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A t-generalization for Schubert
Representatives of the Affine Grassmannian†

Avinash J. Dalal and Jennifer Morse
Department of Mathematics, Drexel University, Philadelphia, PA 19104, U.S.A.

Abstract. We introduce two families of symmetric functions with an extra parameter t that specialize to Schubert
representatives for cohomology and homology of the affine Grassmannian when t = 1. The families are defined
by a statistic on combinatorial objects associated to the type-A affine Weyl group and their transition matrix with
Hall-Littlewood polynomials is t-positive. We conjecture that one family is the set of k-atoms.

Nous présentons deux familles de fonctions symétriques dépendant d’un paramètre t et dont les spécialisations à
t = 1 correspondent aux classes de Schubert dans la cohomologie et l’homologie des variétés Grassmanniennes
affines. Les familles sont définies par des statistiques sur certains objets combinatoires associés au groupe de Weyl
affine de type A et leurs matrices de transition dans la base des polynômes de Hall-Littlewood sont t-positives. Nons
conjecturons qu’une de ces familles correspond aux k-atomes.
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1 Introduction
Affine Schubert calculus is a generalization of classical Schubert calculus where the Grassmannian is
replaced by infinite-dimensional spaces GrG known as affine Grassmannians. As with Schubert calculus,
topics under the umbrella of affine Schubert calculus are vast but now, it is the combinatorics of a family
of polynomials called k-Schur functions that underpins the theory.

The theory of k-Schur functions came out of a study of symmetric functions over Q(q, t) called Mac-
donald polynomials. Macdonald polynomials posses remarkable properties whose proofs inspired deep
work in many areas One aspect that has been intensely studied from a combinatorial, representation the-
oretic, and algebraic geometric perspective is the Macdonald/Schur transition matrix. In particular, in the
late 1980’s, Macdonald conjectured [Mac88] that the coefficients in the expansion

Hµ[X; q, t] =
∑
λ

Kλ,µ(q, t) sλ (1)

are positive sums of monomials in q and t; that is,Kλ,µ(q, t) ∈ N[q, t]. These coefficients have since been
a matter of great interest. For starters, they generalize the Kostka-Foulkes polynomials. These are given
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by Kλ,µ(0, t) and they appear in many contexts such as Hall-Littlewood polynomials [Gre55], affine
Kazhdan-Lusztig theory [Lus81], and affine tensor product multiplicities [NY97]. Moreover, Kostka-
Foulkes polynomials encode the dimensions of certain bigraded Sn-modules [GP92]. They were beauti-
fully characterized by Lascoux and Schützenberger [LS78] by associating a statistic (non-negative integer)
called charge to each tableau T so that

Kλ,µ(0, t) =
∑

weight(T )=µ
shape(T )=λ

tcharge(T ) . (2)

Despite having such concrete results for the q = 0 case, it was a big effort even to establish polynomiality
for general Kλ,µ(q, t) [GR96, GT96, Kno97, LV98, KN96, Sah96] and the geometry of Hilbert schemes
was eventually needed to prove positivity [Hai01]. A formula in the spirit of (2) still remains a mystery.

In one study of Macdonald polynomials, Lapointe, Lascoux, and Morse found computational evidence
for a family of new bases

{A(k)
µ [X; t]}µ1≤k (3)

for subspaces
Λ
(k)
t = span{Hλ[X; q, t]}λ1≤k

in a filtration Λ
(1)
t ⊆ Λ

(2)
t ⊆ · · · ⊆ Λ

(∞)
t of Λ. Conjecturally, the star feature of each basis was the

property that Macdonald polynomials expand positively in terms of it, giving a remarkable factorization
for the Macdonald/Schur transition matrices over N[q, t]. To be precise, for any fixed integer k > 0 and
each λ ∈ Pk (a partition where λ1 ≤ k),

Hλ[X; q, t ] =
∑
µ∈Pk

K
(k)
µ,λ(q, t)A(k)

µ [X; t ] where K
(k)
µ,λ(q, t) ∈ N[q, t] . (4)

It was conjectured in [LLM03] that for all k > 0, {A(k)
µ [X; t]}µ1≤k exists and forms a basis for Λ

(k)
t , and

that for k ≥ |µ|, A(k)
µ [X; t] = sµ. These conjectures and the decomposition (4) strengthen Macdonald’s

conjecture.
A construction for A(k)

µ [X; t] is given in [LLM03], but it is so intricate that these conjectures remain
unproven. However, pursuant investigations of these bases led to various conjecturally equivalent charac-
terizations. One such family of polynomials {s(k)λ } was introduced in [LM05] and conjectured to be the
t = 1 case of A(k)

λ [X; t]. It has since been proven that the s(k)λ refine the very aspects of Schur functions
that make them so fundamental and wide-reaching and they are now called k-Schur functions.

The role of k-Schur functions in affine Schubert calculus emerged over a number of years. The spring-
board was a realization that the combinatorial backbone of k-Schur theory lies in the setting of the affine
Weyl group. The k-Schur functions are tied to Pieri rules, tableaux, Young’s lattice, sieved q-binomial
identities, and Cauchy identities that are naturally described in terms of posets of elements in Ãk. For
example, K(k)

λ,µ(1, 1) is the number of reduced expressions for an element in Ãk. The combinatorial
exploration fused into a geometric one when the k-Schur functions were connected to the quantum coho-
mology of Grassmannians. Quantum cohomology originated in string theory and symplectic geometry.
It has had a great impact on algebraic geometry and is intimately tied to the Gromov-Witten invariants.
These invariants appear in the study of subtle enumerative questions such as: how many degree d plane
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curves of genus g contain r generic points? Lapointe and Morse [LM08] showed that each Gromov-
Witten invariant for the quantum cohomology of Grassmannians exactly equals a k-Schur coefficient in
the product of k-Schur functions in Λ. A basis of dual (or affine) k-Schur functions was also introduced
in [LM08] and Lam proved [Lam08] that the Schubert bases for cohomology and homology of the affine
Grassmannian GrSLk+1

are given by the dual k-Schur functions and the k-Schur functions, respectively.
Our motivation here is that the k-Schur functions s(k)λ are parameterless and the t is needed to connect

with theories outside of geometry. Unfortunately, the characterizations for generic t lack in mechanism
for proofs. We introduce a new family of functions that reduce to {s(k)λ } when t = 1. Our definition uses
a combinatorial object called affine Bruhat counter-tableaux (ABC’s), whose weight generating functions
are the dual k-Schur functions [DM12]. We associate a statistic (a non-negative integer) to each ABC
called the k-charge. From this, we use the polynomials

K
(k)
λ,µ(t) =

∑
shape(A)=c(λ)
weight(A)=µ

tk-charge(A) (5)

to define a t-generalization of s(k)λ . In particular, we show that the matrix (K
(k)
λ,µ(t)){λ,µ∈Pk} is unitrian-

gular and taking the inverse of this matrix to be K̃(k), a basis for Λkt is given by

s
(k)
λ [X; t] =

∑
µ

K̃
(k)
λ,µ(t)Hµ[X; t] ,

for all λ with λ1 ≤ k. We prove that s(k)λ [X; t] reduce to k-Schur functions when t = 1. When k =
∞, these are Schur functions, and thus (5) gives a new description for the Kostka-Foulkes polynomials.
Naturally, we conjecture that these functions are the A(k)

λ [X; t].

2 Related work
A refinement of the plactic monoid to a structure on k-tableaux that can be applied to combinatorial prob-
lems involving k-Schur functions is partially given in [LLMS12] by a bijection compatible with the RSK-
bijection. A deeper understanding of this intricate bijection is underway. Towards this effort, Lapointe
and Pinto [LP] have recently shown that a statistic on k-tableaux is compatible with the bijection. There
are now several statistics (on k-tableaux, elements of the affine symmetric group, and on ABC’s) whose
charge generating functions are the same. The ABC’s can be used to find the image of certain elements
under this bijection and we are working to put the ABC’s in a context that simplifies the bijection.

3 Background
We identify each partition λ = (λ1, . . . , λn) with its Ferrers shape (having λi lattice squares in the ith

row, from the bottom to top). For partitions λ and µ, we say λ contains µ, denoted µ ⊆ λ, if λi ≥ µi. A
skew shape is a pair of partitions λ, µ such that µ ⊆ λ, denoted λ/µ.

A semistandard tableau T is a filling of a Ferrers shape λ with positive integers that weakly decrease
along rows and strictly increase up the columns. The weight of a semistandard tableau is the composition
(µi)i∈N, where µi is the number of cells containing i. For a partition λ and composition µ, let SSY T (λ, µ)
be the set of semistandard tableaux of shape λ and weight µ.
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The hook-length of a cell (i, j) of any partition is the number of cells to the right of (i, j) in row i plus
the number of cells above (i, j) in column j plus 1. A p-core is a partition that does not contain any cell
with hook-length p. The p-degree of a p-core λ, degp(λ), is the number of cells in λ whose hook-length is
smaller than p. Hereafter we work with a fixed integer k > 0 and all cores (resp. residues) are k+ 1-cores
(resp. k+ 1-residues) and degk+1 will simply be written as deg. We let Pk denote the set of all partitions
λ with λ1 ≤ k. We also let Ck+1 denote the set of all k + 1-cores. We use a bijection given in [LM05]
c : Pk → Ck+1.

For n ≥ 0, an n-ribbon R is a skew diagram λ/µ consisting of n rookwise connected cells such that
there is no 2× 2 shape contained in R. We refer to the southeasternmost cell of a ribbon as its head, and
the northweasternmost cell of a ribbon as its tail.

A ribbon tableau T of shape λ/µ is a chain of partitions

µ = µ0 ⊂ µ1 ⊂ · · · ⊂ µr = λ

such that each µi/µi−1 is a tiling of ribbons filled with a positive integer. A ribbon counter-tableau A of
shape λ/µ is a ribbon tableau such that each skew shape µi/µi−1 is filled with the same positive integer
r − i + 1. We set the cell (i, j) of a ribbon counter-tableau to be the cell in row i, column j, where row
one is the topmost row and column one is the leftmost column. For more on partitions and tableaux see
[Mac95], [Sta99], [Ber09].

4 Schubert representatives for H∗(GrSLk+1
) and H∗(GrSLk+1

)
Despite the many characterizations for the Schubert representatives for the cohomology and homology of
the infinite dimensional affine Grassmannian spaces for SLk+1 (e.g. [LM05, LM08, Lam06, LLMS10,
DM12, AB12]), none have been shown to be the t = 1 case of functions conjectured to give a positive
Macdonald expansion (4). Our goal is to present functions with a t parameter which reduce to the k-Schur
functions as formulated in [DM12] when t = 1. The formulation is given in terms of a combinatorial
structure called ABC’s.

Recall that the strong (Bruhat) order on the affine Weyl group Ãk can be instead realized on k+1-cores
by the covering relation:

ρlB γ ⇐⇒ ρ ⊆ γ and deg(γ) = deg(ρ) + 1.

An important fact about strong covers is useful in our study.

Lemma 1 [LLMS10] Let ρlB γ be cores. Then

1. Each connected component of ρ/γ is a ribbon.

2. The components are translates of each other and their heads have the same residue.

A specific subset of ribbon counter-tableaux are those where each ribbon is of height one. An ABC
will be defined as such ribbon counter-tableaux where the skew shapes are a certain strip defined in terms
of strong order.

Definition 2 For 0 < ` ≤ k and k + 1-cores λ and ν, the skew shape (k + λ1, λ)/ν is a bottom strong
(k − `)-strip if there is a saturated chain of cores

ν = ν0 lB ν1 lB · · ·lB νk−` = (k + λ1, λ) ,
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where

1. (k + λ1, λ)/ν is a horizontal strip

2. The bottom rightmost cell of νi is also a cell in νi/νi−1, for 1 ≤ i ≤ k − `.

It turns out that if a skew shape is a bottom strong strip then there is a unique chain meeting the
conditions described in Definition 2.

Example 3 The skew shape (8, 3)/(4, 2) of 6-cores is a bottom strong 2-strip as there is the saturated
chain

lB lB .

Example 4 The skew shape (6, 3, 1, 1)/(4, 1, 1, 1) of 4-cores is a bottom strong 1-strip as there is the
saturated chain

lB .

Example 5 There are 4 saturated chains of 4-cores in the strong order from (3) to (5, 2, 1),

lB lB lB , lB lB lB ,

lB lB lB , lB lB lB .

Since none of these give a bottom strong strip, (5, 2, 1)/(3) is not a bottom strong strip.

Remark 6 Bottom strong (k − `)-strips are a distinguished subset of strong strips in [LLMS10] that
define the Pieri rule for the cohomology of the affine Grassmannian.

The iteration of bottom strong strips leads to the definition of an ABC. First let us set some notation.
Given a ribbon counter-tableau A, let A(x) denote the subtableau made up of the rows of A weakly higher
than row x. Let A>i denote the restriction of A to letters strictly larger than i where empty cells in a skew
are considered to contain∞. With this in hand, we are now ready to define the ABC’s.

Definition 7 For a composition α whose entries are not larger than k, a skew ribbon counter-tableau A
is an affine Bruhat counter-tableau (or ABC) of k-weight α if

(k + λ
(i−1)
1 , λ(i−1))/λ(i) is a bottom strong αi-strip for all 1 ≤ i ≤ `(α) ,

where λ(x) = shape(A
(x)
>x). We define the inner shape of A to be λ(`(α)).

The easiest method to construct an ABC of k-weight α is iteratively, from the empty shape λ(0), using
Definition 2 to successively add bottom strong strips that are a tiling of (k + λ

(i−1)
1 , λ(i−1))/λ(i) with

αi-ribbons at each step.
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Example 8 With k = 5, we construct an ABC of 5-weight (3, 3, 1) by

strong 3-strip : lB 1 lB 1 1

strong 3-strip : lB 2̄ 2̄ 2̄ lB
2

2̄ 2̄ 2̄ 2

strong 1-strip : lB
3

3 lB
3 3

3 3 lB
3 3

3 3 3̄ 3̄ lB
3 3

3
3 3 3̄ 3̄ 3 .

The black letters are ribbons of size one, red letters make a ribbon of size two and blue letters make
a ribbon of size 3 (or for those without color the ribbons are depicted with a bar). This can be more
compactly represented as

3 3 2 1 1
3 2̄ 2̄ 2̄ 2

3 3 3̄ 3̄ 3 .

Example 9 An example of an ABC of 6-weight (4, 4, 2, 1) with inner shape (8, 2, 2, 1) = c(6, 2, 2, 1) is

4 2 2 1 1
3 3 3 3̄ 3̄ 3̄ 2 2
4 4 4̄ 4̄ 4 4 3 3 3 3̄ 3̄ 3̄

4 4 4̄ 4̄ 4 4 .

Example 10 Two examples of ABC’s of k-weight (1, 1, 1, 1, 1, 1, 1) = (17) are

2 1 1
5 3 2 2

4 3̄ 3̄ 3
6 5 4 4

7̄ 7̄ 5̄ 5̄ 5
6 6̄ 6̄
7̄ 7̄ 7 ,

3-weight (17)

2 1 1 1 1 1 1
4 3 2 2 2 2 2 2
5 4 3 3 3 3 3̄ 3̄ 3
6 6 5 4 4 4 4 4 4

7 7 5 5 5 5 5̄ 5̄ 5
6 6 6 6 6 6̄ 6̄
7 7 7̄ 7̄ 7 7 7 .

7-weight (17)

The weight generating functions of the ABC’s turn out to be the dual k-Schur functions.

Theorem 11 [DM12] For any λ ∈ Ck+1, the dual k-Schur function can be defined by

S
(k)
λ =

∑
A

xA

where the sum is over all affine Bruhat counter-tableaux of inner shape λ, and xA = xk-weight(A).

These are symmetric functions, implying that

S
(k)
λ =

∑
µ:µ1≤k

K
(k)
λ,µmµ , (6)

whereK(k)
λ,µ is the number of affine Bruhat counter-tableaux of inner shape λ and k-weight µ. Then, using

the Hall-inner product defined by
〈hλ,mµ〉 = δλµ ,

we arrive at a characterization for k-Schur functions.

hµ =
∑
λ

K
(k)
λ,µ s

(k)
λ . (7)
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5 Kostka-Foulkes polynomials

Our goal is to introduce polynomials s(k)λ [X; t] that reduce to s(k)λ [X] when t = 1 using (4) as an in-
spiration. Our approach is to introduce a statistic on ABC’s. When k = deg(λ), both S

(k)
λ and s(k)λ

are simply the Schur function sλ. One advantage of using ABC combinatorics in the theory of k-Schur
functions is that known results concerning Schur functions can be reinterpreted in the ABC framework
with k large and this can shed light on the smaller k cases. With this in mind, we consider a reformulation
for the Kostka-Foulkes polynomials in terms of ABC’s. Our results enable us to give a characterization
for symmetric polynomials in an extra parameter t that reduce to S

(k)
λ and s(k)λ when t = 1.

Let us start by recalling the Hall-Littlewood polynomials {Hλ[X; t]}λ. These are a basis for Λ over the
polynomial ring Z[t], which reduces to the homogeneous basis when the parameter t = 1. These often are
denoted by {Q′λ[X; t]} in the literature ([Mac95]). Hall-Littlewood polynomials arise and can be defined
in various contexts such as the Hall Algebra, the character theory of finite linear groups, projective and
modular representations of symmetric groups, and algebraic geometry. We define them here via a tableaux
Schur expansion due to Lascoux and Schützenberger [LS78].

The key notion is the charge statistic on semistandard tableaux. This is given by defining charge on
words and then defining the charge of a tableau to be the charge of its reading word. For our purposes,
it is sufficient to define charge only on words whose evaluation is a partition. We begin by defining the
charge of a word with weight (1, 1, . . . , 1), or a permutation. If w is a permutation of length n, then the
charge of w is given by

∑n
i=1 ci(w) where c1(w) = 0 and ci(w) is defined recursively as

ci(w) = ci−1(w) + χ (i appears to the right of i− 1 in w) .

Here we have used the notation that when P is a proposition, χ(P ) is equal to 1 if P is true and 0 if P is
false.

Example 12 The charge, ch(3, 5, 1, 4, 2) = 0 + 1 + 1 + 2 + 2 = 6.

We will now describe the decomposition of a word with partition evaluation into charge subwords,
each of which are permutations. The charge of a word will then be defined as the sum of the charge of its
charge subwords. To find the first charge subword w(1) of a word w, we begin at the right of w (i.e. at
the last element of w) and move leftward through the word, marking the first 1 that we see. After marking
a 1, we continue to travel to the left, now marking the first 2 that we see. If we reach the beginning of
the word, we loop back to the end. We continue in this manner, marking successively larger elements,
until we have marked the largest letter in w, at which point we stop. The subword of w consisting of the
marked elements (with relative order preserved) is the first charge subword. We then remove the marked
elements from w to obtain a word w′. The process continues iteratively, with the second charge subword
being the first charge subword of w′, and so on.

Example 13 Given w = (5, 2, 3, 4, 4, 1, 1, 1, 2, 2, 3), the first charge subword of w are the bold elements
in (5,2, 3, 4,4, 1, 1,1, 2, 2,3). If we remove the bold letters, the second charge subword is given by the
bold elements in (3,4, 1,1, 2,2). It is now easy to see that the third and final charge subword is (1,2).
Thus we get that ch(w) = ch(5, 2, 4, 1, 3) + ch(3, 4, 1, 2) + ch(1, 2) = 8. Since w is the reading word of
the tableau T =

5
2 3 4 4
1 1 1 1 2 2 3

we find that the ch(T ) = 8.
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Equipped with the definition of charge, Hall-Littlewood polynomials are then defined by

Hµ[X; t] =
∑
λ

Kλ,µ(t) sλ , (8)

where Kλ,µ(t) = Kλ,µ(0, t) from (2).
Our first order of business to reformulate Kostka-Foulkes polynomials is to describe the reading word

of an ABC. To do so, we first modify a given ABC by lengthening the row sizes.

Definition 14 From a given ABC A of partition k-weight µ, the extension of A, ext(A), is the counter-
tableau constructed from A by adding k cells with letter i to each row i, where the first µi − si + ri + 1
added cells form a ribbon for si the sum of the size of the ribbons filled with the letter i in row i and ri
the number of such ribbons.

Example 15 Consider the following extension of an ABC with 5-weight (3, 3, 3, 1).

A =
4 2 1 1

4 3 2̄ 2̄ 2̄ 2

4̄ 4̄ 4 3̄ 3̄ 3
4 4 4̄ 4̄ 4

=⇒ ext(A) =
4 2 1 1 1̄ 1̄ 1̄ 1̄ 1

4 3 2̄ 2̄ 2̄ 2 2̄ 2̄ 2 2 2

4̄ 4̄ 4 3̄ 3̄ 3 3̄ 3̄ 3̄ 3 3
4 4 4̄ 4̄ 4 4 4 4 4 4

5.1 Reading word of standard ABC’s
As with tableaux, we first define the reading word of a standard ABC (one of k-weight 1n) and use this
to describe the general reading word. Standard ABC’s have a much more predictable structure than the
general case. Namely, a standard ABC A has only ribbons of size 1 or 2. In fact, if a row i in A has an
i-ribbon of size 2, then µi − si + ri = 1. Otherwise µi − si + ri + 1 = 2. Thus, each row i of ext(A)
has a unique i-ribbon of size 2.

Our construction of the word of an ABC A considers only a subset of the cells in ext(A). Namely,

VA = {(i, ci) ∈ ext(A) : (i, ci) is any cell in a i-ribbon of row i that is not its tail}. (9)

For standard A of k-weight 1n, VA is simply a set of n ribbon heads; the one in each row i of ext(A) that
contains i. Using VA, we define the reading word on this standard ABC A.

Definition 16 For a givenABC A of k-weight 1n, iteratively construct the reading word w(A) by insert-
ing letter i directly right of letter j where j < i is the largest index such that cj < ci and (j, cj) ∈ VA. If
there is no such j then i is placed at the beginning.

Example 17 Recall the ABC from example 10 of 3-weight (17) is

A =

2 1 1
5 3 2 2

4 3̄ 3̄ 3
6 5 4 4

7̄ 7̄ 5̄ 5̄ 5
6 6̄ 6̄
7̄ 7̄ 7

=⇒ ext(A) =

2 1 1 1̄ 1̄ 1
5 3 2 2 2̄ 2̄ 2

4 3̄ 3̄ 3 3 3 3
6 5 4 4 4̄ 4̄ 4

7̄ 7̄ 5̄ 5̄ 5 5 5 5
6 6̄ 6̄ 6 6 6

7̄ 7̄ 7 7 7 7

From ext(A), we see that VA = {(1, 5), (2, 6), (3, 4), (4, 7), (5, 5), (6, 6), (7, 5)}. From VA, we have
the iterative construction of the reading word of A as (1) → (1, 2) → (3, 1, 2) → (3, 1, 2, 4) →
(3, 5, 1, 2, 4)→ (3, 5, 6, 1, 2, 4)→ (3, 7, 5, 6, 1, 2, 4). This tells us that w(A) = (3, 7, 5, 6, 1, 2, 4).
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5.2 Reading words of ABC
Equipped with a method to obtain the reading word (permutation) of standard ABC’s, we now define a
way to construct a sequence of permutations from any ABC with partition k-weight.

Definition 18 Let A be an ABC of partition k-weight µ. For r = 1, 2, . . . , µ1, starting with r = 1, we
iteratively construct sets ErA from ext(A) as follows; put (1, k + µ1 + 2− r) ∈ ErA, and let (i, ci) ∈ ErA
if and only if (i− 1, ci−1) ∈ ErA and

(ci−1 − ci + k) mod (k + 1) = min{(ci−1 − x+ k) mod (k + 1)|(i, x) ∈ VA \ ∪r−1p=1E
p
A}.

Example 19 Recall the ABC A from example 15 of 5-weight (3, 3, 3, 1). From its ext(A), we see that

VA = {(1, 7), (1, 8), (1, 9), (2, 6), (2, 7), (2, 10), (3, 8), (3, 11), (3, 12), (4, 10)}.

We iteratively construct the sets ErA for each r = 1, 2, 3, using ext(A) and VA. For r = 1, begin by
setting E1

A = {(1, 9)}. Next, we see that (2, 7) ∈ E1
A , because (1, 9) ∈ E1

A and

1 = min{2 = (9− 6 + 5) mod 6, 1 = (9− 7 + 5) mod 6, 4 = (9− 10 + 5) mod 6}.

So the next iteration gives us that E1
A = {(1, 10), (2, 7)}. Next, we see that (3, 12) ∈ E1

A, because
(2, 7) ∈ E1

A and 0 = min{4 = (7− 8 + 5) mod 6, 1 = (7− 11 + 5) mod 6, 0 = (7− 12 + 5) mod 6}.
So the next iteration gives us that E1

A = {(1, 10), (2, 7), (3, 12)}. Finally since the (4, 10) is the only
element in VA from the fourth row of A, then we see that E1

A = {(1, 9), (2, 7), (3, 12), (4, 10)}.
For r = 2, to constructE2

A, we begin by settingE2
A = {(1, 8}, and repeat what we did to constructE1

A,
except this time we only consider elements from the set VA\E1

A = {(1, 7), (1, 8), (2, 6), (2, 10), (3, 8), (3, 11)}.
This gives us E2

A = {(1, 8), (2, 6), (3, 11)}.
Finally for r = 3, to construct E3

A, we begin by setting E3
A = {(1, 7)}, and we only consider el-

ements from the set VA \ (E1
A ∪ E2

A) = {(1, 7), (2, 10), (3, 8)}, which immediately gives us E3
A =

{(1, 7), (2, 10), (3, 8)}.

Using each set ErA, we construct a sequence of reading word wr for 1 ≤ r ≤ µ1.

Definition 20 Given an ABC A of partition k-weight µ, for 1 ≤ r ≤ µ1, the rth reading word of A,
wr(A), is constructed using the same procedure in definition 16, where VA is replaced by ErA.

Example 21 If we consider the ABC A from example 15, then we know from example 19 that E1
A =

{(1, 9), (2, 7), (3, 12), (4, 10)}, E2
A = {(1, 8), (2, 6), (3, 11)}, E3

A = {(1, 7), (2, 10), (3, 8)}. This tells
us from definition 20 that w1(A) = (2, 1, 4, 3), w2(A) = (2, 1, 3) and w3(A) = (3, 1, 2).

For partitions λ, µ with |λ| = |µ| = n, an ABC A is of n-weight µ and inner shape λ, has a charge
statistic associated to it.

Definition 22 Suppose λ and µ are partitions with |λ| = |µ| = n. For any ABC A of n-weight µ and
inner shape λ, the charge of A is ch(A) =

∑µ1

r=1 ch(wr(A)).

Example 23 The ABC A from example 15 has the reading words w1(A) = (2, 1, 4, 3), w2(A) =
(2, 1, 3) and w3(A) = (3, 1, 2). as described in example 18. Hence, we have that the charge of A is
ch(A) = ch((2, 1, 4, 3)) + ch((2, 1, 3)) + ch((3, 1, 2)) = 2 + 1 + 2 = 5.
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There is a direct connection between reading words of semi-standard Young tableaux and a certain set
of ABC’s.

Theorem 24 Suppose λ and µ are partitions with |λ| = |µ| = n. If the set

ABC(λ, µ) = {A| A is an ABC of n-weight µ and inner shape c(λ)} ,

then there is a bijection between the sets ABC(λ, µ) and SSY T (λ, µ), which is charge preserving.

From this theorem, we have the following corollary that gives the Kostka-Foulkes polynomials in the spirit
of ABC’s.

Corollary 25 For partitions λ and µ, the Kostka-Foulkes polynomial

Kλ,µ(t) =
∑

A∈ABC(λ,µ)

tch(A).

6 k -charge and k -Schur functions
We now look towards generalizing Corollary 25 by considering ABC’s of any partition k-weight. What
is needed is an extra concept of an offset of a given ABC. Any r-ribbon of an ABC is an offset if there
is a lower r-ribbon filled with the same letter as R whose head has the same residue as the head of R.

Definition 26 For any ABC A of partition k-weight µ, we set

off k(A) =
∑

R: offset inA

(size(R)− 1)

Definition 27 Let A be an ABC of partition k-weight µ and inner shape λ, and w1(A), . . . , wµ1
(A) be

the sequence of reading words that result from definition 18. Then, the k-charge of A

chk(A) =

µ1∑
r=1

ch(wr(A))− off k(A)− β(A)

where β(A) is the number of cells in λ whose hook-length exceeds k.

Example 28 Consider the ABC of 3-weight 15 A =
3 1 1

2 2̄ 2̄
4 3 3

5̄ 5̄ 4 4
5 5̄ 5̄

. Here we see that A has only one offset

5̄ 5̄ in the second row from the bottom. The only reading word for this A is w1(A) = (2, 5, 1, 3, 4). So we
get ch3(A) = ch((2, 5, 1, 3, 4))− 1− 1 = 5− 1− 1 = 3.

Definition 29 For any λ, µ ∈ Pk, we let

K
(k)
λ,µ(t) =

∑
A:ABC of k-weight µ,

inner shape c(λ)

tch
k(A).

Note that when k ≥ |λ|, the polynomials K(k)
λ,µ(t) are the Kostka-Foulkes polynomials of 2. Definition

29 generalizes the Kostka-Foulkes polynomials, and it also helps us to define a new set of symmetric
functions with parameter t. To see this, we only need the following claim.
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Lemma 30 The matrix [
K

(k)
λ,µ(t)

]
{λ,µ∈Pk}

is unitriangular.

Taking the inverse of the matrix in theorem 30, we form a basis for the subring Λ
(k)
t of the ring Λ.

Definition 31 For λ ∈ Pk, the k-Schur function with parameter t is

s
(k)
λ [X; t] =

∑
µ

K̃
(k)
λ,µ(t)Hµ[X; t],

where K̃(k)
λ,µ(t) are entries in the inverse of the matrix

[
K

(k)
λ,µ(t)

]
{λ,µ∈Pk}

.

These new symmetric functions exhibit properties which connect them to the k-Schur and the Schur
functions.

Property 32 As λ ranges over partitions inPk, s(k)λ [X; t] forms a basis for the subring Λ
(k)
t , s(k)λ [X; 1] =

s
(k)
λ , and s(∞)

λ [X; 1] = sλ.

Finally we make the following conjecture which ties the functions in Definition 31 to those described in
[LLM03].

Conjecture 33 For µ ∈ Pk, s(k)µ [X; t] = A
(k)
µ [X; t].
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