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Number of cycles in the graph of 312-avoiding
permutations
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The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph on strings of symbols.
However, instead of requiring the tail of one permutation to equal the head of another for them to be connected by
an edge, we require that the head and tail in question have their letters appear in the same order of size. We give a
formula for the number of cycles of length d in the subgraph of overlapping 312-avoiding permutations. Using this
we also give a refinement of the enumeration of 312-avoiding affine permutations.

Le graphique de permutations qui se chevauchent est définie d’une manière analogue à celle du graphe de De Bruijn
sur des chaı̂nes de symboles. Cependant, au lieu d’exiger la queue d’une permutation d’égaler la tête d’un autre pour
qu’ils soient reliés par un bord, nous avons besoin que la tête et la queue en question ont leurs lettres apparaissent
dans le même ordre de grandeur. Nous donnons une formule pour le nombre de cycles de longueur d dans le sous-
graphe de chevauchement 312-évitant permutations. L’utilisation de ce nous donnent également un raffinement de
l’énumération de 312-évitant permutations affines.
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1 Introduction and preliminaries
One of the classical objects in combinatorics is the De Bruijn graph. This is the directed graph on vertex
set {0, 1, . . . , q − 1}n, the set of all strings of length n over an alphabet of size q, whose directed edges
go from each vertex x1 · · ·xn to each vertex x2 · · ·xn+1. That is, there is a directed edge from a string x
to y if and only if the last n− 1 coordinates of x agree with the first n− 1 coordinates of y.

The De Bruijn graph has been much studied, especially in connection with combinatorics on words,
and one of its well known properties is the fact that its number of directed cycles of length d, for d ≤ n,
is given by

1

d

∑
e|d

µ (d/e) qe, (1.1)

∗Email: jrge@ms.uky.edu. Partially supported by National Science Foundation grant DMS 0902063 and National Security
Agency grant H98230-13-1-0280.
†Email: sergey.kitaev@cis.strath.ac.uk.
‡Email: einar@alum.mit.edu. Supported by grant no. 090038013 from the Icelandic Research Fund.

1365–8050 c© 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmATind.html


38 Richard Ehrenborg, Sergey Kitaev, Einar Steingrı́msson

where the sum is over all divisors e of the length d, and where µ denotes the number theoretic Möbius
function. Recall that µ(n) is (−1)k if n is a product of k distinct primes and is zero otherwise.

A natural variation on the De Bruijn graphs is obtained by replacing words over an alphabet by permu-
tations of the set of integers {1, 2, . . . , n}, where the overlapping condition determining directed edges in
De Bruijn graphs is replaced by the condition that the head and tail of two permutations have the same
standardization, that is, that their letters appear in the same order of size. As an example, this is the case
with the permutations 24513 and 35124, since 4513 and 3512 both have their letters appearing in the same
order of size, namely as 3412. This graph of overlapping permutations, denoted G(n), is what we study
in this paper. Note that, apart from the path and cycle graphs mentioned in Section 3, all graphs in this
paper are directed, although we don’t explicitly refer to them as directed graphs.

The graph G(n) appeared in [4] in connection with universal cycles on permutations. It has also
appeared in [7], where it was used as a tool in determining the asymptotic behavior of consecutive pattern
avoidance, and in [2], where it is called the graph of overlapping patterns (see also [11, Section 5.6]).

A natural question about this graph, which does not seem to have been studied so far, is what its number
of directed cycles is, the analogue to the question for which (1.1) is the answer. We have not been able
to solve that problem (and we do not recognize the associated number sequences). We do here, however,
solve that problem when the graph is restricted to permutations of length n avoiding the pattern 312, that
is, permutations containing no three letters the first of which is the largest and the second one the smallest.
We show here that the number of directed cycles of length d is

1

d

∑
e|d

µ (d/e)

(
2e

e

)
, (1.2)

for d not exceeding n. Note the similarity between this and the expression in (1.1): the power qe in (1.1)
is replaced here by the central binomial coefficient

(
2e
e

)
.

It is easy to see, due to straightforward symmetries, that permutations avoiding a particular one of the
patterns 132, 213 and 231 yield a graph isomorphic to the one for 312, which is the representative we
have chosen. It is also easy to see that permutations avoiding 123 (or, equivalently, 321) give rise to a
nonisomorphic graph. For this latter case we have no solution for the number of cycles, and we do not
recognize the number sequences counting the cycles in that graph.

Using similar techniques, we prove that the number of 312-avoiding affine permutations in S̃d with k
cut-points is given by the binomial coefficient

(
2d−k−1

d−1
)
. This refines a result of Crites [6] who showed

that the number of 312-avoiding affine permutations is
(
2d−1
d−1

)
. As a corollary to our results we show that

each affine permutation has a cut-point or is, in other words, decomposable.
The connection between cycles in the graph of overlapping permutations and affine permutations goes

through bi-infinite sequences. A bi-infinite sequence (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct real
numbers yields a bi-infinite walk where the ith edge is given by the standardization of f = (f(i), f(i +
1), . . . , f(i + n)), that is, the unique permutation of {1, 2, . . . , n + 1} whose letters appear in the same
order of size as the numbers in f . This walk is a closed walk of length d if the sequence is periodic, in the
sense that f(i) < f(j) if and only if f(i+ d) < f(j+ d). Thus, infinite d-periodic sequences correspond
to d-cycles.

The paper is organized as follows. In Section 2 we introduce some definitions related to pattern avoid-
ance, affine permutations and infinite sequences. The last of these play an important role in the proof of
the main result, as do ordinary and cyclic compositions of an integer, which are introduced in Section 3.
In Section 4 we give results on the number of affine 312-avoiding permutations with a given number of
cut-points and show that every such permutation does have a cut-point. In Section 5 we present the main
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result, about the number of d-cycles in G(n, 312) and subsequently give a bijection that proves this, in
Sections 6 and 7. The full version of the paper is available as [8], where we list several open problems in
this area.

2 Pattern-avoiding permutations, affine permutations and infinite
sequences

We first introduce some formal definitions that are needed later on.
For a permutation x = x1 · · ·xn consisting of distinct real numbers, let Π(x) denote the standardization

of x, also known as the reduced form of x, that is, the unique permutation π = π1 · · ·πn in the symmetric
group Sn whose elements have the same relative order as those in x. In other words, xi < xj if and only if
πi < πj for all 1 ≤ i < j ≤ n and π is built on the set {1, 2, . . . , n}. For example, Π(3(−2)02) = 4123.

The graph of overlapping permutations G(n) has the elements of the symmetric group Sn as its vertex
set and for every permutation σ = σ1 · · ·σn+1 in Sn+1 there is a directed edge from Π(σ1 · · ·σn) to
Π(σ2 · · ·σn+1).

A permutation π = π1π2 · · ·πn ∈ Sn avoids a permutation τ ∈ Sk if there are no integers 1 ≤ i1 <
i2 < · · · < ik ≤ n such that Π(πi1πi2 · · ·πin) = τ . In this context, τ is called a pattern and we say
that π avoids the pattern τ . Let Sn(τ) denote the set of τ -avoiding permutations in Sn. Especially, we
are interested in 312-avoiding permutations, which are those that have no indices i < j < k such that
πj < πk < πi. It is well-known that the number of 312-avoiding permutations in Sn is given by the nth
Catalan number Cn = 1

n+1

(
2n
n

)
.

A cut-point for a permutation π ∈ Sn is an index j with 1 ≤ j ≤ n − 1 such that for all i and k
satisfying 1 ≤ i ≤ j < k ≤ n we have that πi < πk. The cut-points split a permutation into components,
each ending at a cut-point. A permutation without cut-points is said to be indecomposable (or, sometimes,
irreducible). As an example, the permutation 31246758 has three cut-points, namely 3, 4, and 7, and
components 312, 4, 675 and 8, wheres 2413 is indecomposable. The following result is well-known (see,
for instance, [5] or Stanley’s list of Catalan interpretations [15]), and is easy to prove using the fact that
every 312-avoiding permutation is of the formA1B, where each element ofB is larger than every element
of A, which implies that a 312-avoiding permutation is indecomposable precisely when B is empty.

Proposition 2.1 The number of 312-avoiding indecomposable permutations in Sn is given by the Cata-
lan number Cn−1.

An extension of the notion of permutations is affine permutations. While the symmetric group Sd is
the Weyl group Ad−1, the group of affine permutations S̃d is the affine Weyl group Ãd−1. However, the
combinatorial description of affine permutations is due to Lusztig (unpublished) and the first combinatorial
study of them was conducted in [3, 9]. An affine permutation is a bijection π : Z −→ Z such that

π(i+ d) = π(i) + d, (2.1)
d−1∑
i=0

(π(i)− i) = 0. (2.2)

Note that the first condition implies that the values π(0) through π(d − 1) determine the whole affine
permutation. The set of all affine permutations is denoted by S̃d.
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We now extend the notion of an affine permutation to infinite sequences. An infinite sequence is defined
to be an injective function f : Z −→ R. Alternatively, one can think of an infinite sequence as a bi-infinite
list (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct real numbers. We say that two infinite sequences f and g
are equivalent if there is a strictly increasing continuous function T : R −→ R such that g(i) = T (f(i)). It
is straightforward that this is an equivalence relation. We think about the equivalence classes as bi-infinite
permutations. Hence, it is natural to extend notions from permutation patterns theory to (bi-)infinite
sequences.

A cut-point for a bi-infinite sequence f is an index j such that for all integers i ≤ j < k we have that
f(i) < f(k). The inversion set for a bi-infinite sequence f is the set

Inv(f) = {(i, j) ∈ Z2 : i < j, f(i) > f(j)}.

A bi-infinite sequence is periodic with period d, if for all integers i and j, f(i) < f(j) is equivalent to
f(i + d) < f(j + d). Equivalently, a bi-infinite sequence is periodic with period d if the inversion set
satisfies the condition (i, j) ∈ Inv(f) is equivalent to (i + d, j + d) ∈ Inv(f). Extending the notion of
pattern-avoidance, we say that a bi-infinite sequence f avoids the pattern σ ∈ Sn if there are no integers
i1 < i2 < · · · < in such that Π(f(i1)f(i2) · · · f(in)) = σ.

3 Compositions and cyclic compositions
A composition of a non-negative integer d into k parts is a list of k positive integers (a1, a2, . . . , ak) such
that their sum is d. Let α1, α2, . . . be a sequence of numbers and f(t) =

∑
i≥1 αit

i be the associated
generating function. Form a new sequence (βd,k)d≥1 by the relation

βd,k =
∑

(a1,a2,...,ak)

αa1αa2 · · ·αak

where the sum is over all compositions of d into k parts. Additionally, we set β0,k to be the Kronecker
delta δ0,k, which is equal to 1 if k = 0 and 0 otherwise. Also, let the sequence (βd)d≥0 be defined by the
sum βd =

∑
k≥0 βd,k. The following relations are classical generatingfunctionology:∑

d≥0

βd,kt
d = (f(t))k and

∑
d≥0

βdt
d =

1

1− f(t)
. (3.1)

If αi is the cardinality of a set Si, we can give a combinatorial interpretation to the number βd,k, hence
also βd. An enriched composition is a pair (a, s) where a is a composition (a1, a2, . . . , ak) of d into k
parts and s = (s1, s2, . . . , sk) is a list of the same length such that the element si belongs to the set Sai .
Now βd,k is the number of enriched compositions of d into k parts, and βd is the number of enriched
compositions of d.

A composition of d can be thought of as a subgraph of the path on d vertices. Note that each connected
component of a subgraph of a path is also a path. The number of connected components of the subgraph
is the number of parts of the composition. With this analogue in mind we define a cyclic composition to
be a subgraph of the cycle on d vertices where each component is a path. Note that we rule out the case
of the cycle being a subgraph of itself. Yet again, the number of paths is the number of components k.
Observe that k is also the number of edges removed to obtain the subgraph. Since there are d edges in a
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cycle, we have
(
d
k

)
cyclic compositions of d into k parts for k ≥ 1. For instance, there are

(
4
2

)
= 6 cyclic

compositions of 4 into two parts, namely, two consisting of two 2s and four consisting of 1 and 3.
To be more formal, let Zd denote both the integers modulo d and the cycle of length d, where we

connect i and i + 1 modulo d. A cyclic composition is a set partition P = {B1, B2, . . . , Bk} where
each block Bi is a path in the cycle Zd. Equivalently, each block Bi is the image of an interval [pi, qi]
of integers under the quotient map Z −→ Zd with the restriction 0 ≤ qi − pi ≤ d − 1. Also, let ai be
qi − pi + 1, that is, the cardinality of the interval [pi, qi] and the associated path.

Similarly to compositions, we construct new sequences (γd,k)d≥1 and (γd)d≥1 as follows:

γd,k =
∑
P

αa1αa2 · · ·αak

where the sum is over all cyclic compositions P of d into k parts and ai is the size of the ith part. Also,
let γd denote the sum γd =

∑
k≥1 γd,k.

Proposition 3.1 The generating functions for γd,k and γd are given by∑
d≥k

γd,kt
d = tf ′(t)(f(t))k−1 =

t

k
D
(
(f(t))k

)
and (3.2)

∑
d≥1

γdt
d =

tf ′(t)

1− f(t)
, (3.3)

where D is the differential operator with respect to t.

Proof: To observe the first relation, consider the component containing the vertex 1 of the cycle. Also,
assume that this component has size i. Then there are i possibilities how to choose the component. This is
encoded by the generating function

∑
i≥1 iαit

i = tf ′(t). Next we have to choose a composition of d− i
into k − 1 parts, which is given by (f(t))k−1. The first result follows from multiplication of generating
functions. The second result follows from summing (3.2) over all k. 2

As a brief example of equation (3.3), note that setting αi = 1 enumerates the number of cyclic com-
positions. We have f(t) = 1/(1− t)− 1 and obtain

∑
d≥1 γdt

d = 1/(1− 2t)− 1/(1− t), yielding the
answer of 2d − 1 for the number of cyclic compositions of d.

Combining generating functions (3.1) and (3.2) we have the following result.

Corollary 3.2 The two quantities βd,k and γd,k are related by

γd,k =
d

k
βd,k. (3.4)

An enriched cyclic composition is a pair (P, s) where P is a cyclic composition {B1, B2, . . . , Bk}
of d into k parts and s = (s1, s2, . . . , sk) is a list of the length k such that the element si belongs to the
set S|Bi|. Now γd,k has the combinatorial interpretation as the number of enriched cyclic compositions of
d into k parts, and βd is the number of enriched cyclic compositions of d.
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Let C(t) and CB(t) denote the generating functions for the Catalan numbers and the central binomial
coefficients, that is,

C(t) =
∑
d≥0

Cdt
d =

1−
√

1− 4t

2t
,

CB(t) =
∑
d≥0

(
2d

d

)
td =

1√
1− 4t

.

Lemma 3.3 Let αi = Ci−1 + δi,1 where δi,1 denotes the Kronecker delta. Then the central binomial
coefficient is given by the sum (

2d

d

)
=
∑
P

αa1
αa2
· · ·αak

,

where the sum is over all cyclic compositions P of d and d ≥ 1.

Proof: First, observe that
∑

i≥1 αit
i = t + tC(t). The result now follows from equation (3.3) and the

identity

CB(t)− 1 =
t(t+ tC(t))′

1− t− tC(t)
.

2

The following two well-known identities involving the Catalan numbers are worth keeping in mind in
the next section, where we prove similar results regarding affine 312-avoiding permutations. We have∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 =
k

d

(
2d− k − 1

d− 1

)
, (3.5)

where the sum is over all compositions of d into k parts. The numbers in the right hand side give Catalan’s
triangle, sequence A009766 in [12]. One of many things they enumerate is the set of 312-avoiding permu-
tations of length d that split into (at most) k components. Namely, such a permutation can be decomposed
as A1A2 · · ·Ak where every letter of Ai is smaller than each letter of Aj for i < j. Since each component
is an indecomposable 312-avoiding permutation, these permutations with k components are counted by
the left hand side. By a similar argument we have∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 = Cd,

where the sum is over all compositions of d.
By combining Corollary 3.2 and (3.5) we have:

Lemma 3.4 The following identity holds∑
P

Ca1−1Ca2−1 · · ·Cak−1 =

(
2d− k − 1

d− 1

)
, (3.6)

where the sum is over all cyclic compositions P of d into k parts.
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4 312-avoiding affine permutations
Before we continue, we take a detour to study 312-avoiding affine permutations. Recall that an affine
permutation π ∈ S̃d is 312-avoiding if there are no indices x < y < z such that π(y) < π(z) < π(x).
Crites [6] proved the following result for affine permutations.

Theorem 4.1 (Theorem 6 in [6]) The number of 312-avoiding affine permutations in S̃d is given by
(
2d−1

d

)
.

We give a refinement of this result. Recall that a cut-point for an affine permutation π is an index j such
that for i ≤ j < k the inequality π(i) < π(k) holds. Especially, if j is a cut-point, then so is any index
congruent to j modulo d. Hence, we count the number of equivalence classes of cut-points.

Theorem 4.2 ([8]) Let k be a positive integer and k ≤ d. The number of 312-avoiding affine permutations
in S̃d that have k cut-points modulo d is given by(

2d− k − 1

d− 1

)
.

Corollary 4.3 Every 312-avoiding affine permutation in S̃d has a cut-point.

Proof: Since the sum of
(
2d−k−1

d−1
)

for k from 1 to d is
(
2d−1

d

)
, and by Theorem 4.1, all the 312-avoiding

affine permutations have been accounted for. 2

5 The graph of 312-avoiding permutations
Recall that G(n) denotes the directed graph of overlapping permutations, that is, it has the vertex set
Sm and for every permutation σ = σ1 · · ·σm+1 in Sm+1 there is a directed edge from Π(σ1 · · ·σm) to
Π(σ2 · · ·σm+1) labelled σ. Furthermore, let G(n, τ) be the graph of overlapping τ -avoiding permuta-
tions, that is, it is the subgraph of G(n) having the vertex set Sn(τ) and the edge set Sn+1(τ).

A closed walk of length d in a graph is a list of d edges (e1, e2, . . . , ed) such that head(ei) = tail(ei+1)
for 1 ≤ i ≤ d − 1 and head(ed) = tail(e1), where for a directed edge e, head(e) is the node the
edge points to, while tail(e) is the other node incident to e. Thus, (1342, 2314, 2134) and its cyclic shift
(2134, 1342, 2314) are two different closed walks.

Define an equivalence on the set of closed walks by cyclic shifting, that is, the two closed walks
(e1, e2, . . . , ed) and (ei, ei+1, . . . , ed, e1, e2, . . . , ei−1) are equivalent for any i. Then a d-cycle is de-
fined to be an equivalence class of size d. For instance, the graph G(3, 312) has six closed walks of
length 2, namely,

(1234, 1234), (4321, 4321), (1324, 2143), (2143, 1324), (2314, 3241) and (3241, 2314).

However, the graph G(3, 312) has only two 2-cycles, since the first two closed walks yield 1-cycles while
the forth (resp., sixth) walk is equivalent to the third (resp., fifth) walk.

The number of closed walks is given by the following result.

Theorem 5.1 The number of closed walks of length d in G(n, 312), for d ≤ n, is given by
(
2d
d

)
.

A bijective proof of Theorem 5.1 will be given in the following two sections.
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Theorem 5.2 The number of d-cycles in G(n, 312), for d ≤ n, is given by

1

d

∑
e|d

µ (d/e)

(
2e

e

)
.

Proof: Let h(d) denote the number of d-cycles. A closed walk of length d can be obtained by choosing a
divisor e of d, an e-cycle and a starting point on the cycle. By repeating the e-cycle d/e times we obtain
a closed walk of length d. Hence, we have

(
2d
d

)
=
∑

e|d e · h(e). The result now follows by classical
Möbius inversion. 2

6 The bijection
It remains to show that the number of closed walks of length d in G(n, 312) is given by

(
2d
d

)
. We do this

by constructing a bijection between closed walks and enriched cyclic compositions. This bijection goes
via infinite sequences. Let Qd denote the set of all closed walks of length d in the graph G(n, 312).

Given a cyclic composition on Zd, we enrich each part of size a either with a 312-avoiding indecom-
posable permutation from the symmetric group Sa, or, if a = 1, with the symbol D (for “Down”). Note
that if a = 1, then the enrichment is either the identity permutation 1 in S1 or the symbol D. Let Ed

denote the set of all these enriched cyclic compositions. Note that the number of enrichments of a part of
size a is the Catalan number Ca−1 plus the Kronecker delta δa,1. Hence, by Lemma 3.3, we know that
the total number of these structures is the central binomial coefficient

(
2d
d

)
.

We now describe a bijection Φ : Ed −→ Qd. Let B = (B1, B2, . . . , Bk) be an enriched cyclic
composition in Ed. Recall that the ith block Bi is the image of the interval [pi, qi] under the quotient map
Z −→ Zd. If the enrichment on the part Bi is a permutation, we view it as a permutation πi on the set
[pi, qi]. Let Bi be the set Bi =

⋃
j∈Z[pi + jd, qi + jd]. Note that B1, B2, . . . , Bk is a partition of the

integers Z. Furthermore, extend πi by the relation πi(j+d) = πi(j) +d. That is, now πi is a bijection on
the set Bi. Next we use the fact that the exponential function exp : R −→ R>0 is strictly increasing and
its negative − exp : R −→ R<0 is strictly decreasing, where R>0 (resp., R<0) is the set of all possible
(resp., negative) real numbers. Construct an infinite sequence f by

f(j) =

{
exp(πi(j)) if j ∈ Bi and part Bi is enriched with a permutation,
− exp(j) if j ∈ Bi and part Bi is enriched with the symbol D.

By construction, the infinite sequence f is d-periodic. Furthermore, we claim that f is 312-avoiding.
Assume not, that is, there are three integers x < y < z such that f(y) < f(z) < f(x). If f(y) < 0
then so is f(z). But the negative values of f form a decreasing sequence, since this is a subsequence of
− exp(j). This contradicts f(y) < f(z). Now assume that f(y) > 0. Since f(x) > f(y), x has to
belong to the same interval Bi + j · d as y. Similarly, since f(x) > f(z), z has to belong to the same
interval Bi + j · d as x. This contradicts to the fact that the block Bi was enriched with a 312-avoiding
permutation.

Finally, we construct an infinite walk (. . . , σ−1, σ0, σ1, σ2, . . .) in the graph G(n, 312) by letting σi
be the standardization Π(f(i), f(i + 1), . . . , f(i + n)). Note that this permutation is 312-avoiding
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and as an edge in the graph it has the tail Π(f(i), f(i + 1), . . . , f(i + n − 1)) and the head Π(f(i +
1), f(i + 2), . . . , f(i + n)). Since f is d-periodic the infinite walk has period d. Restricting the walk to
(σ1, σ2, . . . , σd) gives a closed walk in the set Qd. This completes the description of the map Φ.

One can always lift an infinite walk in the graph to an infinite sequence. However, as Remark 6.1 shows,
an infinite walk could lift to several non-equivalent sequences, and they do not all have the desired prop-
erties. Thus, when lifting a walk to a sequence we have the additional requirements in Conditions (7.1)
and (7.2). Their interpretation is that we do not introduce an inversion in the infinite sequence, unless we
are required to do so by a local condition.

Remark 6.1 Consider the two infinite sequences

h1(n) = n+ (−1)n and h2(n) = n+ 2(−1)n.

Observe that they both encode the same 2-cycle in G(2, 312). That is,

Π(h1(n), h1(n+ 1), h1(n+ 2)) = Π(h2(n), h2(n+ 1), h2(n+ 2)) =

{
132 if n is odd,
213 if n is even.

However, note that h2 is not 312-avoiding, whereas h1 is. Furthermore, h2 does not have any cut-points,
whereas h1 does. Hence, when constructing the inverse map to Φ we have to be careful in constructing an
infinite sequence which is 312-avoiding. This is the reason for the appearance of the two conditions (7.1)
and (7.2) in the next section.

7 The inverse bijection
We now construct the inverse map of Φ. Given the closed walk (σ1, σ2, . . . , σd) in Qd we extend it to an
infinite walk by letting σj+d = σj for all integers j.

We are going to find a sequence . . . , g(−1), g(0), g(1), g(2), . . . such that Π(g(i), g(i + 1), . . . , g(i +
n)) = σi for all integers i. To find such a sequence, let g(k) = σ1(k) for 1 ≤ k ≤ n+ 1. Now alternate
the following two steps to extend g to all of the integers.

(+) Assume that we have picked the values g(i), g(i + 1), . . . , g(j − 1) of the sequence. We will now
pick the value of g(j). That is, we are extending the sequence in the positive direction. Let σ be the
permutation σi−n. Let a and b be the real numbers (including ±∞) given by

a =

{
g(σ−1(σ(n+ 1)− 1) + s) if σ(n+ 1) > 1,

−∞ if σ(n+ 1) = 1,

b =

{
g(σ−1(σ(n+ 1) + 1) + s) if σ(n+ 1) < n+ 1,

∞ if σ(n+ 1) = n+ 1,

where s is the shift s = j − n − 1. Then any real number x in the open interval (a, b) satisfies
Π(g(j − n), . . . , g(j − 1), x) = σ. However, we have one more requirement, we will pick x as
large as possible with respect to the already picked values g(i), g(i+ 1), . . . , g(j − n− 1). That is,
we pick g(j) = x such that

max(a, {g(k) : g(k) < b, i ≤ k ≤ j − 1}) < x < b. (7.1)
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(–) Now we extend the sequence in the negative direction. Assume that we have picked the values
g(i+ 1), g(i+ 2), . . . , g(j) of the sequence. We will now pick the value of g(i). Let σ now denote
the permutation σi. Let the two bounds a and b be given by

a =

{
g(σ−1(σ(1)− 1) + s) if σ(1) > 1,

−∞ if σ(1) = 1,

b =

{
g(σ−1(σ(1) + 1) + s) if σ(1) < n+ 1,

∞ if σ(1) = n+ 1,

where s = i − 1. Yet again, any real number x in the open interval (a, b) satisfies Π(x, g(i +
1), . . . , g(i+n)) = σ. However, now we pick x as small as possible with the already picked values
g(i+ 1), . . . , g(j). That is, we pick g(i) = x such that

a < x < min(b, {g(k) : g(k) > a, i+ 1 ≤ k ≤ j}) (7.2)

The purpose of the two conditions (7.1) and (7.2) is to avoid introducing any extra inversions in the
sequence g. These conditions will come into play at the end of this construction in the case when the set
D (to be defined soon) is empty.

Claim 7.1 The sequence g is locally 312-avoiding, that is, if i < j < k, where k − i ≤ n then
Π(g(i), g(j), g(k)) 6= 312.

This holds true since σi is 312-avoiding.

Claim 7.2 For all i we have g(i) 6= g(i+ d).

Since d ≤ n and Π(g(i), g(i+ 1), . . . , g(i+ d), . . . , g(i+ n)) is a permutation, g(i) and g(i+ d) are
distinct.

Claim 7.3 For i < j and j − i < n the inequality g(i) < g(j) is equivalent to g(i+ d) < g(j + d).

Since σi = σi+d we have the string of the equivalences g(i) < g(j) ⇐⇒ σi(1) < σi(j − i + 1) ⇐⇒
σi+d(1) < σi+d(j − i+ 1)⇐⇒ g(i+ d) < g(j + d).

Hence, the infinite sequence g decomposes into d sequences, each of which is monotone. We now
partition the integers Z into two sets D = {i : g(i) > g(i + d)} and U = {i : g(i) < g(i + d)}. Note
that since d ≤ n we have that i ∈ D is equivalent to i+ d ∈ D. That is, D consists of the sequences that
are decreasing and U of the increasing sequences.

Claim 7.4 The subsequence {g(i)}i∈D is decreasing.

Assume that it is not decreasing. Then there are two entries i, j ∈ D such that i < j, j − i ≤ d − 1
and g(i) < g(j). Also, we have that g(j − d) > g(j). Combining the last two inequalities we have that
Π(g(j − d), g(i), g(j)) = 312, contradicting that the sequence is not decreasing.

Claim 7.5 The values of the sequence {g(i)}i∈D are all smaller than the values of {g(j)}j∈U .
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We begin when i and j are close to each other, that is, when i < j < i + d, i ∈ D and j ∈ U . Assume
that g(i) > g(j). Then we have the string of inequalities g(i − d) > g(i) > g(j) > g(j − d) implying
that Π(g(i− d), g(j − d), g(i)) = 312, a contradiction. Hence, we conclude that g(i) < g(j). Now pick
i′ ∈ D and j′ ∈ U . If i′ < j′ let i = i′ and j = j′−d · b(j′− i′)/dc. If i′ > j′ let i = i′−d · d(i′− j′)/de
and j = j′. (Here b·c and d·e are the usual floor and ceiling functions.) In both cases we have i ∈ D,
j ∈ U and i < j < i+ d. Furthermore, we have that g(i′) ≤ g(i) < g(j) ≤ g(j′), proving the claim.

Now assume that D is non-empty. The case when D is empty requires an extra argument, which we
postpone to the end of this section. Pick p1 to be an element in the set D. Decompose the interval
[p1, p1 + d− 1] of cardinality d into smaller intervals, according to the rules:

(d) If i ∈ D ∩ [p1, p1 + d − 1] then let the singleton {i} = [i, i] be an interval in the decomposition.
Moreover, enrich this singleton with the symbol D.

(u) If i ≤ j, i − 1, j + 1 ∈ D and [i, j] ⊆ U ∩ [p1, p1 + d − 1] then we use the argument at the end
of Section 3 to decompose the interval [i, j] into smaller intervals, each enriched with an indecom-
posable 312-avoiding permutation. That is, we use the permutation Π(g(i), g(i + 1), . . . , g(j)) to
decompose the interval.

Let the decomposition of the interval [p1, p1 + d − 1] be {[p1, q1], [p2, q2], . . . , [p`, q`]}, where qi + 1 =
pi+1. Extend this decomposition to a decomposition {[pi, qi]}i∈Z of the integers Z by letting pi+` = pi+d
and qi+` = qi + d. Note that under the quotient map Z −→ Zd we obtain a cyclic composition.

Claim 7.6 If the intervals [pi, qi] and [pk, qk] are not enriched with the symbol D, i < k, x ∈ [pi, qi] and
z ∈ [pk, qk] then we have g(x) < g(z).

First assume that z − x ≤ d. If there is no interval [pj , qj ] between these two intervals (i < j < k) which
is enriched with the symbol D then the inequality follows by the decomposition into indecomposable
permutations in part (u) above. If there is an interval [pj , qj ] in between which is enriched with the
symbol D, then consider the pattern Π(g(x), g(pj), g(z)). Since [pj , qj ] is enriched by D we have that
g(pj) < g(x) and g(pj) < g(z). Hence, if g(x) > g(z), we obtain the pattern 312, a contradiction.
Finally, if z − x > d, we obtain the inequality by using that U consists of the increasing sequences.

The last claim states that we do not lose information if we view the permutation enriching the interval
[pi, qi] as a bijection on this interval. The resulting composition, viewed as a cyclic composition with its
enrichment, is the inverse image of the map Φ.

When the set D is empty, we need to be more careful to show that the sequence g has a cut-point.
We will use an argument similar to that in the second proof of Corollary 4.3. However, there is an added
complication since all we know is that g is locally 312-avoiding. By condition (7.1) we have the following
lemma.

Lemma 7.7 Assume that j < k and g(j) > g(k). Then there is a chain j = j0 < j1 < · · · < j` = k
such that g(j0) > g(j1) > · · · > g(j`) and jh+1 − jh ≤ n for all indices h.

Proof: When we selected the value of g(j`), we picked this value in an interval (a, b) where b was one
of the values from the list g(j` − n), . . . , g(j` − 2), g(j` − 1). Hence, let j`−1 be the index such that
g(j`−1) = b.

Assume that g(j) < g(j`−1). Condition (7.1) states that we picked g(j`) as large as possible in the
interval (a, b). Hence, the assumption g(j) < g(j`−1) implies that g(j) < g(j`), a contradiction. We
conclude that g(j) > g(j`−1). By iterating this argument we obtain the chain. 2
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Let P be the poset {(i, g(i)) : i ∈ Z} with the order defined by (x, y) ≤P (z, w) if x ≥ z and
y ≤ w. Let (i, g(i)) be a minimal element in this poset and let (j, g(j)) be an element larger than or equal
to the minimal element (i, g(i)) maximizing the second coordinate. Observe that i − j ≤ d. The local
312-avoidance condition implies that the poset order between (i, g(i)) and (j, g(j)) is a chain. That is,
we have the string of inequalities g(j) > g(j + 1) > · · · > g(i− 1) > g(i).

The remaining case is to show that there is no index k such that i < k and g(i) < g(k) < g(j). First
pick j′ in the interval [j, i− 1] such that g(j′ + 1) < g(k) < g(j′). Next use Lemma 7.7 to pick the first
element of the chain j′1 such that j′ < j′1 ≤ j′ + n and g(j′ + 1) < g(j′1) < g(j′). However, this is a
312-pattern, contradicting the assumption that there is such a k. Hence, we conclude that the sequence g
has a cut-point.

Let the cut-point be p1 − 1. Consider the composition of the interval [p1, p1 + d − 1] consisting of
one part. That is, this part is the interval [p1, p1 + d − 1]. Now, in a way similar to part (u) above,
we decompose this interval into smaller intervals, each enriched with an indecomposable 312-avoiding
permutations using the permutation Π(g(p1), g(p1 + 1), . . . , g(p1 + d − 1)). This completes the inverse
of Φ in the case when the set D is empty.
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