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Abstract. We study convolution powers id∗n of the identity of graded connected Hopf algebras H . (The antipode
corresponds to n = −1.) The chief result is a complete description of the characteristic polynomial—both eigenvalues
and multiplicity—for the action of the operator id∗n on each homogeneous component Hm. The multiplicities are
independent of n. This follows from considering the action of the (higher) Eulerian idempotents on a certain Lie
algebra g associated to H . In case H is cofree, we give an alternative (explicit and combinatorial) description in
terms of palindromic words in free generators of g. We obtain identities involving partitions and compositions by
specializing H to some familiar combinatorial Hopf algebras.

Résumé. Nous étudions les puissances de convolution id∗n de l’identité d’une algèbre de Hopf graduée et connexe
H quelconque. (L’antipode correspond à n = −1.) Le résultat principal est une description complète du polynôme
caractéristique (des valeurs propres et de leurs multiplicités) de l’opérateur id∗n agissant sur chaque composante
homogène Hm. Les multiplicités sont indépendants de n. Ceci résulte de l’examen de l’action des idempotents
eulériens (supérieures) sur une algèbre de Lie g associé à H . Dans le cas où H est colibre, nous donnons une
description alternative (explicite et combinatoire) en termes de mots palindromes dans les générateurs libres de g.
Nous obtenons des identités impliquant des partitions et compositions en choisissant comme H certaines algèbres de
Hopf combinatoires connues.
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Dedicated to the memory of Jean-Louis Loday.

1 Introduction
As the practice of algebraic combinatorics often involves breaking and joining like combinatorial struc-
tures (planar trees, permutations, set partitions, etc.), it is right to say that bialgebras are ubiquitous in the
theory. This was the argument put forth by G.C. Rota and others, and increasingly, researchers are taking
it to heart. On the other hand, the defining property of “Hopf algebra”—the existence of the antipode—is
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less often explicitly considered. To be sure, there is a general result stating that the bialgebras built within
algebraic combinatorics are automatically Hopf algebras (see Section 2).

The antipode problem (Aguiar and Mahajan, 2013, Section 5.4) asks for explicit knowledge of the
antipode. This can be a source of interesting combinatorial results. Consider Lam et al. (2011), where
the antipode plays a crucial role in proving a skew-Littlewood Richardson rule conjectured in Assaf and
McNamara (2011). Here is a small illustration of the utility of the antipode (an application we obtain
in Section 6.1). If pk(n) denotes the number of partitions of length k of a positive integer n, and c(n)
denotes the number of self-conjugate partitions of n, then

(−1)n c(n) =

n∑
k=1

(−1)k pk(n).

If a Hopf algebra H is commutative or cocommutative, then it is well-known that its antipode S : H →
H is an involution: S2 = id. In particular, its eigenvalues are ±1. We prove in Corollary 5 that in case H
is graded connected, the eigenvalues of the antipode are always±1, regardless of (co)commutativity, even
if S may have infinite order on any homogeneous component. This is a consequence of our main result
(Theorem 4), which provides a complete description of the characteristic polynomial for the convolution
power id∗n acting on each homogeneous component of H . (The antipode satisfies S = id∗(−1).)

This note is organized as follows. In Section 2, we introduce the Hopf and Lie preliminaries needed to
state and prove Theorem 4, which is carried out in Section 3. In Section 4, we give two refinements of
our main result in the presence of additional (co)freeness assumptions. Section 5 applies the preceding to
higher Schur indicators, and Section 6 provides illustrations of the results and derives some applications.

2 Hopf and Lie preliminaries
Throughout, we assume k is a field of characteristic zero. A Hopf algebra is a vector space H over k
with a host of maps—product (µ : H ⊗ H → H), unit (ι : k → H), coproduct (∆: H → H ⊗ H),
counit (ε : H → k), and antipode (S : H → H)—satisfying various compatibility axioms, e.g., ∆ and ε
are algebra maps. The convolution product of two linear maps P,Q : H → H is defined by P ∗ Q :=
µ ◦ (P ⊗Q) ◦∆. This is an associative product, making End(H) into a k-algebra, with unit element ιε.
The antipode is the convolution-inverse of the identity map id; that is, S ∗ id = ιε = id ∗ S.

2.1 Coradical filtration and primitive elements
Let H(0) denote the coradical of a Hopf algebra H . This is the sum of the simple subcoalgebras of H .
Given any two subspaces U, V of H , define their wedge by

U ∧ V := ∆−1(U ⊗H +H ⊗ V ). (1)

Putting H(n) = H(0) ∧H(n−1) for all n ≥ 1 affords H with the coradical filtration:

H(0) ⊆ H(1) ⊆ · · · ⊆ H(n) ⊆ · · ·H and H =
⋃
n≥0

H(n). (2)

The unit element (as well as any other group-like element) of H belongs to H(0). The Hopf algebra H
is connected if H(0) is spanned by the unit element. In this case, H(1) = H(0) ⊕ P(H), where

P(H) = {x ∈ H | ∆(x) = 1⊗ x+ x⊗ 1}
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is the space of primitive elements of H . It is a Lie subalgebra of H under the commutator bracket.
If g is a Lie algebra, its universal enveloping algebra U(g) is a Hopf algebra for which the space

of primitive elements is g. If H is connected and cocommutative, the Cartier–Milnor–Moore (CMM)
theorem states that H is isomorphic as Hopf algebra to U(P(H)). The Poincaré–Birkhoff–Witt (PBW)
identifies the vector space U(g) with S(g), the symmetric algebra on g.

We associate a commutative Hopf algebra to any connected Hopf algebra. This will enable us to use
the above Lie machinery in a wider class of algebras. Given a Hopf algebra with coradical filtration
H =

⋃
n≥0H(n), let grH denote the associated graded space

grH = H(0) ⊕
(
H(1)

/
H(0)

)
⊕
(
H(2)

/
H(1)

)
⊕
(
H(3)

/
H(2)

)
⊕ · · · . (3)

It is a graded Hopf algebra for which the component of degree n is H(n)

/
H(n−1) (Montgomery, 1993,

Ch. 5). If H is connected, then grH is commutative by a result of Foissy (Aguiar and Sottile, 2005b,
Proposition 1.6 and Remark 1.7).

The Hopf algebra H is graded if there is given a vector space decomposition H =
⊕

m≥0Hm such
that µ(Hp ⊗Hq) ⊆ Hp+q , ∆(Hm) ⊆

⊕
p+q=mHp ⊗Hq , S(Hm) ⊆ Hm, 1 ∈ H0, and ε(Hm) = 0 for

all m > 0. In this situation, H(0) ⊆ H0. It follows that if dimH0 = 1, then H is connected. In this case
we say that H is graded connected and we have that Hm ⊆ H(m) for all m.

If H is graded, then so is each subspace H(n) with (H(n))m = H(n) ∩ Hm. Hence, grH inherits a
second grading for which (grH)m is the direct sum of the spaces (H(n))m

/
(H(n−1))m.

2.2 Antipode and Eulerian idempotents
LetH be a connected Hopf algebra. We introduce some notation useful for discussing convolution powers.
Put ∆(0) = id, ∆(1) = ∆, and ∆(n) = (∆⊗ id⊗(n−1)) ◦∆(n−1) for all n ≥ 2. So the superscript is one
less than the number of tensor factors in the codomain. Similarly, µ(n) denotes the map that multiplies
n+ 1 elements of H , with µ(0) = id. Convolution powers of any P ∈ End(H) can be written as follows:

P ∗0 = ιε and P ∗n = µ(n−1) ◦ P⊗n ◦∆(n−1) (for n ≥ 1).

Proposition 1 Any connected bialgebra is a Hopf algebra with antipode

S =
∑
k≥0

(
ιε− id

)∗k
. (4)

This basic result can be traced back to Sweedler (Sweedler, 1969, Lemma 9.2.3) and Takeuchi (Takeuchi,
1971, Lemma 14); see also Montgomery (Montgomery, 1993, Lem. 5.2.10). It follows by expanding
x−1 = 1

1−(1−x) =
∑
k(1 − x)k in the convolution algebra, with x = id and 1 = ιε. Connectedness

guarantees that the sum in (4) is finite when evaluated on any h ∈ H . More precisely, if h ∈ H(m), then
(id− ιε)∗k(h) = 0 for all k > m. In particular, this holds if H is graded connected and h ∈ Hm.

We will also need the series expansions of log(id) in the convolution algebra:

log(id) = −
∑
k≥1

1

k
(ιε− id)∗k. (5)
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Definition 2 To any connected Hopf algebra H are associated (higher) Eulerian idempotents e(k) for
k ≥ 0, given by

e(0) = ιε , e(1) = log(id) , e(k) =
1

k!

(
e(1)
)∗k

(for k > 1). (6)

The “first” Eulerian idempotent is e(1). In case H is commutative and cocommutative, the e(k) form a
complete orthogonal system of idempotent operators on H . That is,

id =
∑
k≥0

e(k), e(k) ◦ e(k) = e(k), and e(j) ◦ e(k) = 0 (for j 6= k). (7)

In addition, if H is cocommutative, e(k) projects onto the subspace spanned by k-fold products of primi-
tive elements of H (Section 2.1). In particular, e(1) projects onto P(H). For proofs of these results, see
(Loday, 1992, Ch. 4). It follows from (6) and the identity x∗n = exp(n log(x)) that

id∗n =
∑
k≥0

nk e(k) (for all n ∈ Z). (8)

Some instances of these operators in the recent literature include Aguiar and Mahajan (2013), Diaconis
et al. (2012), Novelli et al. (2011), and Patras and Schocker (2006). For references to earlier work, see
(Aguiar and Mahajan, 2013, §14).

3 Characteristic polynomials for convolution powers
We need two standard results from linear algebra.

Lemma 3 Fix finite-dimensional spaces U ⊆ V , and suppose U is Θ-invariant for some Θ ∈ End(V ).

(i) If Θ̄ denotes the element of End(V/U) induced by Θ, and ΘU denotes the restriction of Θ to U ,
then the characteristic polynomials of these three maps satisfy χΘ(x) = χΘU

(x)χΘ̄(x).

(ii) The characteristic polynomials of Θ and of the dual map Θ∗ ∈ End(V ∗) are equal. 2

We are now ready to prove our main result. From now on we assume thatH is a graded connected Hopf
algebra for which the homogeneous components Hm are finite-dimensional. We consider the associated
graded Hopf algebra grH and its graded dual H̃ = (grH)∗. Here grH is endowed with the grading
inherited from that of H (as discussed at the end of Section 2.1), and the dual is with respect to this
grading: H̃m =

(
(grH)m

)∗
.

Theorem 4 For every n ∈ Z and m ∈ N, the characteristic polynomial of id∗n
∣∣
Hm

takes the form

χ
(
id∗n

∣∣
Hm

)
=

m∏
k=0

(x− nk)eul(k,m) (9)

for some nonnegative integers eul(k,m), independent of n. More precisely, we have

eul(k,m) = dim e(k)
(
H̃m

)
.

Moreover, these integers depend only on the graded vector space underlying P(H̃).
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Corollary 5 The eigenvalues of the antipode for any graded connected Hopf algebra are ±1.

This holds since S = id∗(−1).
Remarks: 1. The previous result fails for general Hopf algebras. Let ω be a primitive cube root of
unity and consider Taft’s Hopf algebra T3(ω) Taft (1971), with generators {g, x}, and relations {g3 = 1,
x3 = 0, gx = ω xg}. The coproduct and antipode are determined by ∆(g) = g ⊗ g, S(g) = g−1,
∆(x) = 1⊗ x+ x⊗ g, and S(x) = −xg−1. Here x2 + ω x2g is an eigenvector of S with eigenvalue ω.

2. Corollary 5 implies that the antipode of a graded connected Hopf algebra is diagonalizable if and
only if it is an involution.

3. The antipode of a graded connected Hopf algebra need not be an involution (hence diagonalizable).
Take for example the Malvenuto–Reutenauer Hopf algebra, (Aguiar and Sottile, 2005a, Remark 5.6).

Proof of Theorem 4: Since id∗n preserves both the grading and the coradical filtration of H , it preserves
the filtration

(H(0))m ⊆ (H(1))m ⊆ · · · ⊆ (H(m))m = Hm

for each m. By repeated application of Lemma 3(i) we deduce that

χ
(
id∗n

∣∣
Hm

)
= χ

(
id∗n

∣∣
(grH)m

)
.

The map Θ 7→ Θ∗ is an isomorphism of convolution algebras End(H) ∼= End(H∗) (where duals and
endomorphisms are in the graded sense). Together with Lemma 3(ii) this implies that

χ
(
id∗n

∣∣
(grH)m

)
= χ

(
id∗n

∣∣
H̃m

)
.

Thus, we may work with the cocommutative graded connected Hopf algebra H̃ instead of H .
In this setting the Eulerian idempotents are available, and from (8) we have that

χ
(
id∗n

∣∣
H̃m

)
=
∑
k≥0

nkχ
(
e(k)

∣∣
H̃m

)
.

It thus suffices to calculate the characteristic polynomial of the e(k).
Let g = P(H̃). By CMM, H̃ ' U(g), and by PBW, grU(g) ∼= S(g). The former is the associated

graded Hopf algebra with respect to the coradical filtration of U(g).
If f and g are filtration-preserving maps, then gr(f ∗ g) = (gr f) ∗ (gr g). Together with gr id = id,

this implies that gr e(k) = e(k), or more precisely, that the following diagram commutes.

grU(g)
gr e(k)

// grU(g)

S(g)

∼=
OO

e(k)

// S(g)

∼=
OO

Since by Lemma 3(i) characteristic polynomials (of filtration-preserving maps) are also invariant under
gr, we are reduced to computing the characteristic polynomial of e(k) acting on S(g).
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The action of e(k) on S(g) is just projection onto gk, the subspace spanned by k-fold products of
elements of g. This follows from the easily verified fact that, for xi ∈ g,

id∗n(x1 · · ·xk) = nkx1 · · ·xk.

It follows that
χ
(
e(k)

∣∣
S(g)m

)
= (x− nk)eul(k,m),

where
eul(k,m) = dim e(k)

(
S(g)m

)
= dim (gk)m.

and this completes the proof. 2

Remark: Since gk = Sk(g) (the k-th symmetric power of g), one can be more explicit about the integers
eul(k,m). Let gm = dim gm be the dimension of the homogeneous component of degree m of g. Given
a partition λ of the form λ = 1k12k2 · · · rkr , put(

g

λ

)
:=

(
g1 + k1 − 1

k1

)
· · ·
(
gr + kr − 1

kr

)
.

If |λ| and ` (λ) denote the size and number of parts of λ, respectively, then we have

eul(k,m) =
∑
|λ|=m
`(λ)=k

(
g

λ

)
. (10)

We record an easy corollary to the proof of Theorem 4.

Corollary 6 If H is graded, connected, then

trace
(
id∗n

∣∣
Hm

)
=
∑
k≥0

nk eul(k,m) (11)

for all n ∈ Z and m ∈ N. In particular,

trace
(
S
∣∣
Hm

)
=
∑
k≥0

(−1)k eul(k,m). (12)

4 The trace of the antipode and palindromic words
In this section we assume that the graded connected Hopf algebra H is cofree. Let V = P(H). The
first observation is that the integers eul(k,m) in Theorem 4 depend only on the dimensions of the ho-
mogeneous components of V . This holds since the dimensions of the homogeneous components of H
determine and are determined either by those of V or those of g. As a result, these two are related by

1−
∑
n≥1

vnx
n =

∏
i≥1

(
1− xi

)gi
,

where vn := dimVn for each positive integer n. This is Witt’s formula (Reutenauer, 1993, Cor. 4.14).
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Let pal(k,m) be the number of palindromic words of length k and weight m in an alphabet with vn
letters of weight n. (A word’s length is its number of letters; its weight is the sum of its letters’ weights.)

Let epal(m) and opal(m) denote the number of palindromes of weight m with even and odd length,
respectively. (A palindrome is a word that equals its reversal.) Let hm be the dimension of Hm, and put
npal(m) = hm − epal(m)− opal(m).

In case H is graded connected and cofree, we have an alternative description of the characteristic
polynomial for S = id∗(−1) acting on Hm.

Theorem 7 In the above situation,

χ
(
S
∣∣
Hm

)
= (x+ 1)opal(m)(x− 1)epal(m)(x2 − 1)npal(m)/2 . (13)

In particular, the trace of the antipode is given by the formula

trace
(
S
∣∣
Hm

)
=

m∑
k=0

(−1)k pal(k,m) . (14)

Proof: By arguments similar to those in used in the proof of Theorem 4, one may take H to be the shuffle
algebra T (V ), with its canonical Hopf structure. The antipode then acts on a word w in a basis for V by
reversing letters: S(w1w2 · · ·wr) = (−1)rwr · · ·w2w1 and (13) follows. Finally, note that

epal(m)− opal(m) =

m∑
k=0

(−1)k pal(k,m)

to deduce (14) and finish the proof. 2

We deduce from (9) and (14) that

m∑
k=0

(−1)k pal(k,m) =

m∑
k=0

(−1)k eul(k,m) , (15)

though these two triangles of integers are generally different.

Example 8 Consider the Malvenuto–Reutenauer Hopf algebra. The alphabet is the set of permutations
without global descents. See (Aguiar and Sottile, 2005a, Cor. 6.3) and sequence A003319 in Sloane
(OEIS). Looking at the degree three component SSym3, we have

length (k) 1 2 3
permutations 123, 132, 213 231, 312 321
descent words 123, 132, 213 12|1, 1|12 1|1|1
pal(k, 3) 3 0 1

(Beneath each permutation, we have recorded its expression in terms of letters in the alphabet. On the
last line, we count only those words that are palindromic.) The integers eul(k, 3) are computed from (10),
where g is the free Lie algebra on V and v(x) = x+x2 +3x3 +13x4 +71x5 + · · · . From Witt’s formula,
we have g(x) = x+ x2 + 4x3 + 17x4 + 92x5 + 572x6 + · · · See A112354 in Sloane (OEIS). So we get
eul(k, 3) = 4, 1, 1 as k = 1, 2, 3.
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If we move to the degree four component of SSym, one checks that there are 13 permutations without
any global descents, and one palindromic permutation with each of 1, 2, and 3 global descents:

3412 ≡ 12|12, 4231 ≡ 1|12|1, and 4321 ≡ 1|1|1|1.

Once again, the integers eul(k,m) are quite different:

pal(k, 4) 13 1 1 1
eul(k, 4) 17 5 1 1

One checks that (15) holds for m = 3 and m = 4.

5 Schur indicators
A theme occurring in the recent Hopf algebra literature involves a generalization of the Frobenius–Schur
indicator function of a finite group. If ρ : G → End(V ) is a complex representation of G, then the
(second) indicator is

ν2(G, ρ) =
1

|G|
∑
g∈G

trace ρ(g2).

The only values this invariant can take are 0, 1,−1, and this occurs precisely when V is a complex, real
or pseudo-real representation, respectively. In Linchenko and Montgomery (2000), a reformulation of the
definition was given in terms of convolution powers of the integral(i) in CG. This extended the notion of
(higher) Schur-indicators to all finite-dimensional Hopf algebras, and has since become a valuable tool for
the study of these algebras Kashina et al. (2002); Ng and Schauenburg (2008); Shimizu (2012). In case
ρ is the regular representation (and H is semisimple), it is shown in Kashina et al. (2006) that the higher
Schur indicators can be reformulated further, removing all mention of the integral:

νn(H) = trace(S ◦ id∗n) for n ≥ 0.

See also Kashina et al. (2012). These invariants are not well-understood at present. Indeed, the possible
eigenvalues of id∗n are not even known, much less their multiplicities. Our results lead to the following
formula for νn in case H is graded, connected (instead of finite-dimensional).

Corollary 9 If H is a graded connected Hopf algebra, then

νn(Hm) =
∑
k≥0

(−n)k eul(k,m),

where eul(k,m) is as in Theorem 4.

Proof: As in the proof of Theorem 4, we may assume that H is commutative. Then S is an algebra map,
and we have S ◦ id∗n = S ◦µ(n) ◦∆(n) = µ(n) ◦S⊗n ◦∆(n) = S∗n. Finally, observe that S∗n = id∗(−n)

and apply Theorem 4. 2

(i) A construct present for finite-dimensional Hopf algebras that is unavailable for general graded connected Hopf algebras.



Convolution Powers of the Identity 1061

6 Examples and applications
6.1 Symmetric functions
Take H = Sym, the Hopf algebra of symmetric functions. On the Schur function basis, the antipode acts
by S(sλ) = (−1)|λ|sλ′ , where λ′ is the partition conjugate to λ. Therefore,

trace
(
S
∣∣
Hm

)
= (−1)mc(m),

where c(m) is the number of self-conjugate partitions of m.
We turn to Corollary 6. For this Hopf algebra, gi = 1 for all i ≥ 1. Hence

(
g
λ

)
= 1 for all λ, and

eul(k,m) = pk(m), the number of partitions of m into k parts. From (12) we deduce

(−1)mc(m) =

m∑
k=0

(−1)kpk(m), (16)

the identity announced in the introduction. (Note that p0(m) = 0 for m > 0.)
We point out that it is possible to obtain this result by considering the power sum basis of Sym. Since

S(pλ) = (−1)`(λ)pλ, we have

trace(S|Hm
) = #

{
partitions of m of even length

}
−#

{
partitions of m of odd length

}
.

Equating to the former expression for the trace gives (16).
We further illustrate Corollary 6 by deriving certain identities involving the Littlewood–Richardson

coefficients cλµ,ν . Recall that the latter are the structure constants for the product and coproduct on the
Schur basis of Sym:

sµ · sν =
∑
λ

cλµ,ν sλ and ∆(sλ) =
∑
µ,ν

cλµ,ν sµ ⊗ sν .

Formula (11) (with n = ±2) yields the following identities, for all m ≥ 1:∑
λ,µ,ν`m

(cλµ,ν)2 =

m∑
k=1

2k pk(m) and
∑

λ,µ,ν`m

cλµ,νc
λ
µ′,ν′ =

m∑
k=1

(−1)m−k 2k pk(m).

Note, incidentally, that the fact that the antipode preserves (co)products says that cλµ,ν = cλ
′

µ′,ν′ .

6.2 Schur P -functions
Let Γ denote the subalgebra of Sym generated by the Schur P -functions, Pλ. See (Macdonald, 1995,
III.8) for definitions, as well as the results used below. A partition is strict if its parts are all distinct. A
basis for Γm consists of those Pλ with λ a strict partition of m. Let d(m) denote the number of such
partitions. For λ strict, S(Pλ) = (−1)|λ|Pλ. Therefore,

trace(S|Γm
) = (−1)md(m).

It is well-known that d(m) is also the number of odd partitions of m (partitions into odd parts). In fact, Γ
is the Q-subalgebra of Sym generated by the odd power sums p2i+1, i ≥ 0. It also follows from this that(
g
λ

)
= 1 when λ is odd and

(
g
λ

)
= 0 otherwise. Therefore, eul(k,m) is the number of odd partitions of m

of length k. In an odd partition, the parities of m and k are the same. Thus, identity (12) simply counts
odd partitions according to their length.
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6.3 Quasisymmetric functions
Let us turn to the Hopf algebra H = QSym of quasisymmetric functions, and consider the two standard
homogeneous bases for Hm, the fundamental Fα and monomial Mα quasisymmetric functions, with α a
composition of m. The antipode has the following descriptions:

S(Fα) = (−1)mFα̃′ and S(Mα) = (−1)`(α)
∑
β≤α

Mβ̃ ,

where γ̃ is the reversal of the word γ and γ′ is the transpose (when drawn as a ribbon-shaped skew-
diagram). Note that α = α̃′ if and only if α is symmetric with respect to reflection across the anti-diagonal
(when drawn as a ribbon). There are precisely 2(m−1)/2 of these whenm is odd, and zero whenm is even.
Calculating the trace on the fundamental basis we thus obtain

trace(S|Hm
) =

{
−2(m−1)/2 if m is odd,
0 otherwise.

(17)

The compositions α that contribute to the trace on the monomial basis satisfy α̃ ≤ α. Since reversal is
an order-preserving involution, this happens if and only if α̃ = α, that is if and only if α is palindromic.
Let pal(m) denote the number of palindromic compositions of m. In m is even, exactly half of the
palindromes of length m have odd length; if m is odd, all of them do. We conclude that

trace(S|Hm
) =

{
− pal(m) if m is odd,
0 otherwise.

(18)

Comparing (17) and (18) we deduce that, for all odd m,

pal(m) = 2(m−1)/2.

This simple fact can also be deduced by establishing the recursion pal(m) = 2 pal(m−1) for m even and
pal(m) = pal(m− 1) for m odd.

QSym is cofree, so Theorem 7 applies. We have that

pal(k,m) =


(
dm/2e − 1

dk/2e − 1

)
, if m is even, or if m is odd and k is odd,

0, if m is odd and k is even.

Formula (14) boils down in this case to the basic formula 2h =
∑h
j=0

(
h
j

)
.

6.4 Peak quasisymmetric functions
Let H denote the peak Hopf algebra. It is a subalgebra of QSym. As QSym, it is cofree, and a basis
for Hm is indexed by compositions α of m into odd parts. The number of odd compositions of m is the
Fibonacci number fm (with f1 = f2 = 1).
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In Stembridge (1997) and Billera et al. (2003), an analog of the fundamental basis of QSym is devel-
oped, θα. The antipode is S(θα) = (−1)mθα̃. It follows that

trace(S|Γm
) =

{
fm/2, if m is even,
−fdm/2e+1, if m is odd,

(as palindromic odd compositions of m come from odd compositions of m/2). A little more work shows
that

pal(k,m) =



(
(m+ k)/4− 1)

(m− k)/4

)
, if m is even and 4 | (m− k),(

b(m+ k − 1)/4c
b(m− k + 1)/4c

)
, if m and k are odd,

0, otherwise.

Formula (14) yields the following basic identities:

fh =

bh/2c∑
j=0

(
h− j − 1

j

)
(for h ≥ 1) and fh =

h−2∑
j=0

(
b(h+ j)/2c
b(h− j)/2c

)
(for h ≥ 2).

References
M. Aguiar and S. Mahajan. Hopf monoids in the category of species. In Hopf Algebras and Tensor

Categories, volume 585 of Contemp. Math., pages 17–124. Amer. Math. Soc., Providence, RI, 2013.

M. Aguiar and F. Sottile. Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv.
Math., 191(2):225–275, 2005a. ISSN 0001-8708.

M. Aguiar and F. Sottile. Cocommutative Hopf algebras of permutations and trees. J. Algebraic Combin.,
22(4):451–470, 2005b. ISSN 0925-9899. doi: 10.1007/s10801-005-4628-y.

S. H. Assaf and P. R. W. McNamara. A Pieri rule for skew shapes. J. Combin. Theory Ser. A, 118(1):
277–290, 2011. ISSN 0097-3165. doi: 10.1016/j.jcta.2010.03.010.

L. J. Billera, S. K. Hsiao, and S. van Willigenburg. Peak quasisymmetric functions and Eulerian enumer-
ation. Adv. Math., 176(2):248–276, 2003. ISSN 0001-8708. doi: 10.1016/S0001-8708(02)00067-1.

P. Diaconis, A. Pang, and A. Ram. Hopf algebras and Markov chains: Two examples and a theory.
preprint, arXiv:1206.3620, 2012.

Y. Kashina, G. Mason, and S. Montgomery. Computing the Frobenius-Schur indicator for abelian exten-
sions of Hopf algebras. J. Algebra, 251(2):888–913, 2002.
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