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Abstract. We study the binomial and monomial ideals arising from linear equivalence of divisors on graphs from the
point of view of Gröbner theory. We give an explicit description of a minimal Gröbner basis for each higher syzygy
module. In each case the given minimal Gröbner basis is also a minimal generating set. The Betti numbers of IG and
its initial ideal (with respect to a natural term order) coincide and they correspond to the number of “connected flags”
in G. Moreover, the Betti numbers are independent of the characteristic of the base field.

Résumé. Nous étudions les idéaux monômiaux et binomiaux résultant de l’équivalence linéaire de diviseurs sur les
graphes du point de vue de la théorie de Gröbner. Nous donnons une description explicite d’une base de Gröbner
minimale pour chaque module engendré par une syzygie d’ordre supérieur. Dans chaque cas, cette base de Gröbner
minimale est aussi une ensemble generateur minimal. Les nombres de Betti de IG et son idéal initial coı̈ncident et
correspondent au nombre de � drapeaux connexes� de G. En particulier, les nombres de Betti sont indépendants de
la caractéristique du corps de référence.
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1 Introduction
The theory of divisors on finite graphs can be viewed as a discrete version of the analogous theory on

Riemann surfaces. This notion arises in different fields of research including the study of “abelian sand-
piles” ([Dha90, Gab93]), the study of component groups of Néron models of Jacobians of algebraic curves
([Ray70, Lor89]), and the theory of chip-firing games on graphs ([Big97]). Riemann-Roch theory for finite
graphs (and generalizations to tropical curves) is developed in this setting ([BN07, GK08, MZ08]).

We are interested in the linear equivalence of divisors on graphs from the point of view of commutative
algebra. Associated to every graphG there is a canonical binomial ideal IG which encodes the linear equi-
valences of divisors on G. Let R denote the polynomial ring with one variable associated to each vertex.
For any two effective divisors D1 ∼ D2 there is a binomial xD1 −xD2 . The ideal IG ⊂ R is generated by
all such binomials. Two effective divisors are linearly equivalent if and only if their associated monomials
are equal in R/IG. This ideal is already implicitly defined in Dhar’s seminal statistical physics paper
[Dha90] ; R/IG is the “operator algebra” defined there. To our knowledge, this ideal (more precisely, an
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affine piece of it) was first introduced in [CRS02] to address computational questions in chip-firing dyna-
mics using Gröbner basis. From a purely computational point of view there are now much more efficient
methods available (see, e.g., [BS13] and references therein). However this ideal seems to encode a lot of
interesting information about G and its linear systems. Some of the algebraic properties of IG (and its
generalization for directed graphs) are studied in [PPW11]. In [MS13a], Manjunath and Sturmfels relate
Riemann-Roch theory for finite graphs to Alexander duality in commutative algebra using this ideal.

In this paper we study the syzygies and free resolutions of the ideals IG and in(IG) from the point of
view of Gröbner theory. Here in(IG) denotes the initial ideal with respect to a natural term order which is
defined after distinguishing a vertex q (see Definition 2.1). When G is a complete graph, the syzygies and
Betti numbers of the ideal in(IG) are studied by Postnikov and Shapiro in [PS04]. Again for complete
graphs, Manjunath and Sturmfels in [MS13a] study the ideal IG and show that the Betti numbers coincide
with the Betti numbers of in(IG). Finding minimal free resolutions for a general graph G was stated as an
open problem in both [PS04] and [MS13a] (also in [PPW11], where a conjecture is formulated). It was
not even known whether the Betti numbers for a general graph depend on the characteristic of the base
field or not.

We construct free resolutions for both in(IG) and IG for a general graph G. Indeed we describe, com-
binatorially, the minimal Gröbner bases for all higher syzygy modules of IG and in(IG). In each case the
minimal Gröbner basis is also a minimal generating set and the given resolution is minimal. In particu-
lar the Betti numbers of in(IG) and IG coincide. This gives a positive answer to [CHT06, Question 1.1]
for ideal IG. For a complete graph the minimal free resolution for in(IG) is nicely structured by a Scarf
complex. The resolution for IG when G a tree is given by a Koszul complex since IG is a complete
intersection. A more conceptual and geometric proof for a general graph G will be given in [MS13b].

The description of the generating sets and the Betti numbers is in terms of the “connected flags” of G.
Fix a vertex q ∈ V (G) and an integer k. A connected k-flag of G (based at q) is a strictly increasing
sequence U1 ( U2 ( · · · ( Uk = V (G) such that q ∈ U1 and all induced subgraphs on vertex sets Ui
and Ui+1\Ui are connected. Associated to any connected k-flag one can assign a “partial orientation” on
G (Definition 3.3). Two connected k-flags are considered equivalent if the associated partially oriented
graphs coincide. The Betti numbers correspond to the numbers of the connected flags up to this equiva-
lence. We give a bijective map between the connected flags ofG and the minimal Gröbner bases for higher
syzygy modules of IG and in(IG). For a complete graph all flags are connected and all distinct flags are
inequivalent. So in this case the Betti numbers are simply the face numbers of the order complex of the
poset of those subsets of V (G) that contain q (ordered by inclusion). These numbers can be described
using classical Stirling numbers (see Example 4.6). Hence our results directly generalize the analogous
results in [PS04] and [MS13a]. Analogous results with different methods were obtained independently in
[MSW12] and in [DS12].

The paper is structured as follows. In § 2 we fix our notation and provide the necessary background from
the theory of divisors on graphs. We also define the ideal IG and the natural Pic(G)-grading and a term
order < on the polynomial ring relevant to our setting. In § 2.2 we quickly recall some basic notions from
commutative algebra. Our main goal is to fix our notation for Schreyer’s algorithm for computing higher
syzygies, which is slightly different from what appears in the existing literature but is more convenient for
our application. In § 3 we define connected flags and their equivalence relation. In § 4 we study the free
resolution and higher syzygies of our ideals from the point of view of Gröbner theory, and as a corollary
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we give our description of the graded Betti numbers. In § 5 we describe some connections with the theory
of reduced divisors. We refer to [MS12] for proofs and more details.

2 Definitions and background
2.1 Graphs and divisors

Throughout this paper, a graph means a finite, connected, unweighted multigraph with no loops. As
usual, the set of vertices and edges of a graph G are denoted by V (G) and E(G). We set n = |V (G)|. A
pointed graph (G, q) is a graph together with a choice of a distinguished vertex q ∈ V (G).

Let Div(G) be the free abelian group generated by V (G). An element of Div(G) is written as
∑
v∈V (G) av(v)

and is called a divisor on G. The coefficient av in D is also denoted by D(v). A divisor D is called ef-
fective if D(v) ≥ 0 for all v ∈ V (G). The set of effective divisors is denoted by Div+(G). We write
D ≤ E if E −D ∈ Div+(G). For D ∈ Div(G), let deg(D) =

∑
v∈V (G)D(v). For D1, D2 ∈ Div(G),

the divisor E = max(D1, D2) is defined by E(v) = max(D1(v), D2(v)) for v ∈ V (G).

We denote by M(G) the group of integer-valued functions on the vertices. For A ⊆ V (G), χA ∈
M(G) denotes the {0, 1}-valued characteristic function of A. The Laplacian operator ∆ : M(G) →
Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑
{v,w}∈E(G)

(f(v)− f(w))(v) .

The group of principal divisors is defined as the image of the Laplacian operator and is denoted by
Prin(G). It is easy to check that Prin(G) ⊆ Div0(G) where Div0(G) denotes the set consisting of
divisors of degree zero. The quotient Pic0(G) = Div0(G)/Prin(G) is a finite group whose cardinality is
the number of spanning trees of G (see, e.g., [BS13] and references therein). The full Picard group of G
is defined as

Pic(G) = Div(G)/Prin(G)

which is isomorphic to Z⊕Pic0(G). Since principal divisors have degree zero, the map deg : Div(G)→
Z descends to a well-defined map deg : Pic(G) → Z. Two divisors D1 and D2 are called linearly
equivalent if they become equal in Pic(G). In this case we write D1 ∼ D2. The linear system |D| of D is
defined as the set of effective divisors that are linearly equivalent to D.

To an ordered pair of disjoint subsets A,B ⊆ V (G) we assign an effective divisor

D(A,B) =
∑
v∈A
|{w ∈ B : {v, w} ∈ E(G)}|(v) .

In other words, the support of D(A,B) is a subset of A and for v ∈ A the coefficient of (v) in D(A,B)
is the number of edges between v and B.

Let K be a field and let R = K[x] be the polynomial ring in the n variables {xv : v ∈ V (G)}. Any
effective divisor D gives rise to a monomial

xD :=
∏

v∈V (G)

xD(v)
v .
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Associated to every graphG there is a canonical ideal which encodes the linear equivalences of divisors
on G. Our main object study is the ideal

IG := 〈xD1 − xD2 : D1 ∼ D2 both effective divisors〉

which was introduced in [CRS02].
Once we fix a vertex q, there is a natural monomial order that gives rise to a particularly nice Gröbner

basis for IG. This term order was first introduced in [CRS02]. Fix a pointed graph (G, q). Consider a total
ordering of the set of variables {xv : v ∈ V (G)} compatible with the distances of vertices from q in G :

dist(w, q) < dist(v, q) =⇒ xw < xv . (1)

Here, the distance between two vertices in a graph is the number of edges in a shortest path connecting
them. The above ordering can be thought of an ordering on vertices induced by running the breadth-first
search algorithm starting at the root vertex q.

Definition 2.1 We denote by < the degree reverse lexicographic ordering on R = K[x] induced by the
total ordering on the variables given in (1).

Throughout this paper in(IG) denotes the initial ideal of IG with respect to this term order. Note that
in(IG) is denoted by MG in [PS04].

2.2 Syzygies and Betti numbers
In this subsection we quickly recall some basic notions from commutative algebra in order to fix our

notation. We refer to standard books (e.g. [Eis95, GP08]) for more details.

Let K be any field and let R = K[x] be the polynomial ring in n variables graded by an abelian group
A. The degree map will be denoted by deg. Let M be a graded submodule of a free module and fix a
module ordering <0 extending the monomial ordering < on R. Assume that the finite totally ordered
set (G,≺) forms a Gröbner basis for (M,<0) consisting of homogeneous elements. Let F0 be the free
module generated by G. For g ∈ G we let the formal symbol [g] denote the corresponding generator for
F0 ; each element of F0 can be written as a sum of these formal symbols with coefficients in R. There is
a natural surjective homomorphism

ϕ0 : F0 −→M

sending [g] to g for each g ∈ G. Moreover, we enforce this homomorphism to be graded (or homogeneous
of degree 0) by defining deg([g]) := deg(g) for all g ∈ G.

By definition the syzygy module of M with respect to G, denoted by syz(G), is the kernel of this
map. Let syz0(G) := M and syz1(G) := syz(G). For i > 1 the higher syzygy modules are defined as
syzi(G) := syz(syzi−1(G)).

We now discuss a method to compute a Gröbner basis for syz(G). One can “pull back” the module
ordering <0 along ϕ0 to get a compatible module ordering <1 on F0 ; for f, h ∈ G define

xβ [h] <1 xα[f ]⇔


LM(xβh) <0 LM(xαf)

or
LM(xβh) = LM(xαf) ∧ f ≺ h.

(2)
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To simplify the notation we assume the leading coefficients of all elements of G are 1. For a pair of
elements f ≺ h of G assume

LM(f) = xα(f)[e] and LM(h) = xα(h)[e]

for some e ∈ E. Since G is a Gröbner basis, setting γ(f, h) := max(α(f), α(h)), we have the “standard
representation” :

spoly(f, h) = xγ(f,h)−α(f)f − xγ(f,h)−α(h)h =
∑
g∈G

a(f,h)g g (3)

for some polynomials a(f,h)g ∈ R. We set

s(f, h) = xγ(f,h)−α(f)[f ]− xγ(f,h)−α(h)[h]−
∑
g∈G

a(f,h)g [g] ∈ F0 . (4)

Theorem 2.2 (Schreyer [Sch80], [Eis95]) The set

S(G) = {s(f, h) : f, h ∈ G , f ≺ h , LM(f) = xα(f)[e] , LM(h) = xα(h)[e] for some e ∈ E}

forms a homogeneous Gröbner basis for (syz(G), <1).

To read the Betti numbers for M one needs to find a minimal generating set for the syzygy modules. In
general the set S(G) is far from being even a minimal Gröbner basis. However there exist some criterions
to find a subset Smin(G) of S(G) which forms a minimal Gröbner basis for (syz(G), <1) ; see, e.g.,
[MS12, Lemma 3.4]. Moreover, Theorem 2.2 gives rise to Algorithm 1 for computing free resolutions.
The following result gives a general sufficient criterion for an ideal to have the same Betti numbers as its
initial ideal.

Theorem 2.3 If the constructed resolution by Schreyer’s algorithm is a minimal graded free resolution
then βi,j(M) = βi,j(in(M)) for all i ≥ 0 and j ∈ A.

3 Connected flags on graphs
3.1 Connected flags, partial orientations, and divisors

From now on we fix a pointed graph (G, q) and we let n = |V (G)|. Consider the poset

C(G, q) := {U ⊆ V (G) : q ∈ U}

ordered by inclusion. The following special chains of this poset arise naturally in our setting.

Definition 3.1 Fix an integer 1 ≤ k ≤ n. A connected k-flag of (G, q) is a (strictly increasing) sequence
U of subsets of V (G)

U1 ( U2 ( · · · ( Uk = V (G)

such that q ∈ U1 and, for all 1 ≤ i ≤ k − 1, both G[Ui] and G[Ui+1\Ui] are connected.

The set of all connected k-flags of (G, q) will be denoted by Fk(G, q).
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Input:
Graded polynomial ring R = K[x] ,
Monomial ordering < on R ,
Graded submodule M of the free R-module F−1 generated by formal symbols {[e]}e∈E ,
Module ordering <0 on F−1 extending the monomial ordering < ,
Finite set G forming a homogeneous Gröbner basis for (M,<0) .
Output:
A free resolution : 0→ · · · → Fi

ϕi−→ Fi−1 → · · · → F0
ϕ0−→M → 0 .

Initialization :
G0 := G ;
F0 := free R-module generated by formal symbols {[g]}g∈G0

; Output F0 ;
ϕ0 : F0 →M ⊆ F−1 defined by [g] 7→ g for each g ∈ G0 ; Output ϕ0 ;
i = 0 ;
while Fi 6= 0 do
≺i : arbitrary total ordering on Gi ;
<i+1 : module ordering on Fi obtained from <i on Fi−1 (as in (2)) ;
Gi+1 := Smin(Gi) ⊂ Fi, a minimal Gröbner basis of (syzi+1(G), <i+1) (as in Theorem 2.2) ;
Fi+1 := free R-module generated by formal symbols {[u]}u∈Gi+1 ; Output Fi+1 ;
ϕi+1 : Fi+1 → Fi defined by [u] 7→ u for each u ∈ Gi+1 ; Output ϕi+1 ; i← i+ 1 ;

end
Algorithm 1: Algorithm for computing a free resolution of M (Schreyer’s algorithm)

Remark 3.2 For a complete graph, Fk(G, q) is simply the order complex of C(G, q), but in general
Fk(G, q) is not a simplicial complex.

Definition 3.3 Given U ∈ Fk(G, q) we define :
(a) a “partial orientation” of G by orienting edges from Ui to Ui+1\Ui (for all 1 ≤ i ≤ k − 1) and

leaving all other edges unoriented. We denote the resulting partially oriented graph by G(U).
(b) an effective divisor D(U) ∈ Div(G) given by D(U) :=

∑k−1
i=1 D(Ui+1\Ui, Ui).

Remark 3.4 It is easy to check that D(U) =
∑
v∈V (G) (indegG(U)(v))(v), where indegG(U)(v) denotes

the number of oriented edges directed to v in G(U).

3.2 Total ordering on Fk(G, q)

We endow each Fk(G, q) with a total orderings ≺k for all 1 ≤ k ≤ n. These total orderings are
compatible with each other for different values of 1 ≤ k ≤ n.

Let � denote the ordering on Cop(G, q) given by reverse inclusion :

U � V ⇐⇒ U ⊇ V .

Definition 3.5 We fix, once and for all, a total ordering extending �. By a slight abuse of notation, �
will be used to denote this total ordering extension. In particular ≺ will denote the associated strict total
order.
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We consider one of the natural “lexicographic extensions” of ≺ to the set of connected k-flags.

Definition 3.6 For U 6= V in Fk(G, q) written as

U : U1 ( U2 ( · · · ( Uk = V (G)

V : V1 ( V2 ( · · · ( Vk = V (G)

we say U ≺k V if for the maximum 1 ≤ ` ≤ k − 1 with U` 6= V` we have U` ≺ V`.
As usual, we write U �k V if and only if U ≺k V or U = V .

Lemma 3.7 (Fk(G, q),�k) is a totally ordered set.

It is easy to find two different connected k-flags having identical associated partially oriented graphs.
This motivates the following definition.

Definition 3.8 Two k-flags U ,V ∈ Fk(G, q) are called equivalent if the associated partially oriented
graphs G(U) and G(V) coincide.

Notation 1 The set of all equivalence classes in Fk(G, q) will be denoted by Ek(G, q). The set Sk(G, q)
denotes the collection of minimal representatives of the classes in Ek(G, q) with respect to ≺k.

Given an element in Sk(G, q) there is a canonical way to obtain two related elements in Sk−1(G, q).

Definition 3.9 Given U ∈ Fk(G, q), the elements U (1),U (2) ∈ Fk−1(G, q) are obtained from U by
removing the 1st and 2nd elements in the following appropriate sense. Let

U : U1 ( U2 ( · · · ( V (G) .

(a) U (1) will denote
U2 ( U3 ( U4 ( · · · ( V (G) .

(b) U (2) will denote
U1 ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is connected ;
or
(U1 ∪ (U3\U2)) ( U3 ( U4 ( · · · ( V (G), if G[U3\U1] is not connected.

Remark 3.10 [MS12, Section 6.1] Assume that U ∈ Sk(G, q). Let G/U be the graph obtained from
G by contracting the unoriented edges of G(U) and let φ : G → G/U be the contraction map. More
precisely, G/U is the graph on the vertices u1, . . . , uk corresponding to the collection (Ui\Ui−1)ki=1, i.e.
ui = φ(Ui\Ui−1). For any edge between Ui\Ui−1 and Uj\Uj−1 there is an edge between ui and uj . The
contraction map φ : G→ G/U induces the maps

(i) φ∗ : Div(G) → Div(G/U ) with φ∗(
∑
v∈V (G) av(v)) =

∑
v∈V (G) av(φ(v)). In particular, a total

ordering u1, . . . , uk of V (G/U ) gives a total ordering on the collection of subsets (Ui\Ui−1)ki=1 of
V (G). By Definition 3.3 we get a divisor D′ on G/U and a divisor D on G, and φ∗(D) = D′. In
other words, such a divisor D′ has a canonical section.

(ii) φ∗ : Ss(G/U , u1)→ Ss(G, q) with φ∗(V ′) = V where Vj =
⋃
ui∈V ′j

(Ui\Ui−1).
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4 Minimal free resolution and Betti numbers for IG and in(IG)
Let K be a field and let R = K[x] be the polynomial ring in n variables {xv : v ∈ V (G)}. Recall that

K[x] has a natural A-grading, where A = Z or A = Pic(G) and IG is also A-graded. Let the monomial
ordering < on R be as in Definition 2.1.

The following theorem gives a generalization of [CRS02, Theorem 14]. Indeed [CRS02, Theorem 14]
can be rephrased as providing a bijection between S2(G, q) and G(G, q).

Theorem 4.1 Fix a pointed graph (G, q) and let A = Z or A = Pic(G). For each k ≥ 0 there exists a
natural injection

ψk : Sk+2(G, q) ↪→ syzk(G(G, q))

such that
(i) For some module ordering <k, the set Gk(G, q) := Image(ψk) forms a minimal A-homogeneous

Gröbner basis of (syzk(G(G, q)), <k),
(ii) For U ∈ Sk+2(G, q) of the form U1 ( U2 ( · · · ( V (G) we have

LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U (1))] , (5)

(iii) The set ψk(Sk+2(G, q)) minimally generates syzk(G(G, q)).

Sketch of proof : Here we list the key steps of the proof. For a complete proof we refer to [MS12]. For
consistency in the notation we define syz−1(G(G, q)) = {0} and the map

ψ−1 : S1(G, q) ↪→ {0}

sends the canonical connected 1-flag V (G) to 0. The proof is by induction on k ≥ 0.

Base case. For k = 0 the result is proved in [CRS02, Theorem 14]. Here G0(G, q) = G(G, q) and <0

is <, and
ψ0 : S2(G, q) ↪→ syz0(G(G, q)) = IG

(U1 ( U2) 7→ (xD(U2\U1,U1) − xD(U1,U2\U1))[0]

and LM(ψk(U)) = xD(U2\U1,U1)[0].

Induction hypothesis. Now let k > 0 and assume that there exists a bijection

ψk−1 : Sk+1(G, q)→ Gk−1(G, q) ⊆ syzk−1(G(G, q))

such that Gk−1(G, q) forms a minimal homogeneous Gröbner basis of syzk−1(G(G, q)) with respect to
<k−1), and (5) for the leading monomials holds.

Via the bijection ψk−1, the set Gk−1(G, q) inherits a total ordering≺′k−1 from the total ordering≺k+1

on Sk+1(G, q), i.e.

f ≺′k−1 h in Gk−1(G, q) ⇔ ψ−1k−1(f) ≺k+1 ψ
−1
k−1(h) in Sk+1(G, q).

Inductive step. Given U ∈ Sk+2(G, q) let U (1) and U (2) be as defined in Definition 3.9. We define

ψk : Sk+2(G, q)→ syzk(G(G, q)) (6)
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U 7→ s(ψk−1(U (1)), ψk−1(U (2))) .

In the following U ,V ∈ Sk+2(G, q) are of the form

U1 ( U2 ( · · · ( V (G)

V1 ( V2 ( · · · ( V (G) .

The result is follows from a series of claims.

Claim 1. ψk is a well-defined and Gk(G, q) := Image(ψk) consists of homogeneous elements.

Sinceψk−1(U (1)) andψk−1(U (2)) are homogeneous by induction hypothesis, it follows that s(ψk−1(U (1)), ψk−1(U (2)))
is also homogeneous.

Claim 2. LM(ψk(U)) = xD(U2\U1,U1)[ψk−1(U (1))] .

It suffices to show that D(U2\U1, U1) = max(α, β)− α where

LM(ψk−1(U (1))) = xα[ψk−2(U (1,1))] , LM(ψk−1(U (2))) = xβ [ψk−2(U (2,1))] .

Claim 3. ψk is injective.

If U ,V ∈ Sk+2(G, q) be such that ψk(U) = ψk(V) then their leading terms are equal :

xD(U2\U1,U1)[ψk−1(U (1))] = xD(V2\V1,V1)[ψk−1(V(1))] .

Therefore ψk−1(U (1)) = ψk−1(V(1)) and D(U2\U1, U1) = D(V2\V1, V1). By induction hypothesis
ψk−1 is injective which implies U (1) = V(1) and D(U2\U1, U1) = D(V2\V1, V1). Therefore U1 = V1
and U = V .

The following claim (proved in [MS12]) will finish the inductive step.

Claim 4. Image(ψk) forms a minimal homogeneous Gröbner basis of syzk(G(G, q)) with respect to <k
obtained from <k−1 according to (2).

These all together show that Image(ψk) ⊆ S(Gk−1(G, q)). In order to show the reverse inclusion by
Theorem 2.2 it remains to show that

(I) 0 6∈ Image(ψk).
(II) For any element s(f, h) ∈ S(Gk−1(G, q)) there exists an element g ∈ Image(ψk) such that

LM(g) | LM(s(f, h)).
(III) For any two elements g, g′ ∈ Image(ψk), if LM(g) | LM(g′) then g = g′.

Claim 5. For U ∈ Sk+2(G, q) we have ψk(U) =
∑
W∈Sk+1(G,q)

c(U ,W)xθ(U,W)[ψk−1(W)] where
c(U ,W) ∈ {−1, 0, 1} and θ(U ,W) = D(Ui\Ui−1, Uj\Uj−1) ifW differs from U by merging Ui\Ui−1
and Uj\Uj−1 for some i, j.

Note that this proves (III) which is equivalent to the minimality of the resolution. 2

From Theorem 4.1 we obtain the following important corollaries.
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Corollary 4.2 The Betti numbers of the ideals IG and in(IG) are independent of the characteristic of the
base field K.

Corollary 4.3 For all i ≥ 0, βi(R/IG) = βi(R/ in(IG)) = |Si+1(G, q)| = |Ei+1(G, q)|.

Let A = Z or A = Pic(G). Recall that IG and in(IG) are graded (or homogeneous) with respect to the
Z and Pic(G) gradings. One can also read the graded Betti numbers from Theorem 4.1.

Corollary 4.4 For all i ≥ 0 and j ∈ A we have βi,j = |Si+1,j(G, q)| where Sk,j(G, q) = {U ∈
Sk(G, q) : degA(xD(U)) = j}.

We conclude this section with some examples.

Example 4.5 It follows from above descriptions that βn−1(R/IG) = βn−1,m(R/IG) is equal to the
number of acyclic orientations of G with unique source.

Example 4.6 Let G be the complete graph Kn on n vertices. Then βk−1(R/IG) = |Sk(G, q)| = (k −
1)!S(n, k) where S(n, k) denotes the Stirling number of the second kind (i.e. the number of ways to
partition a set of n elements into k nonempty subsets).

Example 4.7 Let G be a tree on n vertices. Then βk−1(R/IG) = |Sk(G, q)| =
(
n−1
k−1
)
.

Example 4.8 For the cycle Cn on n vertices and k ≥ 2 we have βk−1(R/ICn
) = |Sk(Cn, q)| = (k −

1)×
(
n
k

)
.

5 Relation to maximal reduced divisors
Recall the definition of reduced divisors.

Definition 5.1 Let (Γ, v0) be a pointed graph. A divisor D ∈ Div(Γ) is called v0-reduced if it satisfies
the following two conditions :

(i) D(v) ≥ 0 for all v ∈ V (Γ)\{v0}.
(ii) For every non-empty subset A ⊆ V (Γ)\{v0}, there exists a vertex v ∈ A such that D(v) <

outdegA(v).

These divisors arise precisely from the normal forms with respect to the Gröbner basis given in Theo-
rem 4.1. There is a well-known algorithm due to Dhar for checking whether a given divisor is reduced
(see, e.g., [BS13] and references therein).

Lemma 5.2 For U ∈ Sk(G, q), φ∗(D(U)) = E+1, where E is a maximal (φ(U1))-reduced divisor and
1 is the all-one divisor.

Since different acyclic orientations with unique source at q′ give rise to inequivalent q′-reduced divisors
we deduce that if U ,V ∈ Sk(G, q) and the graphs G/U and G/V coincide, then φ∗(D(U)) − 1 and
φ∗(D(V)) − 1 are two inequivalent maximal reduced divisors. These observations lead to the following
formula for Betti numbers which was conjectured in [PPW11] for IG :

βi =
∑
G/U

|{D : D is a maximal v0-reduced divisors on G/U}|

=
∑
G/U

|{acyclic orientations of G/U with unique source at v0}|
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where the sum is over all distinct contracted graphs G/U as U varies in Si+1(G, q), and v0 is an arbitrary
vertex of G/U .

Here is another connection with reduced divisors. Hochster’s formula for computing the Betti numbers
topologically (see, e.g., [MS05, Theorem 9.2]), when applied to IG and the “nice” grading by Pic(G),
says that for each j ∈ Pic(G) the graded Betti number βi,j(R/IG) is the dimension of the ith reduced
homology of the simplicial complex ∆j = {supp(E) : 0 ≤ E ≤ D′ ∈ | j |} where | j | denotes the linear
system of j ∈ Pic(G).

Remark 5.3
(i) For j ∈ Pic(G), we have βn−1,j(R/IG) = 1 if and only if j ∼ E + 1 where E is a maximal
q-reduced divisor.

(ii) One can use Corollary 4.3 to read all dimensions of the reduced homologies of ∆j. Although we
now know all the Betti numbers, giving an explicit bijection between connected flags and the bases
of the reduced homologies of ∆j is an intriguing problem. In a recent work, Horia Mania in [Man12]
studies the number of connected components of ∆j.
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[Ray70] M. Raynaud. Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math.,
(38) :27–76, 1970.

[Sch80] F. Schreyer. Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen
Divisionssatz. Diplom Thesis, University of Hamburg, Germany., 1980.


	Introduction
	Definitions and background
	Graphs and divisors
	Syzygies and Betti numbers

	Connected flags on graphs
	Connected flags, partial orientations, and divisors
	Total ordering on Fk(G, q)

	Minimal free resolution and Betti numbers for IG and in(IG)
	Relation to maximal reduced divisors

