPk(x), TLk(x) = Bk(x) ∩ PPk(x),
PRk = Rk ∩ PPk(x), Mk(x) = RBk(x) ∩ PPk(x).

Here, TLk(x) is the Temperley-Lieb algebra, PRk is the planar rook monoid algebra [?], and Mk(x) is
the Motzkin algebra [?]. The parameter x does not arise when multiplying symmetric group diagrams
(as there are never middle blocks to be removed). The parameter is set to be x = 1 for the rook monoid
algebra and the planar rook monoid algebra. Here are examples from each of these subalgebras:

∈ PP10(x) ∈ S10

∈ B10(x) ∈ TL10(x)

∈ RB10(x) ∈ M10(x)

∈ R10 ∈ PR10

3 Saxl’s Model Representation of the Symmetric Group
An involution t ∈ Sk is a permutation such that t2 = 1. In disjoint cycle notation, involutions consist of
2-cycles and fixed points. Let Ik be the set of involutions in Sk and let Ifk be the involutions in Sk which fix
precisely f points. For a fixed involution t ∈ Ifk , let C(t) ⊆ Sn be the centralizer of t in Sk. If w ∈ C(t),
then wtw−1 = t, so w fixes t but possibly permutes the fixed points of t. Let πf be the linear character of
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C(t) such that πf (w) is the sign of the permutation of w on the fixed points of t. Saxl [?] (see also [?] or
[?]) proves the following decomposition of the induced character

ϕfSk := IndSn
C(t)(πf ) =

∑
λ`k

odd(λ)=f

χλSk , and thus ϕSk :=

bk/2c∑
`=0

ϕk−2`
Sk

=
∑
λ`k

χλSk , (3)

where odd(λ) is the number of odd parts of the partition λ. This result generalizes the classic result (see
[?, Theorem IV]) for fixed-point-free permutations, i.e., the case where f = 0. In this case, there are no
fixed points and π0 is the trivial character of C(t).

We can then explicitly construct the corresponding induced model. If w ∈ Sk and t ∈ In,f then
wtw−1 ∈ IfSk is an involution with the same number f of fixed points as t. However, the relative position
of the fixed points are permuted in the map t 7→ wtw−1. Define sign(w, t) to be the sign of the permutation
induced on the fixed points of t under conjugation. That is,

sign(w, t) = (−1)|{ 1≤i<j≤k | t(i)=i, t(j)=j, and w(i)>w(j) }|. (4)

Now, define an action of w ∈ Sk on t ∈ IfSk by w · t = sign(w, t)wtw−1, which we refer to as signed
conjugation. Define Mf

Sk
= C-span{ t | t ∈ IfSk}, and let Sk act on Mf

Sk
by extending the action linearly.

We then prove that Mf
Sk
∼= IndSk

C(t)(Mt), and it follows from (3) that

MSk =
⊕
f

Mf
Sk
∼=
⊕
λ`n

Sλk . (5)

Adin, Postnikov, and Roichman [?] study a slightly different combinatorial model for Sk. In this work,
the sign is computed as sign(w, t) = (−1)|{ 1≤i<j≤k | t(i)=j, t(j)=i, and w(i)>w(j) }|. If we let M

f

k denote

the corresponding Sk module, then we are able to prove that Mf
Sk
∼= M

f

Sk ⊗ S
(1k)
k , where S

(1k)
k is the sign

representation of Sk.

4 Gelfand Models for Diagram Algebras
Let Ak be any one of the diagrams described in Section 2 with the parameter x ∈ C chosen such that Ak
is semisimple. Let Ak be the basis of diagrams which span Ak. For d ∈ Ak, let dT ∈ Ak be the diagram
obtained by reflecting d over its horizontal axis. Note that the map d → dT corresponds to exchanging
i↔ i′ for all i. For example,

d1 = ⇒ dT1 = ,

d2 = ⇒ dT2 = .

We say that a diagram d is symmetric if dT = d, so that d2 is symmetric and d1 is not. If we let
(i′)′ = i and let B′ = { b′ | b ∈ B } for a block B of a partition diagram d, then d is symmetric if it
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satisfies: B ∈ d if and only if B′ ∈ d. If d is a partition diagram, then we say that a block B ∈ d
is a fixed block if B′ = B. In our above examples, d1 has one fixed block, {5, 5′}, and d2 has two
fixed blocks, {8, 8′} and {6, 7, 10, 6′, 7′, 10′}. Note that for a, b ∈ Ak, (ab)T = bTaT , and observe that
(dtdT )T = (dT )T tT dT = dtdT , so t is symmetric if and only if dtdT is symmetric. We say that dtdT is
the conjugate of t by d.

Remark 6 The symmetric diagrams in this paper are the same as the type-B set partitions in [?] Sequence
A002872 and they are closely related to the type-B set partitions used in [?].

Remark 7 If we restrict our diagrams to Sk, then dT equals d−1, diagram conjugation corresponds to
usual group conjugation, symmetric diagrams are involutions, and fixed blocks are fixed points.

For any of our diagram algebras Ak, we let

Ir,fAk
= { d ∈ Ak | d is symmetric, rank(d) = r, and d has f fixed blocks },

IrAk = { d ∈ Ak | d is symmetric, rank(d) = r },
IAk = { d ∈ Ak | d is symmetric },

(8)

If d ∈ Ak and t ∈ Ir,fAk
, then there are two possibilities for the map t 7→ d◦t◦dT . Either rank(d◦t◦dT ) <

rank(t) or rank(d ◦ t ◦ dT ) = rank(t). In the later case, the fixed blocks of t have been permuted, and
we let sign(d, t) be the sign of the permutation of the fixed blocks of t. and for d ∈ Ak and t ∈ Ir,fAk

, we
define

d · t =

{
xκ(d,t)sign(d, t) d ◦ t ◦ dT , if rank(d ◦ t ◦ dT ) = rank(t)

0, if rank(d ◦ t ◦ dT ) < rank(t)
(9)

where κ(d, t) is the number of blocks removed from the middle row in creating d ◦ t as described in (1).

Example 10 (Signed Conjugation) In the following example, there are two blocks removed in d◦t yielding
x2. Furthermore, the three fixed blocks of t are permuted as (B1, B2, B3) 7→ (B3, B2, B1). Hence,
sign(d, t) = −1.

d =

t = = −x2 = s

dT =

For 0 ≤ f ≤ r ≤ k, define Mr,f
Ak

= C-span{ d | d ∈ Ir,fAk
}, where Mr,f

Ak
= 0 if Ir,fAk

= ∅, and let

Mr
Ak

= C-span{ d | d ∈ IrAk },

=

r⊕
f=0

Mr,f
Ak
, and

MAk = C-span{ d | d ∈ IAk },

=

k⊕
r=0

Mr
Ak =

k⊕
r=0

r⊕
f=0

Mr,f
Ak
.

(11)

Then we prove the following:

http://oeis.org/A002872
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Proposition 12 The action defined in (9) makes Mr,f
Ak

an Ak-module.

The main theorem of this paper is the following.

Theorem 13 For each 0 ≤ f ≤ r ≤ k chosen such that Mr,f
Ak
6= 0, we have

Mr,f
Ak
∼=
⊕
λ∈ΛfCr

Mλ
Ak and thus MAk

∼=
⊕
λ∈ΛAk

Mλ
Ak .

Our method of proof of this theorem is to use the Jones basic construction. We have a natural tower of
algebras, A0 ⊆ A1 ⊆ A2 ⊆ · · · . where Ak−1 is embedded as subalgebra of Ak by placing an identity
edge to the right of any diagram in Ak−1. Let Jk−1 ⊆ Ak be the ideal spanned by the diagrams of Ak
having rank k − 1 or less. Then,

Ak ∼= Jk−1 ⊕ Ck, (14)

where Ck is the span of the diagrams of rank exactly equal to k. For us,

Ck ∼= CSk when Ak is one of the nonplanar algebras Pk(x),Bk(x),RBk(x) or Rk,
Ck ∼= C1k when Ak is one of the planar algebras TLk(x),Mk(x), or PRk, (15)

We then are able to lift model representations from Cr, 0 ≤ r ≤ k, to a model for Ak.

5 Gelfand Models for Diagram Algebras
We now illustrate some of the combinatorial details that come from applying our model construction to
the various diagram algebras.

5.1 The partition algebra Pk(x)

The partition algebra Pk(x) has dimension equal to the Bell number B(2k) and is semisimple for x ∈ C
such that x 6∈ {0, 1, . . . , 2k − 1} (see [?] or [?]). When semisimple, its irreducible representations are
indexed by partitions in the set ΛPk = { λ ` r | 0 ≤ r ≤ k }. Let Pλk denote the irreducible module
indexed by λ ∈ ΛPk .

For each 0 ≤ ` ≤ br/2c there exist symmetric diagrams in Ir,fPk
of rank r with f = r − 2` fixed

blocks and ` blocks which are transposed (i.e., propagating, nonidentity blocks). The model representation
satisfies

Mr,f
Pk

=
∑
λ`k

odd(λ)=f

Pk
λ and MPk =

k∑
r=0

br/2c∑
`=0

Mr,r−2`
Pk

=
∑
λ∈ΛPk

Pk
λ. (16)

We show that

dimMr,r−2`
Pk

=
∣∣∣Ir,r−2`
Pk

∣∣∣ =

k∑
b=r

S(k, b)

(
b

r

)(
r

2`

)
(2`− 1)!! (17)

where S(k, b) is a Stirling number of the second kind. If we let pk = |IPk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
Pk

| =
dimMPk denote the total number of symmetric diagrams in Pk(x), then pk is the sum of the degrees of
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the irreducible Pk(x)-modules (which can be found in [?], [?]). The first few values are

k 0 1 2 3 4 5 6 7 8 9 10
pk = dimMPk 1 2 7 31 164 999 6841 51790 428131 3827967 36738144

.

(18)
The sequence pk is [?] Sequence A002872, which equals the number of type-B set partitions (see Remark
6) and has exponential generating function e(e2x−3)/2+ex =

∑∞
k=0 pk

xk

k! .

5.2 The Brauer algebra Bk(x)

The Brauer algebra has dimension dimBk(x) = (2k − 1)!! and is semisimple for x ∈ C chosen to avoid
{x ∈ Z | 4 − 2k ≤ x ≤ k − 2}. When Bk(x) is semisimple, its irreducible modules are indexed by
partitions in the set ΛBk = { λ ` (k − 2r) | 0 ≤ r ≤ bk/2c }. Let Bλk denote the irreducible Bk(x)
module for λ ∈ ΛBk .

For each 0 ≤ c ≤ bk/2c and each 0 ≤ ` ≤ b(k − 2c)/2c there exist symmetric diagrams in
Ik−2c,k−2c−2`
Bk

of rank r = k − 2c with f = k − 2c − 2` fixed blocks. The Bk(x) model satisfies

Mr,f
Bk
∼=

⊕
λ`r

odd(λ)=f

Bλk and MBk
∼=
bk/2c⊕
c=0

b(k−2c)/2c⊕
`=0

Mk−2c,k−2c−2`
Bk

∼=
⊕
λ∈ΛBk

Bλk . (19)

We show that

dimMr,r−2`
Bk

=
∣∣∣Ir,r−2`
Bk

∣∣∣ =

(
k

r

)
(k − r − 1)!!

(
r

2`

)
(2`− 1)!!. (20)

If we let bk = |IBk | =
∑bk/2c
c=0

∑b(k−2c)/2c
`=0 |Ik−2c,k−2c−2`

Bk
| = dimMBk denote the total number of

symmetric diagrams in Bk(x), then bk is the sum of the degrees of the irreducible Bk(x)-modules (which
can be found in [?]). The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
bk = dimMBk 1 1 3 7 25 81 331 1303 5937 26785 133651

. (21)

The sequence bk is [?] Sequence A047974 and has exponential generating function ex
2+x =

∑∞
k=0 bk

xk

k! .

5.3 The rook monoid algebra Rk

The rook monoid algebra Rk has dimension dimRk =
∑k
`=0

(
k
`

)2
`! (see [?], [?], [?]) and is semisimple

with irreducible modules labeled by ΛRk = { λ ` r | 0 ≤ r ≤ bkc }. Let Rλk denote the irreducible
module labeled by λ ∈ ΛRk .

For each 0 ≤ r ≤ k and each 0 ≤ ` ≤ br/2c there exist symmetric rook monoid diagrams of rank r
and f = r − 2` fixed blocks. The Rk model satisfies

Mr,f
Rk
∼=

⊕
λ`r

odd(λ)=f

Rλk and MRk
∼=

k⊕
r=0

br/2c⊕
`=0

Mr,r−2`
Rk

∼=
⊕
λ∈ΛRk

Rλk . (22)

We show that

dimMr,r−2`
Rk

=
∣∣∣Ir,r−2`
Rk

∣∣∣ =

(
k

r

)(
r

2`

)
(2`− 1)!!, (23)

http://oeis.org/A002872
http://oeis.org/A047974
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If we let rk = |IRk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
Rk

| = dimMRk denote the total number of symmetric diagrams
in Rk, then rk is sum of the degrees of the irreducible Rk-modules (which can be found in [?], [?]). The
first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
dimMRk 1 2 5 14 43 142 499 1850 7193 29186 123109

. (24)

The sequence rk gives the number of “self-inverse partial permutations” and is [?] Sequence A005425.
Furthermore, rk is related to the number of involutions sk in the symmetric group by the binomial trans-
form rk =

∑k
i=0

(
k
i

)
si and thus has exponential generating function ex

2/2+2x =
∑∞
k=0 rk

xk

k! .

5.4 The rook-Brauer algebra RBk(x)

The rook-Brauer algebra RBk(x) (see [?] or [?]) has dimension
∑k
`=0

(
2k
2`

)
(2` − 1)!! and is semisimple

for all but finitely many x ∈ C. When semisimple, its irreducible representations are indexed by partitions
in the set ΛRBk = { λ ` r | 0 ≤ r ≤ bkc }. Let RBλk denote the irreducible module indexed by λ ∈ ΛRBk .

For each 0 ≤ r ≤ k and each 0 ≤ ` ≤ br/2c there exist symmetric rook monoid diagrams of rank r
and f = r − 2` fixed blocks. The RBk(x) models satisfy

Mr,f
RBk
∼=

⊕
λ`r

odd(λ)=f

RBλk and MRBk
∼=

k⊕
r=0

br/2c⊕
`=0

Mr,r−2`
RBk

∼=
⊕

λ∈ΛRBk

RBλk . (25)

We show that

dimMr,r−2`
RBk

=
∣∣∣Ir,r−2`
RBk

∣∣∣ =

b(k−r)/2c∑
c=0

(
k

r

)(
k − r

2c

)
(2c− 1)!!

(
r

2`

)
(2`− 1)!!. (26)

If we let rbk = |IRBk | =
∑k
r=0

∑br/2c
`=0 |I

r,r−2`
RBk

| = dimMRBk denote the total number of symmetric dia-
grams in RBk(x), then rbk is the sum of the degrees of the irreducible RBk(x)-modules (these dimensions
can be found in [?] or [?]). The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
rbk = dimMRBk 1 2 6 20 76 312 1384 6512 32400 168992 921184

. (27)

The sequence rbk is [?] Sequence A000898 and it is related to the number of symmetric diagrams bk in
the Brauer algebra (21) by the binomial transform rbk =

∑k
i=0

(
k
i

)
bi and thus has exponential generating

function ex
2+2x =

∑∞
k=0 rbk

xk

k! .

5.5 The Temperley-Lieb algebra TLk(x)

The Temperley-Lieb algebra TLk(x) has dimension equal to the Catalan number Ck = 1
k+1

(
2k
k

)
and is

semisimple for x ∈ C chosen such that x is not the root of the Chebyshev polynomial Uk(x/2) (see [?]
or [?]). When semisimple, its irreducible modules are indexed by the following set of integers ΛTLk =

{ k − 2` | 0 ≤ ` ≤ bk/2c }. We let TL(k−2`)
k denote the irreducible module labeled by (k − 2`) ∈ ΛTLk

http://oeis.org/A005425
http://oeis.org/A000898
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For each 0 ≤ ` ≤ bk/2c, there exist symmetric Temperley-Lieb diagrams of rank r = k − 2` and
f = k − 2` fixed points. The TLk(x) model satisfies

M
(k−2`)
TLk

∼= TL
(k−2`)
k and MTLk

∼=
bk/2c⊕
`=0

M
(k−2`)
TLk

∼=
⊕

(k−2`)∈ΛTLk

TL
(k−2`)
k . (28)

The number of symmetric Temperley-Lieb diagrams of rank r with r = f fixed points is given by

dimMr,f
TLk

=
∣∣Ik−2`
TLk

∣∣ =

{
k
`

}
:=

(
k

`

)
−
(

k

`− 1

)
(29)

If we let tlk = |ITLk | =
∑bk/2c
`=0 |I

k−2`
TLk
| = dimMTLk denote the total number of symmetric diagrams

in TLk(x), then tlk is the sum of the degrees of the irreducible TLk(x)-modules. We give a bijection
between the symmetric Temperley-Lieb diagrams ITLk and subsets of {1, 2, . . . , k} of size bk/2c and thus
tlk =

(
k
bk/2c

)
(the kth central binomial coefficient), which is [?] Sequence A000984.

5.6 The Motzkin algebra Mk(x)

The Motzkin algebra Mk(x) has dimension equal to the Motzkin number M2k (see [?]) and is semisimple
for x ∈ C chosen such that x is not the root of the Chebyshev polynomial Uk((x−1)/2). When semisim-
ple, its the irreducible modules are indexed by ΛMk = {0, 1, . . . , k}. We let M(r)

k denote the irreducible
module labeled by r ∈ ΛMk .

For each 0 ≤ r ≤ k there exist symmetric Motzkin diagrams having rank r and f = r fixed blocks.
The Mk(x) models satisfy

Mr
Mk
∼= M

(r)
k and MMk

∼=
k⊕
r=0

Mr
Mk
∼=
⊕
r∈ΛMk

M
(r)
k . (30)

We show that

dimMr
Mk =

∣∣IrMk ∣∣ =

b(k−r)/2c∑
c=0

(
k

r + 2c

){
r + 2c
c

}
. (31)

If we let mk = |IMk | =
∑k
r=0 |IrMk | = dimMMk denote the total number of symmetric diagrams in

Mk(x), then mk is the degree of ϕMk and is the sum of the degrees of the irreducible Mk(x)-modules.
The first few values of these dimensions are

k 0 1 2 3 4 5 6 7 8 9 10
mk = dimMMk 1 2 5 13 35 96 267 750 2123 6046 17303

. (32)

The sequence mk is [?] Sequence A005773 and it is related to the number of symmetric diagrams tlk
in the Temperley-Lieb algebra by the binomial transform mk =

∑k
i=0

(
k
i

)
tli and thus has exponential

generating function ex(I0(2x) + I1(2x)) =
∑∞
k=0 mk

xk

k! .

http://oeis.org/A000984
http://oeis.org/A005773
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5.7 The planar rook monoid algebra PRk

The planar rook monoid algebra PRk has dimension
(

2k
k

)
and is semisimple with irreducible modules

labeled by ΛPRk = {0, 1, . . . , k} . We let PR(r)
k denote the irreducible PRk-module labeled by r ∈ ΛPRk

For each 0 ≤ r ≤ k there exist
(
k
r

)
symmetric planar rook monoid diagrams having rank r and f = r

fixed blocks. The PRk model satisfies

Mr
PRk
∼= PR

(r)
k and MPRk

∼=
k⊕
r=0

Mr
PRk
∼=

⊕
r∈ΛPRk

PR
(r)
k . (33)

The irreducible modules PR(r)
k are constructed in [?] on a basis of r-subsets of {1, 2, . . . , k}. The action

of PRk on subsets is exactly the same as our conjugation action on symmetric diagrams. If we let prk =

|IPRk | =
∑k
r=0 |IrPRk | = dimMPRk denote the total number of symmetric diagrams in PRk, then prk is

the number of subsets of {1, 2, . . . , k}, so prk = dimMPRk = 2k.
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