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qg-Rook placements and Jordan forms of
upper-triangular nilpotent matrices

Martha Yip

University of Pennsylvania, 209 South 33rd St., Philadelphia PA 19104, USA

Abstract. The set of n by n upper-triangular nilpotent matrices with entries in a finite field F'; has Jordan canonical
forms indexed by partitions A - n. We study a connection between these matrices and non-attacking g-rook place-
ments, which leads to a combinatorial formula for the number F) (q) of matrices of fixed Jordan type as a weighted
sum over rook placements.

Résumé. L’ensemble des matrices triangulaires supérieures nilpotentes d’ordre n sur un corps fini F, a des formes
canoniques de Jordan indexées par les partitions A - n. Nous étudions une connexion entre ces matrices et les
placements de tours, et nous présentons une formule combinatoire pour le nombre F(q) des matrices comme une
somme sur les placements de tours.
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1 Introduction

In the beautiful paper Variations on the Triangular Theme, |Kirillov| (19935)) studied various structures on
the set of triangular matrices. Denote by G, (F,,), the group of n by n upper-triangular matrices over the
field F, having ¢ elements, and let g, (F,) = Lie(G,(F,)) denote the corresponding Lie algebra of n
by n upper-triangular nilpotent matrices over F;. It is known, for example, that the conjugacy classes
of G,,(F,) are in bijection with the adjoint orbits in g,,(F,). To study the adjoint orbits we consider the
Jordan canonical form. Each matrix X € g, (FF,) is similar to a block diagonal matrix consisting of
elementary Jordan blocks with eigenvalue zero:

010 --00
001 --00
000 -- 00

Ji =
000 -~ 01
000 -~ 00

ixi
If the Jordan canonical form of X has block sizes Ay > Xy > --- > ), > 0, then X is said to have

Jordan type A\, where A is a partition of n. The Jordan type of X depends only on its adjoint orbit, so the
similarity classes of nilpotent matrices are indexed by the partitions of n.
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Let gn A (F,;) € g,(FF,) be the set of matrices of fixed Jordan type A. It was shown by Springer that
on.(F,) an algebraic manifold with f* irreducible components, each of which has the same dimension
(g) — ny. Here, f* is the number of standard Young tableaux of shape \, and n, is given in Equation@
Let

Fx(q) = [8n.(Fy)] (1)

be the number of matrices of Jordan type A. We note that )~ ,,_ . Fi\(¢q) = |gn(Fq)| = q(2) The cases

Funy(q) = 1and F(,,)(q) = (¢ — 1)"‘1q(n2 ) are readily computed, since the matrix of Jordan type (1")
is the matrix of rank zero, and the matrices of Jordan type (n) are the matrices of rank n — 1.

In Section we present a simple recurrence equation for F'y (¢) (see Proposition . As a consequence
of the recurrence equation, it follows that F)\(q) is a polynomial in ¢ with nonnegative integer coefficients,

deg Fx(q) = (%) — n, and the coefficient of the highest degree term in Fj(q) is f.

A connection with q-Rook placements

In their study of a formula of Frobenius, |Garsia and Remmel| (1986)) introduced the g-rook polynomial

Ri(¢,B)= >, ¢™, )
ceC(B,k)

which is a sum over the set C(B, k) of non-attacking placements of k rooks on the Ferrers board B,
and inv(c), defined in Equation is the number of inversions of c¢. In the case when B = ¢, is the
staircase-shaped board, Garsia and Remmel showed that Ry (q,0y) = Snn—x(q) is a ¢-Stirling number
of the second kind. These numbers are defined by the recurrence

Snk(@) =" 1 Su_1k-1(q) + [K]gSn_1x(q) for 0<k<n, 3)

with initial conditions Sp ¢(¢) = 1, and S, x(¢) = 0for k < 0 or k > n.

It was shown by Solomon! (1990)) that non-attacking placements of & rooks on rectangular m x n boards
are naturally associated to m by n matrices with rank £ over IF,. By identifying a Ferrers board B inside
an n by n grid with the entries of an n by n matrix, Haglund| (1998) generalized Solomon’s result to the
case of non-attacking placements of k rooks on Ferrers boards, and obtained a formula for the number of
n by n matrices with rank k& whose support is contained in the Ferrers board region. As a special case of
Haglund’s formula, the number of nilpotent matrices of rank k is

Piu(g) = (¢ — 1)¥qG) Ry (g7, 6,). )

Now, a matrix in g, (F,) has rank n — £()), where £()\) is the number of parts of ), so the number of
matrices in g, (IF,) with rank & is

Pg)= >,  Fao). %)

Abn: £(A)=n—k

Given Equations E] and [3} it is natural to ask whether it is possible to partition the placements C (4, k)
into disjoint subsets so that the sum over each subset of placements gives F(¢q). The goal of this paper
is to study the connection between upper-triangular nilpotent matrices over F; and non-attacking g-rook
placements on the staircase-shaped board §,,.
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Sectionforms the heart of this paper. Inspired by Equationfor Fy(q), we define a graph Z closely
related to Young’s lattice. The main result is Theorem [9] which states that there is a weight-preserving
bijection between rook placements and paths in Z. As a result, we obtain a formula for F(¢) as a sum
over certain weighted g-rook placements (see Corollary [I0), which can be viewed as a generalization of
Haglund’s formula in Equation [4]

There is a well-known bijection between rook placements on the staircase-shaped board §,, with k
rooks, and set partitions of {1,...,n} with n — k blocks. In Section[d] we describe how paths in Z gives
a new bijection between these sets, and how this gives a definition of a lattice of compositions which
appears to be new. Finally, in Section [S| we mention some further problems to pursue. In this article, the
proofs are either omitted or briefly sketched. Full details can be found in the preprint|Yip|(2013).

2 The recurrence equation for F)(q)

We define a partition A of a nonnegative integer n, denoted by A - n, is a non-increasing sequence of
nonnegative integers A\; > Ag > -+ >\, > 0 with |\| = Z?=1 A; = n. If X has k positive parts, write
£(X\) = k. Represent a partition A by its Ferrers diagram in the English notation, which is an array of \;
boxes in row ¢, with the boxes justified upwards and to the left. Let )\;- denote the size of the jth column
of \.

Example 1 The partition

A=(4,2,2,1)+9  has diagram

and columns i = 4, X\, =3, \; =1, )\, = 1.

Young’s lattice ) is the lattice of partitions ordered by the inclusion of their Ferrers diagrams. In
particular, write ;1 < A if g C A and |A| = |u| 4+ 1. In other words, p is covered by A in ) if the Ferrers
diagram of A can be obtained by adding a box to the Ferrers diagram of p. If this box is added in the ith
row and jth column of the diagram, assign a weight ¢, (¢) to the edge between y and A, where

g, ifj =1,
C,U)\(q) - q|'u,|7‘u,;_1 (q'u,;_lflu,;. _ 1) , lf] Z 2 (6)

See Figure 1 for an illustration.
The following recurrence formula for F(g) can be found in Borodin| (1995), where he considers the
matrices as particles of a certain mass. An elementary proof of a different flavour is outlined below.

Proposition 2 Let A = n. The number of n by n upper-triangular nilpotent matrices over F, of Jordan
type \ is

Fx(q) = Y cun(@)Fule),  with  Fy(q) = 1.
<A

Proof: Proceed by induction on n. Given A F n, first notice that any matrix in g,, »(IF,) has a leading
principal submatrix of type p where 1 < A. Furthermore, let J,, denote the Jordan matrix which is the
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Fig. 1: Young’s lattice with edge weights c,x(g), up ton = 4.

direct sum of elementary nilpotent Jordan blocks of sizes i1, . . . , jux. There are ¢, (¢) matrices of Jordan
type A having J,, as its leading principal submatrix, and by similarity, this result continues to hold if the
matrix J, is replaced by any matrix Y of Jordan type ;. Summing over all ;1 < A gives the desired
formula. )

The formula for F\(g) in Proposition [2| can be rephrased as a sum over the set P(\) of paths in the
Young lattice ) from the empty partition () to X. Suppose

@ ) —2s 1) —Zs @ 2 L) — )\
is a path in ), where the weight of the path
w(w) = H exe-xm (q) 7
r=1
is the product of the weights on it edges. Then Proposition 2]is equivalent to the statement
F(g)= > wm@). ®)
wEP(N)

Example 3 There are two partitions of 4 with 2 parts, namely (3,1) and (2,2). There are three paths
from () to (3,1), giving

Fan(g) = (@=1)-(¢-1)g-¢*+(q—-1)-q-(¢—1)¢*+-(¢* = 1) - (¢ — 1)¢*
= (q_1)2 (3q3+q2)a
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and there are two paths from () to (2, 2), giving

Fop(q) = (=1 -q-(q=1)g+(¢*=1)-(¢g—1)q
=(¢—1)*(2¢* + q).

Two observations about F (¢) now follow readily from Proposition For A - n, let

i>1

Suppose w : ) A A2 e A(™ — ) isapathin) such that A\(") is obtained
by adding a box to A=Y in row 7 and column j. Then deg exe—1 e (¢) = r — i, and therefore,

n n ) n
degw(w) = Zdeg Cxe—am (@) = Zr - Zz)\i = (2) — njy.
r=1 r=1

i>1

In particular, each polynomial w(ww) arising from a path t € P(\) has the same degree, so

deg Fy(q) = (Z) — . (10)

Moreover, each w(w) is monic, so the coefficient of the highest degree term in F)\(q) is the number of
paths in ) from ) to A, which is the number f* of standard Young tableaux of shape ).

Second, the edge weight ¢, --1) (- (q) corresponding to the rth step in the path w contributes a factor
of ¢ — 1 to w(w) if and only if the rth box added along the path is in column j > 2. Therefore, the
multiplicity of ¢ — 1 in each w(w) is n — A} = n — £(\), and so, the multiplicity of ¢ — 1 in F)\(q) is
n—L(N).

3 Jordan canonical forms and ¢-rook polynomials

A board B is a subset of an n by n grid of squares. We follow |Haglund| (1998)), and index the squares
following the convention for the entries of a matrix. A Ferrers board is a board B where if a square
s € B, then all squares lying north and/or east of s is also in B. Let d,, denote the staircase-shaped board
with n columns of sizes 0,1,...,n — 1. Let area(B) be the number of squares in B, so area(d,) = (})
in particular.

A placement of k rooks on a board B is non-attacking if there is at most one rook in each row and
each column of B. Let C(B, k) be the set of non-attacking placements of & rooks on B. For a placement
~ € C(B, k), let ne(y) be the number of squares in B lying directly north or directly east of a rook. Also
define the inversion of the placement to be the number

inv(y) = area(B) — k — ne(y). (11)

See Example for an illustration. As noted in |Garsia and Remmel| (1986), the statistic inv(7) is a gen-
eralization of the number of inversions of a permutation, since permutations can be identified with non-
attacking placements of rooks on a square-shaped board. In terms of the rook placement, inv(+y) is the
number of squares left blank.
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Define the weight of a rook placement v € C(B, k) by
w(y) = (g —1)* ™. (12)

Example 4 We use x to mark a rook and use « to mark squares lying directly north or directly east of
a rook. (These squares shall be referred to as the north-east squares of the placement.) The following
illustration is a non-attacking placement of four rooks on the staircase-shaped board 7.

|. X[e]e
X|o|o|o]e
ofe

e | X

X | e

This rook placement has ne(vy) = 11, inv(vy) = 6, and weight w(~y) = (¢ — 1)*q'".

For k > 0, the g-rook polynomial of a Ferrers board B is defined in (Garsia and Remmel,, {1986, 1.4) by
Ri(¢,B)= > ¢™. (13)
ceC(B,k)
The following result is due to (Haglund\ 1998, Theorem 1).

Proposition 5 If B is a Ferrers board, then the number Pg 1 (q) of n by n matrices of rank k with support

contained in B is
Ppi(q) = (¢ — D*¢ B %R (¢7, B).

O
Looking ahead, it will be convenient to consider Theorem [5]in the following equivalent form:
Por(g)= Y. (@=DF0 = " w(y). (14)
~EC(B,k) YEC(B,k)
Example 6 There are seven non-attacking placements on 6, with two rooks:
[<]eTe [x]e]e [ T HERE
H O O O e
(¢ -1)%¢ (¢ -1)%¢ (¢ —1)%¢ (¢ —1)%¢
] x| oo | o [x | N
X K X (16)
(¢ —1)%¢ (a—1)%¢ (¢—1)%q

This gives P>(q) = (¢ — 1)%(3¢° + 3¢* + q).
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Recall that if A - n is obtained from p by adding a box in row ¢ and column 7, then the edge in ) from
1 to X has weight

|l —p fi=1
q ) Biv) )
" = , , 17
cux(9) { (q— 1)q“"‘7ﬂj71 4ot (g — 1)q\u\*uj717 if j > 2. a7

Thus each edge weight is a sum of terms of the form (¢ — 1)%¢® where d = 1 — &;1 (J;1 denotes the
Kronecker delta function), and e € Zx¢. This observation inspires the following definitions.

Based on the Young lattice ), we construct a graph Z (see Figure 2). The vertices of Z are partitions.
If there is an edge from p to A in ) of weight g/#I=#i—1 (q”Q‘—l’“; — 1), then in Z the edge is replaced by
sy — s edges with weights

(q—1)g"=1=1 L, (g — 1)gHI=Hir.

A primitive path ™

€1 €n

o) —=s (2) 2

0

is a path in the graph Z. The weight w(7) of a primitive path is the product of its edge weights.
Let PP()) denote the set of primitive paths from () to A. Then each path in Young’s lattice corresponds
to a set of primitive paths, and

(n)

Fag) = > wm). (18)

Remark 7 Let i - n—1where {(pu) = 0. Let ' : () A A(2) e A=) =g
be a primitive path. If \ is obtained by adding a box to the first column of p, then there is a unique way to
extend the primitive path ' by one edge, and by Equation that edge has weight

—¢
gt

Furthermore, consider all possible A\ which can be obtained by adding a box to | in a column j > 2.
Then by Equation there are
L(p")+1

> M=t
j=2

ways to extend the primitive path ' by one edge.
In summary, the out-degree of p in Z is { + 1. Moreover, the weights

gt (g = 1) (g = DT L (g = 1)

for the edges have unique degrees || — ¢ < d < |u|. This observation is crucial for the proof of the next
lemma.

Lemma8 Letn > 1and 0 < k < n — 1. Suppose v € C(dy,k) is a rook placement with columns
AW A", Then the sequence of weights w('y(l)), . 7w(v(”)) determines a unique primitive path

T { o paey;

= 2) o .. s () such that €, = w(")). Moreover, {(x(™) = n — k.

’n’(
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Fig. 2: The graph Z, up ton = 4.

Proof: Proceed by induction on n+ k. Suppose v € C(dy,, k) and let 4’ be the placement consisting of the
first n — 1 columns of . By induction, the sequence ¢; = w(y™M),..., e, 1 = w(y™~V)) determines

€1 €2 €n—1

a unique primitive path 7’ : () 1) x(n=1) . There are two cases to consider; '
has either k£ or £ — 1 rooks.

If 4/ has k rooks, then the column (") then has & north-east squares only and weight ¢* = ¢/#/=*. By
the previous remark, there is a unique way to extend the primitive path corresponding to 7' by adding a
box to the first column of ("~ 1) and that edge has weight ¢/*/—¢.

In the second case, if 7' has k — 1 rooks, then there are n — 1 — k available boxes in column 7(") to
place a rook. The placement of the rook uniquely determines the degree of the weight w(fy(")) of the
column, which ranges from k£ + 1,...,n — 1. From the remark, there are precisely / = n — 1 — k edges

emanating from y in Z with weights having degrees |u| — £+ 1,..., |y O

’]T(

Let PP(n,n — k) = {m € PP(A\) | A\F nand £()\) = n — k} be the set of primitive paths in Z from
() to a partition with n — k parts. Define a map © : C(d,,, k) — PP(n,n — k) as follows. Suppose a rook
placement y has columns 41 ... (") Let ©(v) be the primitive path

€1 €2 €3 €n

0 7 with e, = w(y").

e

ey

Theorem 9 The map © : C(0,,k) — PP(n,n — k) is a weight-preserving bijection. O
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It follows from Theorem [9] that we may associate a partition type to each rook placement on §,,. The
partition type of a rook placement -y is the partition at the endpoint of the primitive path ©(~). Let C()\) be
the set of rook placements of partition type A. As a Corollary, we obtain a formula for F’(g) as a sum over
rook placements, and the equation can be viewed as a generalization of Haglund’s result in Equation 4]

Corollary 10 Let \ - n be a partition with {(X\) = n — k parts. Then

F@) = ) (g—1)F¢*".

YEC(N)
Proof: The result follows from Equation[I8|and the bijection © in Theorem 9] |

Example 11 There are four primitive paths from () to X\ = (3, 1).

p—> 0 e -
p—>0 - - P
0 —Ltept B(q—l)qu(q—l)QEm—y
et P

Respectively, they correspond to the following rook placements, each having partition type (3,1).

] X|o| e | X o | e I o | e | X| e

X|e . X | e .

L X ] X
(a—1)% (a—1)% (a—1)%¢ (¢ —1)%

Therefore,
F(q) = (¢ —1)*(3¢° + ¢°).

4 A refinement to compositions

A set partition is a set 0 = { By, ..., By} of nonempty disjoint subsets of \,, such that Ule B, = N,,.
The B;s are the blocks of o. Let I1(n, k) be the set of set partitions of A, with k& blocks. We adopt the
convention of listing the blocks in order so that min B; < min B; if ¢ < j. This allows us to represent a
set partition with a diagram similar to that of a Young tableau; the ¢th row of the diagram consists of the
elements in block B; listed in increasing order. A composition o of a nonnegative integer n is a sequence
of positive integers (o, . .., ay) such that |o| = Z?:l a; = n. If « has k positive parts, write £(«) = k.
A set partition 0 = { B, ..., By} has composition type a if « = (|B1], ..., |Bxl).

The number of set partitions of NV,, with k blocks is the Stirling number Sn.n—k(1) (see Equation . In
addition, Sy, ,—x(1) is also the number of placements of k rooks on the staircase board d,,. This follows
from the following well-known bijection (see [Stanley| (1999)); given a placement v € C(d,,, k), construct
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a set partition of \V;, where the integers  and j are in the same block if and only if there is a rook in square
(,7) € 7.

We shall give another bijection ¥ : C(d,,k) — II(n,n — k) that arises from the primitive paths in
the graph Z. Let v € C(d,, k) be a rook placement. Construct a diagram for a set partition using the
following procedure (also see Example [14).

o Let A(Y) be the diagram with a single box labelled 1 placed in the first row and the first column.

e For k > 2, if the weight of the kth column in  has degree d, then place the box labelled % in the
(k — d)th row of A5=1) “and rearrange the rows of the diagram into a partition shape A\(*), so that
the rows of the same length have first column entries in increasing order.

Note that if 7 = ©(y) is the primitive path in Z which corresponds to the placement -y, then (%) = \(¥)
Let (") be the partition shape of the diagram after the nth box has been placed. Let order ()\(”)) be the
diagram of the set partition resulting from ordering the rows of A(") so that the first column entries are
increasing. Define ¥(v) = order (A(™)) .

Proposition 12 U : C(4,,, k) — I(n,n — k) is a bijection. 0

The composition type of a rook placement v € C(d,,, k) is the composition type of ¥(y). Let C(«) be
the set of rook placements with composition type «.. For a composition « of n with ¢(a)) = n — k parts,
define

Folg) = > (g—1)%¢"). (19)

ceC(a)

Let rearr(«) be the partition resulting from the rearrangement of the parts of the composition « so that
they are nondecreasing.

Corollary 13 Let A - n. Then
Fx(@)= Y. Falo)
A=rearr(a)

a

We extend the definition of n) to compositions and let nq, = »_,5,(i — 1)a;. Then deg Fio(q) =

(%) — na, the multiplicity of the factor ¢ — 1 in F,(¢) is n = (), and the coefficient of the highest

degree term is the number of set partitions whose diagrams are increasing along rows and columns.

Example 14 Consider the rook placement v € C(dg,5) :

1 2 3 4 5 6 7 8
I e |e e |[X]e
X|o|o]| o] e

X]|oe|eo|e
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The set partition diagrams XV, ..., \(") correspond to the following primitive path in Z.
2[4] 15 1]5]6] 5]6] 5]6
€2 €3 €4 €5 €6 €7 €8
1] ——=[2[4]—>]2 —2[4] —— 8
3] 3] 3] 3|17 2

The edge weights of this primitive path are the same as the column weights in the rook placement. Order-
ing the rows of the diagram of the endpoint of the primitive path so that the entries in the first column are
increasing gives the set partition

1[5[6] [1][5]6]
U(y)=order -|3[7]8|=[2|4
2[4 3[7]8]

Therefore, the rook placement ~ has partition type X = (3, 3, 2) and composition type o = (3,2, 3).

Remark 15 We can define a lattice X of compositions by requiring that each path from ) to « encodes a
rook configuration of composition type a. The paper of Bjorner and Stanley (2005) considers two different
lattices of compositions, but X is different from the two presented in their paper. It may be interesting to
investigate the combinatorial properties of X, particularly as paths in X are equivalent to set partitions,
and they are known to play a crucial role in the supercharacter theory of unipotent upper-triangular
matrices (see|Thiem|(2010) for example).

5 Closing remarks

5.1 Inverse Kostka-polynomials

Let Py (z;t) denote the Hall-Littlewood function indexed by the partition A, and let m, () denote the
monomial symmetric function indexed by p. See (Macdonald, 1995, Ch. III) for definitions. For A, u - n,
the transition coefficients Ly ,(t) are defined by

Pa(z;t) =Y Ly u(tymp(x). (20)

The recurrence formula for F(¢) in Proposition [2|is essentially the same as the one for L i~ (t) (Mac-

donald, |1995| Equation 5.9°), so that L 1 (t) = #(5) = Fx(t~1). It would be interesting to see if other
entries in the transition matrix can be obtained as sums over rook placements on boards of another shape.

5.2 Matrices satisfying X* = 0

Kirillov and Melnikov| (1995) considered the number A, (g) of n by n upper-triangular matrices over
[, satisfying X2 = 0. In their first characterization of these polynomials, they considered the number
A7 (q) of matrices of a given rank , so that A,,(q¢) = >, -, A}, (q), and observed that A7, (q) satisfies the
recurrence N

A =q" A1)+ ("7 =) Apa),  AN(g)=1.

We may think of A,,(q) as the sum of F(¢) over A - n with at most two columns, so Proposition 2]is, in
a sense, a generalization of this recurrence.
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It was also conjectured by Kirillov and Melnikov that the same sequence of polynomials arise in a
number of different ways. |[Ekhad and Zeilberger| (1996) proved that one of the conjectured alternate
definitions of A, (q), namely

n? 1-s%
Cnl(q) = ch+1,qu+ 2z,
S

isasumoverall s € [-n — 1,n + 1] which satisfy s = n + 1 mod 2 and s = (—1)" mod 3, and ¢, 41 5
are entries in the signed Catalan triangle, is indeed the same as A,,(¢). It would be interesting to see what
other combinatorics may arise from considering the sum of F)\(q) over A - n with at most k columns for
a fixed k.
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