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0-Hecke algebra action on the
Stanley-Reisner ring of the Boolean algebra

Jia Huangf*

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. We define an action of the 0-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra.
By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize
to the noncommutative Hall-Littlewood symmetric functions and their (g, ¢)-analogues introduced by Bergeron and
Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and
Gessel on the generating function of the joint distribution of five permutation statistics.

Résumé. Nous définissons une action de I’algebre de Hecke-0 de type A sur I’anneau Stanley-Reisner de 1’algebre de
Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui
se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur (g, t)-analogues introduits
par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetric multivariées, qui se
spécialisent a la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques
de permutation.

Keywords: 0-Hecke algebra, Stanley-Reisner ring, Boolean algebra, noncommutative Hall-Littlewood symmetric
function, multivariate quasisymmetric function.

1 Introduction

Let FF be any field. The symmetric group &, naturally acts on the polynomial ring F[X] := F[z1, ..., z,]
by permuting the variables x1, . .., x,. The invariant algebra F[X]®~, which consists of all the polyno-
mials fixed by this &,,-action, is a polynomial algebra generated by the elementary symmetric functions
€1,...,en. The coinvariant algebra IF[X}/(IF[X}E’), with (]F[X]f) = (e1,...,¢ey), is a vector space
of dimension n! over I, and when [F has characteristic larger than n the coinvariant algebra carries the
regular representation of S,,. A well known basis for F[X]/(F[X ]f") consists of the descent monomials.
Garsia [[7]] obtained this basis by transferring a natural basis from the Stanley-Reisner ring F[5,,] of the
Boolean algebra B3,, to the polynomial ring F[X]. Here the Boolean algebra B,, is the set of all subsets of
[n] :=={1,2,...,n} partially ordered by inclusion, and the Stanley-Reisner ring F[B,,] is the quotient of
the polynomial algebra F [y 4 AC [n]] by the ideal (y 4Yp : Aand B are incomparable in B,L).

The 0-Hecke algebra H,,(0) (of type A) is a deformation of the group algebra of &,,. It acts on F[X]
by the Demazure operators, also known as the isobaric divided difference operators, having the same
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invariant algebra as the &,,-action on F[X]. In our earlier work [13]], we showed that the coinvariant
algebra F[X]/(F[X]$") is also isomorphic to the regular representation of H,,(0), for any field IF, by
constructing another basis for F[ X]/(F[X] f") which consists of certain polynomials whose leading terms
are the descent monomials. This and the previously mentioned connection between the Stanley-Reisner
ring F[,,] and the polynomial ring F[X] motivate us to define an H,,(0)-action on F[5,,].

It turns out that our H,,(0)-action on F[B,] has similar properties to the H,(0)-action on F[X]. It
preserves an N"*1-multigrading of F[B,,] and has invariant algebra equal to a polynomial algebra F[O)],
where © is the set of rank polynomials 6; (the usual analogue of e; in F[B,,]). We show that the H,,(0)-
action is O-linear and thus descends to the coinvariant algebra F[B,,]/(©). Using the descent monomials
in IF[BB,,] it is not hard to see that F[B,,]/(©) carries the regular representation of H, (0).

Itis well known that every finite dimensional (complex) &,,-representation is a direct sum of simple (i.e.
irreducible) &,,-modules, and the simple &,,-modules are indexed by partitions \ of n, which correspond
to the Schur functions sy via the Frobenius characteristic map. Hotta-Springer [[11] and Garsia-Procesi [9]
discovered that the cohomology ring of the Springer fiber indexed by a partition p of n is isomorphic to
certain quotient ring R, of F[X|, which admits a graded &,,-module structure corresponding to the mod-
ified Hall-Littlewood symmetric function H u(x;t) via the Frobenius characteristic map. The coinvariant
algebra of G,, is nothing but Rqn.

In our previous work [13] we established a partial analogue of the above result by showing that the
H,,(0)-action on F[X] descends to R, if and only if 4 = (1*,n — k) is a hook, and if so then R,
has graded quasisymmetric characteristic equal to H u(x;t) and graded noncommutative characteristic
H u(x;t). Here H., (x; t) is the noncommutative modified Hall-Littlewood symmetric function introduced
by Bergeron and Zabrocki [3] for any composition o of n. Using an analogue of the nabla operator
Bergeron and Zabrocki [3] also introduced a (g, t)-analogue H,, (x; ¢, t) for any composition . Now
we provide in Theorem below a complete representation theoretic interpretation for ﬁa(x; t) and
H.,(x; ¢, t) by the H,,(0)-action on F[B,,].

To state our result, we first recall the two characteristic maps for representations of H,,(0) introduced
by Krob and Thibon [14], which we call the quasisymmetric characteristic and the noncommutative char-
acteristic. The simple H,,(0)-modules are indexed by compositions « of n and correspond to the funda-
mental quasisymmetric functions F,, via the quasisymmetric characteristic; the projective indecomposable
H,,(0)-modules are also indexed by compositions « of n and correspond to the noncommutative ribbon
Schur functions s, via the noncommutative characteristic. See §2]for details.

Theorem 1.1 Let o be a composition of n. Then there exists a homogeneous H, (0)-invariant ideal I,
of the multigraded algebra F[B,,] such that the quotient algebra F[B,,|/ I, becomes a projective H,(0)-
module with multigraded noncommutative characteristic equal to

H,(x;t1,...,th—1) = ZﬁD('B)sﬁ inside NSymlty,...,tp—_1]
B

One has ﬁa(x; t,t2,. . ) = ﬁa(x; t), and obtains ﬁa(x; q,t) from H;- (x3t1,. .. tn_1) by tak-
ing t; =t foralli € D(a), and t; = ¢" " forall i € [n — 1]\ D().
Here D(«) is the set of partial sums of «, the notation S<« means « and 5 are compositions of n

with D(8) € D(«), and ¢ denotes the product [ ], ¢; over all elements 7 in a multiset S, including the
repeated ones. Taking v = (1™) shows that F[5,,]/(©) carries the regular representation of H, (0).
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Specializations of H;- (x;t1,...,tn—1) include not only H, (x; ¢, t), but also a more general family
of noncommutative symmetric functions depending on parameters associated with paths in binary trees
introduced recently by Lascoux, Novelli, and Thibon [[15]].

Next we study the quasisymmetric characteristic of F[B3,,]. We combine the usual N**!-multigrading
of F[B,,] (recorded by t := to, ..., t,) with the length filtration of H,,(0) (recorded by ¢) and obtain an
N x N+l multigraded quasisymmetric characteristic for F[B,,].

Theorem 1.2 The N x N"*_multigraded quasisymmetric characteristic of F|B,,] is

Ch%ﬁ(]F[BTL]) = Z Z ID(Q) Z qinV(w)FD(wfl)
k>0 aeCom(n,k+1) weGe
qinv(w)zD(w)FD(wil)

e [lo<icn(l — 1)

Z Z tl’i ...tp;cqinV(p)FD(p)~

k>0 pefk+1]n

Here we identify F; with F, if D(a) = I C [n — 1]. The set Com(n, k) consists of all weak com-
positions of n with length k, i.e. all the sequences & = (a4, ..., a ) of k nonnegative integers with
laf := Zle a; = n. The descent multiset of the weak composition « is the multiset

D(a) :={a1,0q0 +ag,...,00 + -+ ax_1}.

We also define 6° := {w € &,,: D(w) C D(«)}. The set [k + 1]™ consists of all words of length
n on the alphabet [k + 1]. Given p = (p1,...,pn) € [k + 1], we write p = #{j : p; < i},
inv(p) :=#{(4,5): 1 <i<j<mn:p;>p;},and D(p) :={i: p; > pis1}.

Letps . (Fo) := Fa(1,4,¢%,...,4"*,0,0,...). Applying the linear transformation }_,- , uips,,.o41
and the specialization t; = gius for alli = 0,1, ...,n to Theorem|1.2} we recover a result of Garsia and
Gessel [8, Theorem 2.2] on the generating function of the joint distribution of five permutation statistics:

inv(w) maj(w™!) des(w™!) maj(w) des(w)
Zween 0 4 Uy ) Ug

inv A
=Y ubub Y @M

£,k=0 (Ap)EB(£,k)

(Ul; Q1)n(u2§ Q2)n

Here (4; q)n := [p<;cn (1—¢'u), the set B(¢, k) consists of pairs of weak compositions A = (A1, ..., \y)
and p = (1, ..., iy satisfying the conditions £ > Ay > --- > \,, max{y; : 1 <i < n} <k, and
Ai = Nit1 = i > piy1 (such pairs (A, ) are sometimes called bipartite partitions), and inv(u) is the
number of inversion pairs in ;. Some further specializations of Theorem imply identities of Carlitz-
MacMahon [6, 17] and Adin-Brenti-Roichman [[1]].

The structure of this paper is as follows. Section [2] reviews the representation theory of the 0-Hecke
algebra. Section 3] studies the Stanley-Reisner ring of the Boolean algebra. Section [] defines a 0-Hecke
algebra action on the Stanley-Reisner ring of the Boolean algebra. The noncommutative and quasisym-
metric characteristics are discussed in Section [5]and Section[6] Finally we give some remarks and ques-
tions for future research in Section[7} including a generalization to an action of the Hecke algebra of any
finite Coxeter group on the Stanley-Reisner ring of the Coxeter complex.
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2 Representation theory of the 0-Hecke algebra

We review the representation theory of the 0-Hecke algebra in this section. The (type A) Hecke algebra
H,(q) is the associative F(q)-algebra generated by 71, . .., T,,—1 with relations

(Ti+1)(T; —q) =0, 1<i<n-—1,
ETJ:Tjna 1§Z)j§n7]‘? |Zﬁj| >17 (2)
LT, =TT, 1<i<n-—2.

It has an F(q)-basis {1y, : w € &, } where Ty, :=T;, --- T;, ifw = s;, - - - 55, is areduced expression.
Specializing ¢ = 1 gives the group algebra of &,,, with s; = Tj|,=1 and w = T, [4=1. Let w € &,,.
The length of w equals inv(w) := #{(i,7) : 1 <i < j < n, w(i) > w(j)}, and the descent set of w is
D(w) ={i:1<i<n—1, w()>w(i+1)}. Wewrite des(w) := |D(w)| and maj(w) := 3_;c p(y) i-
Let «v be a (weak) composition of n, and let o be the composition of n with D(a) = [n — 1]\ D(«).
The parabolic subgroup &, is the subgroup of &,, generated by {s; : i € D(a*)}. The set of all minimal
S, -coset representatives is 8% := {w € &,, : D(w) C D(«)}. The descent class of a consists of the
permutations in &,, with descent set equal to D(«), and turns out to be an interval under the (left) weak
order of &,,, denoted by [wp (), w1 («)]. One sees that wy(«) is the longest element of the parabolic
subgroup &, and wi («) is the longest element in &% (c.f. Bjorner and Wachs [5| Theorem 6.2]).
Another interesting specialization of H,,(q) is the O-Hecke algebra H,,(0), with generators 7; = T}|4=0
fori =1,...,n— 1, and an F-basis {7, = Tiy|g=0 : w € &, }. Letm; :=7; + 1. Thenmq,..., 71
form another generating set for H,,(0), with the same relations as (2) except 77 = m;, 1 < i < n — 1.
The element 7, := 7;, - - - 7;, is well defined for any w € &,, with a reduced expression w = s;, - - - 5, ,
and {m,, : w € &,,} is another F-bases for H,,(0). One can check that 7,, equals the sum of 7,, over all u
less than or equal to w in the Bruhat order of &,,. In particular, 7, (q) is the sum of 7, for all u € Ge.
Norton [18] decomposed the 0-Hecke algebra H,,(0) into a direct sum of projective indecomposable
submodules P, := H,(0) - Ty (a)Two(ac) for all a = n (i.e. compositions of n). Each P, has an F-
basis {TwTug(ac) : w € [wo(e), wi(a)]} . Its radical rad Py, is the unique maximal H, (0)-submodule
spanned by {7, Ty, (ac) @ w € (wo(cr),wi(a)]}. Although P, itself is not necessarily simple, its top
C, :=P,/rad P, is a one-dimensional simple H, (0)-module with the action of H,,(0) given by

_ -1, ifie D(a),
Ti= 0, ifi¢ D).

It follows from general representation theory of algebras (see e.g. [2 §1.5]) that {P, : a = n} and
{C, : a |E n} are the complete lists of pairwise non-isomorphic projective indecomposable and simple
H,,(0)-modules, respectively.

Krob and Thibon [14]] introduced a correspondence between H,, (0)-representations and the dual Hopf
algebras QSym and NSym, which we review next. The Hopf algebra QSym has a free Z-basis of
Sfundamental quasisymmetric functions F,, and the dual Hopf algebra NSym has a dual basis of non-
commutative ribbon Schur functions s,,, for all compositions a.

Let M = My 2 My 2 -+ O My, O My41 = 0 be a composition series of H,,(0)-modules with
simple factors M; /M; 1 = C,u) fori =0,1,..., k. Then the quasisymmetric characteristic of M is

Ch(M) =Ly +Fa(k).
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The noncommutative characteristic of a projective H,,(0)-module M 2P ) @ --- ® P, is
Ch(M) =8, s S,

It is not hard to extend these characteristic maps to H,,(0)-modules with gradings and filtrations.

3 Stanley-Reisner ring of the Boolean algebra

In this section we study the Stanley-Reisner ring of the Boolean algebra. The Boolean algebra B,, is the
ranked poset of all subsets of [n] := {1,2,...,n} ordered by inclusion, with minimum element ) and
maximum element [n]. The rank of a subset of [n] is defined as its cardinality. The Stanley-Reisner ring
F[B,,] of the Boolean algebra B,, is the quotient of the polynomial algebra F [y, : A C [n]] by the ideal
(y,yp : Aand B are incomparable in 3,,) . It has an F-basis {y,, } indexed by the multichains M in 5,
and is multigraded by the rank multisets (M) of the multichains M.

The symmetric group &,, acts on the Boolean algebra B,, by permuting the integers 1,...,n. This
induces an &,,-action on the Stanley-Reisner ring F[13,,], preserving its multigrading. The invariant al-
gebra F[B,,]®" consists of all elements in F[B,,] invariant under this &,,-action. One can show that
F[B,]®" = F[O], where © := {0y, ...,0,}. Garsia [7] showed that F[B,,] is a free F[©]-module on the
basis of descent monomials

Yy = H Yiw(1),w(@)}s YW E Gp. 3)

There is an analogy between the Stanley-Reisner ring F[3,,] and the polynomial ring F[X] via the
transfer map 7 : F[B,] — F[X] defined by

T(?JM) = H H Ly

1<i<k j€A;

for all multichains M = (A; C --- C Ay) in B,,. It is not a ring homomorphism (e.g. y{1}¥¢2y = 0 but
x122 # 0). Nevertheless, it induces an isomorphism 7 : F[B,]/(6p) = F[X] of &,,-modules. Moreover,
it sends the rank polynomials 64, ..., 8, to the elementary symmetric polynomials ey, ..., e,, and sends
the descent monomials Y, in F[B;;] defined by (3) to the corresponding descent monomials in F[X] for
allw € G,,.

Example 3.1 The Boolean algebra Bs consists of all subsets of {1,2,3}. Its Stanley-Reisner ring F[Bs)]
is a free F[O©]-module with a basis of descent monomials Y1 = 1, Yy, = yo, Ys,s, = Y3, Ys, = Y13,
Y150 = Y23, Ys 505, = Y23Yys, where O consists of the rank polynomials 0y = yg, 01 := y1 + y2 + ys,
0> := y12 + Y13 + Yo3, O3 := y123. The transfer map T sends 01,605,035 to e, es, e3, and sends the six
descent monomials in F[Bs] to the six descent monomials 1, xo, T3, 1123, T223, T273 in Flx1, 10, 23).

The homogeneous components of F[B3,,] are indexed by multisets with elements in {0,...,n}, or
equivalently by weak compositions « of n. The a-homogeneous component F[5,,], has an F-basis
{yy : 7(M) = D(a)}. Denote by Com(n, k) the set of all weak compositions of n with length k.
If M = (A; C --- C Ag) is a multichain of length k in B,, then we set Ag := @ and Axy;1 = [n]
by convention. Define a(M) := (au,...,axt1), where oy = |A4;| — |A;—1| for all ¢ € [k + 1]. Then
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a(M) € Com(n,k + 1) and D(a(M)) = r(M), i.e. a(M) indexes the homogeneous component
containing y,,. Define o(M) to be the minimal element in &,, which sends the standard multichain
[1] € [ 4+ o] € -~ C [ag + - - - + ] with rank multiset D(a(M)) to M. Then o(M) € G*M),

The map M +— (a(M), o(M)) is a bijection between multichains of length & in B,, and the pairs (a, o)
of « € Com(n, k + 1) and 0 € &*. A short way to write down this encoding of M is to insert bars at
the descent positions of o(M ). For example, the length-4 multichain {2} C {2} C {1,2,4} C [4] in By
is encoded by 2||14/3|.

There is another way to encode the multichain M. Let p;(M) := min{j € [k+1] : i € A;},1 <i < n.
So p;(M) is the first position where 4 appears in M. One checks that

pi(M) > pi1(M) & i€ D(o(M)™1),
pi(M) =pis1(M) & i¢ D(o(M)™Y), D(s;o(M)) € D(a(M)), 4)
pi(M) < pit1(M) & i ¢ D(o(M)™"), D(sio(M)) € D(a(M)).

The map M — p(M) := (p1(M), ..., p,(M)) is an bijection between the set of multichains with length
k in B,, and the set [k + 1]™ of all words of length n on the alphabet [k + 1], for any fixed integer k& > 0.

Let p(M) =p = (p1,...,pn) € [k+ 1]". Then inv(p(M)) = inv(c(M)). Let p’ := (p),...,p})
where p} := |{j : pj(M) < i}| = |A;|. Then the rank multiset of M consists of p/,...,p). Define
D(p) := {i € [n—1] : p; > pit1}. For example, the multichain 3|14||2|5 corresponds to p =
(2,4,1,2,5) € [5]°, and one has p’ = (1,3,3,4), D(2,5,1,2,4) = {2}.

These two encodings (with slightly different notation) were already used by Garsia and Gessel [8] in
their work on generating functions of multivariate distributions of permutation statistics.

4 0-Hecke algebra action

We saw an analogy between F[3,,] and F[X | in the last section. The usual H,,(0)-action on the polynomial
ring F[X] is via the Demazure operators

Ti(f) = w VfEFX], 1<i<n-—L 5)

The above definition is equivalent to

a—1_b+1 a—2 _b+2 b..a .
(5 0y T xi+1~--+xixi+1)m7 if a > 0,

mi(xiah, m) = ¢ 0, ifa =10, (6)

b a+1_b—1 b—1_a+1 .
—(@fw) g F i e A AT 2 )m, ifa <D

Here m is any monomial in F[X] containing neither z; nor x; ;1. Denote by 7; the operator obtained
from (€) by taking only the leading term (underlined) in the lexicographic order of the result. Then
T, ..., Tn_ realize another H,,(0)-action on F[X]. We call it the fransferred H,(0)-action because it
can be obtained by applying the transfer map 7 to our H,,(0)-action on [F[5,,], which we now define.
Let M = (A; C --- C Ay) be a multichain in B,,. Recall that p; (M) := min{j € [k + 1] : i € A;},
1 <7 < n. We define
Y pi(M) > pi1 (M
Ti(Ypr) = 0, pi(M) = pis1(M), (7
Si(y]\/[)v pi(M) < piy1(M
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fori =1,...,n — 1. Applying the transfer map 7 one recovers 7;. For instance, when n = 4 one has
- _ = (oA 3.3\ _ 4,33
7Tl(y1|34||2\) = Y2I34||1)> Ty (zizeziry) = T175737],
= _ = (oA, 3.3\ _ 4. 3.3
772(2U1|34||2\) = —Y1|34]|2]» To(riworsry) = —air2w37],
= _ = (oA, 3.3\ _
773(y1|34||2\) = 0, Ty (TiT2w3Ty) = 0.

One can check that 7y, ..., 7T,_ realize an H, (0)-action on F[B,] preserving the multigrading of

F[B,]. If one set t; = t for i = 1,...,n, then there is an isomorphism F[B,]/(0)) = F[X] of graded
H,,(0)-modules (which can be given explicitly, but not via the transfer map 7).

It is not hard to show that F[B,,]/»(*) = F[©], where F[B,,]/"(%) is the invariant algebra of the H,,(0)-
action on F[B,,], defined as

F[B, )1 .= {f e F[B,] :mif=fi=1,...,n—1}.
Proposition 4.1 The H,,(0)-action on F[B,] is ©-linear.
Therefore the coinvariant algebra F[BB,,]/(0) is a multigraded H,,(0)-module, which is isomorphic to

the regular representation of H,,(0) by Theorem This cannot be obtained simply by applying the
transfer map 7, since 7 is not a map of H,,(0)-modules.

5 Noncommutative characteristic

In this section we use the H,,(0)-action on the Stanley-Reisner ring F[5,,] of the Boolean algebra 5,, to
provide a noncommutative analogue of the following remarkable result.

Theorem 5.1 (Hotta-Springer [11]], Garsia-Procesi [9]) For any partition p = (0 < py < -+ < pg)
of n, there exists an &, -invariant ideal J,, of C[X| such that C[X]/J,, is isomorphic to the cohomology
ring of the Springer fiber indexed by p and has graded Frobenius characteristic equal to the modified
Hall-Littlewood symmetric function

Hy(Xit) = > WKy, (t7")sy inside Sym[t]
A

where n(p) 1= pg—1 + 2pk—2 + -+ + (k — 1)1 and K, (t) is the Kostka-Foulkes polynomial.

Example 5.2 Tanisaki [19] gives a construction for the ideal J,. If 1 = (1%*,n — k) is a hook then
J1k n_y IS generated by ey, . . ., ey and all monomials x;, - - - x;, ., with 1 <y <+ <igy1 < n.

Now consider a composition v = (a1, ..., ). The major index of a is maj(a) := > ;cp(a) -
Viewing a partition 4 = (0 < pu1 < pg < ---) as a composition one has maj(u) = n(u). Recall
that @ := (ay,...,o;) and af is the composition of n with D(a€) = [n — 1] \ D(a). We define
o = of = (). One can identify o with a ribbon diagram, i.e. a connected skew Young diagram
without 2 by 2 boxes, which has row lengths a4, ..., ay, ordered from bottom to top. Note that a ribbon
diagram is a Young diagram if and only if it is a hook. One can check that o is the transpose of «; see
the example below.

a=(2311) o°=(1,21,3) o =(3,1,21)
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Bergeron and Zabrocki [3] introduced a noncommutative modified Hall-Littlewood symmetric function

H,(x;t):= » t"Ps; inside NSymlt] (8)
B<a
and a (g, t)-analogue
~ , =
H,(x;q,t) := Z @B el Blg s inside NSymlg, t] 9)
BFn

for every composition «, where sg is the noncommutative ribbon Schur function indexed by 3, and
(e, B) == 3 ;e p(aynp(p) i In our earlier work [[13] we provided a partial representation theoretic inter-
pretation for Hy (x;¢) when a = (1%, n — k) is a hook, using the H,, (0)-action on the polynomial ring
F[X] by the Demazure operators.

Theorem 5.3 ([13]) The ideal J,, of F[X] is H,(0)-invariant if and only if u = (1"~ k) is a hook, and
if that holds then F[X]/J,, becomes a graded projective H,,(0)-module with

chy(F[X]/J,) = H,(x; 1),

Chy(F[X]/J,) = Hy(x;1).
Now we switch to the Stanley-Reisner ring F[3,,] and define I,, to be its ideal generated by

O4:=10;:i€ D(a)U{n}} and {ya:AC|[n], |Al ¢ D(a)U{n}}
for any composition « of n. The following result is a restatement of Theorem |1I. 1

Theorem 5.4 Let « be a composition of n. Then F[B,]/1, is a projective H, (0)-module with multi-
graded noncommutative characteristic equal to

ﬁa(x;tl,...,tn,l):: ZtD(’B)Sg inside NSymlty,...,tp—_1]
B

One has ﬁa(_xg tt2 ) = ﬁa(x; t), and one obtains ﬁa(x; q,t) from H;- (X510, ytn_1) by
taking t; = t* forall i € D(«), and t; = ¢" " foralli € [n — 1]\ D(a).

Proof: There is an F-basis for F[B,]/(©,) given by the descent monomials Y,, defined in for all
w € G“. The result follows from the H,,(0)-action on this basis and (). a

The proof of this theorem is actually simpler than the proof of our partial interpretation for H, (x;1) in
[13]. This is because 7; sends a descent monomial in F[53,,] to either 0 or +1 times a descent monomial,
but sends a descent monomial in F[X] to a polynomial in general (whose leading term is still a descent
monomial). We view the Stanley-Reisner ring F[B,,] (or F[B,,]/ (1)) as a ¢ = 0 analogue of the polynomial
ring F[X]. For an odd (i.e. ¢ = —1) analogue, see Lauda and Russell [L6].

Remark 5.5 If o = (1%, n — k) is a hook, one can check that the ideal I« ,,_, of F[By] has generators
01,...,0, and all y, with A C [n] and |A| ¢ [k]. By Example the images of these generators under
the transfer map T are the Tanisaki generators for the ideal Jyx ,,_y, of F[ X, but T(Iyx 1) # Jik n_k-
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For any composition « |= n, one can view H,, (x;t1,...,t,—1) as a modified version of

H, = Ho(X5t1,. . tpon) 1= Y POV Pgy,

B

Below are some properties satisfied by H,,, generalizing the properties of H, (x;t) given in [3]].

Proposition 5.6 Let o and 8 be two compositions.

(i) Ha(0,...,0) = sq, Ha(1,...,1) = h,.

(ii) U,,>o{Ha : @ = n} is a basis for NSym{tq, ta, . . .].

(iii) (Hy, Hg) = (—1)|¢174)5,, 5. for any pair of compositions o and 3.
(iv)

H, -Hp=)_ IT = tad) | (Hoy+ (1= tja)Hax,) -
<8 \i€D(B)\D(v)

(v)Ifn=lalandtn:= (t1,...,tn—1,1,t1,.. ., tn—1,1,...) then

H,(x;t1,...,th—1)Hg(x;tln) = Hap(tn).

6 Quasisymmetric characteristic
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Now we study the quasisymmetric characteristic of F[15,,]. The following lemma follows easily from @)

Lemma 6.1 Let o be a weak composition of n. Then the a-homogeneous component F[B,,], of the

Stanley-Reisner ring F[B,] is an H,(0)-submodule of F[B,] with homogeneous multigrading t°(*) and

isomorphic to the cyclic module Hy,(0)T, (ac)-

Since F[B,,],, is a cyclic multigraded H,,(0)-module, we get an N x N"*1-multigraded quasisymmetric

characteristic
Chy(F[Byla) = Z qmv(w)tD(a)FD(wfl)

wes«

(10)

where g keeps track of the length filtration and ¢ keeps track of the multigrading of F[B,,],. This defines
an N x N**l.multigraded quasisymmetric characteristic for the Stanley-Reisner ring F[B,,], which is

explicitly given in Theorem[I.2]and restated below.

Theorem 6.2 The N x N"*\multigraded quasisymmetric characteristic of F|B,,] is

Chy+(F[B,]) Z Z tP(e) Z ™) Fpp-1)

k>0 aeCom(n,k+1) weG™
qinv(w)tD(w)FD(wil)
vee, lo<icn(l =)

Z Z tp'l"'tpﬁcqinv(p)FD(p%

k>0 pe[k+1]n
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Proof: Use the two encodings of the multichains in B,, as well as the free F[©]-basis {Y,, : w € &,,} of
descent monomials for F[5,,] discussed in Section O

Next we explain here how this theorem specializes to @), aresult of Garsia and Gessel [8, Theorem 2.2]
on the multivariate generating function of the permutation statistics inv(w), maj(w), des(w), maj(w=1),
and des(w!) for all w € &,,. First recall that

F, = Z Tiy 0 Ti,, ValEn
ilZ"'Zinzl
i€D(o¢):>’ij>i]‘+1
Let psq;((Fa) = F(x(la q, q27 o 7q£_17 07 Oa .. ')7 and (uv Q)n = (1 —U,)(l - qu)(l - q2u) e (1 - qnu)
It is not hard to check (see Gessel and Reutenauer [[10, Lemma 5.2]) that

qmaj(a)udes(a)

(u; @)n

Z ’LLZqu;g_‘_l (FO/) -

>0

Then applying the linear transformation ), uf PS,,.o+1 and the specialization ¢; = qhug for all i =
0,1,...,nto Theoremwe recover (I).

A further specialization of Theorem|[6.2]gives a well known result which is often attributed to Carlitz [6]
but actually dates back to MacMahon [17, Volume 2, Chapter 4].

Corollary 6.3 (Carlitz-MacMahon) Let [k + 1], :=1+q+¢> +--- + . Then

Zwee qmaj(w)udes(w) Z .
- = ([k + l]q)"u .
(u: q)n =

Theorem@] also implies the following result, which was obtained by Adin, Brenti, and Roichman [[1]]

from the Hilbert series of the coinvariant algebra F[X]/(F[X]$").

Corollary 6.4 (Adin-Brenti-Roichman) Letr Par(n) be the set of weak partitions A = (A1, ..., \,) with
AL > - > Ay >0, and let m(A) = (mo(X),mi(X),...), where m;(X) == #{1 < i <n:\ =j}

Then
> ( ( )ﬁq%: 2wes, Llicpw @14
mA)) 227 U-a)d - qge) - (1—qiqn)

A€Par(n)

7 Remarks and questions for future research

7.1 Hecke algebra action

It is well known that the symmetric group S,, is the Coxeter group of type A,,_;. The Stanley-Reisner
ring of B,, is essentially the Stanley-Reisner ring of the Coxeter complex of &,,. The Hecke algebra
Hyy(q) can be defined for any finite Coxeter group W. We can generalize our action H,(0)-action on
F[B,,] to an Hyy (q)-action on the Stanley-Reisner ring F(¢)[A(WW)] of the Coxeter complex A(W) of
any finite Coxeter group W. We show similar results for this Hyy (¢)-action.
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7.2 Gluing the group algebra and the 0-Hecke algebra

The group algebra FW of a finite Coxeter group W naturally admits both actions of W and Hyy (0).
Hivert and Thiéry [[12] defined the Hecke group algebra of W by gluing these two actions. In type A, one
can also glue the usual actions of &,, and H,,(0) on the polynomial ring F[X], but the resulting algebra is
different from the Hecke group algebra of G,,.

Now one has a W-action and an Hyy (0)-action on the Stanley-Reisner ring F[A(W)]. What can we
say about the algebra generated by the operators s; and 7; on F[A(W)]? Is it the same as the Hecke group
algebra of W? If not, what properties (dimension, bases, presentation, simple and projective indecompos-
able modules, etc.) does it have?

7.3 Tits Building

Let A(G) be the Tits building of the general linear group G = GL(n,F,) and its usual BN-pair over
a finite field Fy; see e.g. Bjorner [4]. The Stanley-Reisner ring F[A(G)] is a g-analogue of F[5,,].
The nonzero monomials in F[A(G)] are indexed by multiflags of subspaces of Fy, and there are g™ )
many multiflags corresponding to a given multichain M in B,,, where w = o(M). Can one obtain
the multivariate quasisymmetric function identities in Theorem by defining a nice H,(0)-action on
FIA(GQ))?
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