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Many neighborly inscribed polytopes and
Delaunay triangulations

Bernd Gonska∗ and Arnau Padrol†

Institut für Mathematik, Freie Universität Berlin, Germany

Abstract. We present a very simple explicit technique to generate a large family of point configurations with neigh-
borly Delaunay triangulations. This proves that there are superexponentially many combinatorially distinct neighborly
d-polytopes with n vertices that admit realizations inscribed on the sphere. These are the first examples of inscrib-
able neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of
combinatorial types of inscribable polytopes (and thus also of Delaunay triangulations). It coincides with the current
best lower bound for the number of combinatorial types of polytopes.

Résumé. Nous présentons une technique explicite simple pour générer une large famille de configurations de points
dont les triangulations de Delaunay sont neighborly. Cela prouve que le nombre de d-polytopes combinatoirement
distincts avec n sommets et admettant une réalization inscrite sur la sphère est surexponentiel. Ce sont les premiers
exemples de polytopes inscriptibles neighborly qui ne sont pas des polytopes cycliques et ils donnent la meilleure
borne inférieure actuelle pour le nombre de types combinatoires de polytopes inscriptibles (et donc aussi de trian-
gulations de Delaunay). Cette borne coı̈ncide avec la meilleure borne inférieure actuelle pour le nombre de types
combinatoires de polytopes.
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1 Introduction
A polytope is called inscribable if it is combinatorially equivalent to a polytope that has all its vertices
on a sphere. The question of inscribability was raised for the first time by Steiner in 1832 [Ste32], who
asked whether all 3-dimensional polytopes are inscribable. A negative answer was given by Steinitz in
1928 [Ste28]. For example, the Triakis tetrahedron, the polytope obtained by stacking a tetrahedron on
top of each facet of a tetrahedron, is not inscribable.

A characterization of inscribable 3-polytopes was found by Hodgson, Rivin and Smith using hyperbolic
geometry [HRS92, Riv96]. In higher dimension, however, the question of inscribability is still wide open.
It is not even known which vectors appear as f -vectors of inscribable simplicial polytopes [Gon13].
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Seidel [Sei87, Sei91] proved an upper bound theorem for the complexity of Delaunay triangulations
in terms of neighborly polytopes. Indeed, Brown observed in 1979 [Bro79] that using a stereographic
projection one can identify the combinatorial types of Delaunay triangulations in Rd with those of in-
scribable (d + 1)-dimensional polytopes. Therefore, by McMullen’s Upper Bound Theorem [McM70],
the complexity of Delaunay triangulations is bounded by that of inscribable neighborly polytopes.

The existence of inscribable neighborly polytopes has been known since their discovery by Carathéodory
[Car11], who found a realization of cyclic polytopes with all their vertices on a sphere. While many in-
scribed realizations of the cyclic polytope are known (c.f. [Sei91], [Gon13] and [GZ13]), no other example
of inscribable neighborly polytope has been found.

Without the constraint of inscribability, Grünbaum [Grü03] found the first examples of non-cyclic
neighborly polytopes. Even more, Shemer used a “sewing construction” to prove in 1982 that the number
of combinatorial types of neighborly d-polytopes with n vertices is of order n

n
2 (1+o(1)) [She82]. This

bound was recently improved in [Pad13a] (see also [Pad13b]), by proposing a new construction for neigh-
borly polytopes, Gale sewing, that contains Shemer’s family. Even if this method cannot generate all
neighborly polytopes, it can be used to show that there are at least n

d
2n(1+o(1)) different combinatorial

types of labeled neighborly d-polytopes with n vertices (as n → ∞ with d fixed). This is currently also
the best lower bound for the number of combinatorial types of labeled d-polytopes with n vertices.

Our main contribution in this paper is to show that all these neighborly polytopes are inscribable. To
this end, we revisit the Gale sewing construction from [Pad13a] using a technique developed in [GZ13] to
construct inscribable cyclic polytopes (see also [Gon13]). This provides a very simple construction (The-
orem 5.3) for high dimensional inscribable neighborly polytopes (and hence also for neighborly Delaunay
triangulations and dual-to-neighborly Voronoi diagrams).

As a consequence of this result, we see that the number of different labeled combinatorial types of
inscribable neighborly d-polytopes with n vertices is at least n

d
2n(1+o(1)) (as n → ∞ with d fixed). As

a reference, the best upper bound for the number of different labeled combinatorial types of d-polytopes
with n vertices is of order (n/d)

d2n(1+o(1)) when n
d →∞ (see [Alo86] and [GP86]). Hence, inscribable

(neighborly) polytopes are more frequent than what one might have thought.

2 Preliminaries
Let A = {a1, . . . , an} be a full dimensional point configuration in Rd whose points are labeled by
{1, . . . , n}. We will say that A is in general position if no d + 1 points lie in a common hyperplane and
no d+ 2 points lie on a common sphere.

The convex hull of A is a polytope P := conv(A) ⊂ Rd and the intersection of P with a supporting
hyperplane is a face of P . Faces of dimensions 0 and d− 1 are called vertices and facets, respectively. If
all facets of P are simplices, then P is simplicial and if A is in general position, then conv(A) is always
simplicial. A face F of a polytope P is visible from a point p if there is a point x ∈ relint(F ) such that
the segment [x, p] intersects P only at x. In particular, if p ∈ P then no face is visible from p.

A facet of a d-polytope P is a lower facet if the last coordinate of its outer normal vector is negative.
The lower envelope of P is the polytopal complex consisting on the lower facets of P and their faces.
Analogue definitions hold for the upper facets and the upper envelope.

A face F of P is called an equatorial face if the projection π that forgets the last coordinate maps F
onto a face of π(P ). If A is in sufficient general position, then the dimensions of F and π(F ) coincide
for every equatorial face F . In particular, in this case there cannot be equatorial facets.
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We will usually assume that A is in convex position, i.e. it coincides with vert(P ), the set of vertices
of P . In particular, each face F of P can be identified with the set of labels of the points ai ∈ F . The
face lattice of P is then a poset of subsets of {1, . . . , n}. In this context, two vertex-labeled polytopes are
combinatorially equivalent if their face lattices coincide. The equivalence classes under this relation are
called labeled combinatorial types.

A polytope P is k-neighborly if every subset of k vertices of P forms a face of P . No d-dimensional
polytope other than the simplex can be k-neighborly for any k >

⌊
d
2

⌋
, which motivates the definition of

neighborly polytopes as those that are
⌊
d
2

⌋
-neighborly.

McMullen’s Upper Bound Theorem [McM70] states that the number of i-dimensional faces of a d-
polytope P with n vertices is maximized by simplicial neighborly polytopes, for all i. A canonical
example of neighborly polytope is the cyclic polytope, Cn(d), obtained as the convex hull of n points
on any d-order curve in Rd [Stu87]. For example, the moment curve γ : t 7→ (t, t2, . . . , td) is a d-order
curve. In even dimensions, the trigonometric moment curve

τ : t 7→ (sin(t), cos(t), sin(2t), cos(2t), . . . , sin(d
2 t), cos(d

2 t))

is a d-order curve on the sphere, providing an inscribed realization of the cyclic polytope [Car11] (see
also [Grü03, Exercise 4.8.23]).

A triangulation of a point configuration A is a collection T of simplices with vertices in A, which we
call cells, that cover the convex hull of A and such that any pair of simplices of T intersects in a common
face. A triangulation T of a point configuration A ⊂ Rd is neighborly if conv(S) is a cell of T for each
subset S ⊂ A of size |S| =

⌊
d+1
2

⌋
.

The Delaunay triangulation D(A) of a point configuration A ⊂ Rd in general position is the triangu-
lation that consists of all cells defined by the empty circumsphere condition: S ∈ D(A) if and only if
there exists a (d− 1)-sphere that passes through all the vertices of S and all other points of A lie outside
this sphere. A cell that fulfills the empty circumsphere condition is a Delaunay cell. If A is in general
position, the empty circumsphere condition always defines a triangulation of A.

3 Liftings and triangulations
3.1 Lexicographic liftings
The main tool for our construction are lexicographic liftings, which are a way to derive (d+1)-dimensional
point configurations from d-dimensional point configurations.

For an affine hyperplane H =
{
x ∈ Rd

∣∣ 〈x, v〉 = c
}

defined by a normal vector v whose last coordi-
nate is positive, a point a ∈ Rd is said to be above (resp. below) H if 〈a, v〉 > c (resp. 〈a, v〉 < c).

Definition 3.1 Let A = {a1, . . . , an} be a configuration of n ≥ d+ 2 labeled points in general position
in Rd.

A configuration Â = {â1, . . . , ân} of n labeled points in Rd+1 is a Delaunay lexicographic lifting
(or just a D-lifting) of A (with respect to the order induced by the labeling) if for each 1 ≤ i ≤ n
âi = (ai, hi) ∈ Rd+1 for some collection of heights hi ∈ R that fulfill:

(i) for each i ≥ d+ 2, |hi| > 0 is large enough so that if hi > 0 (resp. hi < 0) then âi is above (resp.
below) H for every hyperplane H spanned by d+ 1 points of {â1, . . . , âi−1}.
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(ii) for each i > d+ 2, âi is not contained in any of the circumspheres of any simplex spanned by d+ 2
points in {â1, . . . , âi−1}.

If hi ≥ 0 for every 1 ≤ i ≤ n, the lexicographic lifting is called positive.

Remark 3.2 If A is in general position, then any D-lifting Â of A is also in general position. Further-
more, if A is in convex position, then so is Â.

(a) (b) (c) (d)

Fig. 1: A point configuration {a1, . . . , a5} (a) and one of its D-liftings {â1, . . . , â5} (b). It fulfills conditions (i) (c)
and (ii) (d). It is not a positive D-lifting since the height of â4 is negative.

We omit the proof of this easy lemma.

Lemma 3.3 For any point configuration in general position A, and for any D-lifting Â, every equatorial
face of conv(Â \ ân) is visible from ân.

The following lemma is the link with the results presented in [Pad13a]. The oriented matroid of a D-
lifting of A is completely determined by the oriented matroid of A and the signs of the heights. Indeed,
it can be described using lexicographic extensions, for which we refer to [BLS+93, Section 7.2] (see
also [Pad13a, Section 4.1]).

Lemma 3.4 A D-lifting of A with heights hi realizes the dual oriented matroid of a lexicographic exten-
sion of the Gale dual of A \ {an} with signature [a

− sign(hn) sign(hn−1)
n−1 , . . . , a

− sign(hn) sign(hd+2)
d+2 ] .

3.2 Placing triangulations
The combinatorics of D-liftings are easily explained in terms of lexicographic triangulations. We refer
to [DRS10, Section 4.3] for a detailed presentation, and we will only present here the parts that will be
directly useful for us. Namely placing triangulations and their relation to positive lexicographic liftings.
Here, we say that a face of a triangulation of A is visible if it is contained in a visible face of conv(A).

Lemma 3.5 ( [DRS10, Lemma 4.3.2]) Let A = {a1, . . . , an} be a point configuration and let T be a
triangulation of the point configuration A \ an. Then there is a triangulation T ′ of A whose cells are

T ′ := T ∪ {conv(B ∪ an) |B is a face of T visible from an} .

Moreover, T ′ is the only triangulation of A that contains all the cells of T .
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Definition 3.6 The placing triangulation of A (with respect to the order induced by the labels) is the
triangulation Tn obtained iteratively as follows: T1 is the trivial triangulation of {a1} and Ti is the
unique triangulation of {a1, . . . , ai} that contains Ti−1.

Lemma 3.7 ([DRS10, Lemma 4.3.4]) Let Â ⊂ Rd+1 be a positive D-lifting of a configuration A ⊂ Rd.
Then the lower envelope of conv(Â) is combinatorially equivalent (as a simplicial complex) to the placing
triangulation of A.

4 The construction
Our construction is based on the following theorems, which show how certain triangulations of certain
D-liftings are always Delaunay (Proposition 4.1) and neighborly (Proposition 4.2).

The proof of Proposition 4.1 is inspired by [GZ13, Proposition 17], where a similar argument is used
to prove that the cyclic polytope is inscribable (see also [Sei85] for a related result in the plane).

Proposition 4.1 LetA = {a1, . . . , an} be a configuration of n ≥ d+2 labeled points in general position
in Rd and let Â be a D-lifting of A. Then the Delaunay triangulation T := D(Â) coincides with the
placing triangulation of Â.

Proof: The proof is by induction on n. If n = d+ 2 then both triangulations consist on the single simplex
spanned by Â. Otherwise, let T ′ be the Delaunay triangulation of Â \ ân. By induction hypothesis, this is
the placing triangulation of Â\ân. Moroever, since the lifting fulfills condition (ii), every Delaunay cell of
T ′ is still a Delaunay cell of T . Now, by Lemma 3.5 the placing triangulation is the unique triangulation
of Â containing all the cells of T ′. 2

Proposition 4.2 can be deduced from the Gale sewing technique presented in [Pad13a, Theorem 4.2].
However, the original proof of the theorem exploits Gale duality and oriented matroid theory, while this
primal proof is elementary. Moreover, this is the setting that will eventually allow us to prove inscribability
in Theorem 5.3.

Proposition 4.2 Let A = {a1, . . . , an} be a configuration of n ≥ d+ 2 labeled points in convex general
position in Rd and let Â be a D-lifting of A. If conv(A) is k-neighborly (as a polytope), then conv(Â) is
k-neighborly (as a polytope) and the placing triangulation of Â is (k+1)-neighborly (as a triangulation).

Proof: The proof of the first claim (conv(Â) is k-neighborly) is straightforward. Indeed, since A is a
projection of Â, every face of conv(A) is a projection of an equatorial face of conv(Â). In particular,
since every subset of k-points of A is a face of conv(A), the corresponding points must also form an
equatorial face of conv(Â).

The second claim is proved by induction on n, and it is trivial when n = d + 2. For n > d + 2, let
T be the placing triangulation of Â and T ′ the corresponding placing triangulation of Â \ ân. Now fix
a subset S of Â of size k + 1. If ân /∈ S, then S forms a cell of T ′ by induction hypothesis, and hence
of T . Otherwise, if ân ∈ S, then S′ = S \ ân must be an equatorial face of conv(Â \ ân), because
conv(A) is k-neighborly. By Lemma 3.3, S′ is visible from ân and hence by the definition of the placing
triangulation, S must be a cell of T . 2

The combination of these two propositions directly proves our main result.
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Theorem 4.3 Let A = {a1, . . . , an} be a configuration of n ≥ d + 2 labeled points in convex general
position in Rd such that conv(A) is k-neighborly, and let Â be a D-lifting of A. Then conv(Â) is a k-
neighborly polytope with vertex set Â and its Delaunay triangulation is a (k+1)-neighborly triangulation.

5 Polytopes
We can easily adapt Proposition 4.2 to obtain a statement in terms of neighborly polytopes instead of
neighborly triangulations. It suffices to do another suitable D-lifting.

For example, one can start with a k-neighborly d-polytope P with n vertices A = vert(P ) ⊂ Rd, then
make a D-lifting of A to obtain Â, and finally a positive D-lifting of Â to obtain ̂̂A . Then conv(̂̂A ) is
easily seen to be a (d+ 2)-dimensional (k + 1)-neighborly polytope with n points.

However, this polytope is not necessarily inscribed. To recover inscribed polytopes from Delaunay
triangulations, we need the following classical result of Brown [Bro79] (cf. [GZ13, Proposition 13]).

Lemma 5.1 LetA = {a1, . . . , an} be a configuration of n points in Rd in general position, and letD(A)
be its Delaunay triangulation. Then there is an inscribable simplicial (d + 1)-polytope PA with n + 1
vertices {̊a1, . . . , ån, ån+1} whose faces are:

(i) S̊ if S is a cell of D(A) and

(ii) ån+1 ∪ S̊ if S is a face of conv(A),

where S̊ = {̊ai | ai ∈ S}.
An inscribed realization of PA can be found by inverting a stereographic projection.

We omit the proof of the next lemma, which only needs a combinatorial description of the face lattice
of a positive lifting (cf. [DRS10, Lemma 4.3.4]).

Lemma 5.2 If the Delaunay triangulation ofA coincides with its placing triangulation, then the polytope
PA of Lemma 5.1 is combinatorially equivalent to the convex hull of a positive D-lifting of A ∪ {an+1}
for any an+1 ∈ Rd.

As a direct consequence of the combination of Lemma 5.1 and Theorem 4.3, we obtain the following
result. Observe how the strategy is to start with a k-neighborly d-polytope, lift it to a (k + 1)-neighborly
(d+ 1)-triangulation, and lift it again (with a positive lifting with the same order) to a (k+ 1)-neighborly
(d+ 2)-polytope, which is inscribable.

Theorem 5.3 Let A = {a1, . . . , an} be a d-dimensional configuration of n ≥ d + 3 points in convex
general position such that conv(A) is k-neighborly, let Â be a D-lifting of A and let ̂̂A be a positive
D-lifting of Â.

Then conv(̂̂A ) is an inscribable (k + 1)-neighborly (d + 2)-polytope. In particular, if conv(A) is
neighborly, so is conv(̂̂A ).

Proof: By Proposition 4.1, the placing triangulation of Â \ ân coincides with its Delaunay triangulation.
Therefore, by Lemma 5.2, conv(̂̂A ) is combinatorially equivalent to the inscribed polytope PÂ\ân

of
Lemma 5.1. This proves inscribability.
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For k-neighborliness, observe that as a consequence of Lemma 3.7, every face of the placing triangu-
lation of Â is also a face of conv(̂̂A ). Since the triangulation is (k + 1)-neighborly by Proposition 4.2,
then so is conv(̂̂A ). 2

In [Pad13a] it is proven that if M is the Gale dual of a neighborly polytope, then by performing a
lexicographic extension of M by p = [aε11 , . . . , a

εr
r ] and a lexicographic extension of M [p] by q =

[p−, a−1 , . . . , a
−
r−1] the resulting matroidM [p][q] is the Gale dual of a neighborly polytope. This technique

is called Gale sewing and the neighborly polytopes obtained by repeatedly Gale sewing from a polygon are
called Gale sewn. Now, by Lemma 3.4, this is precisely the operation we used here construct inscribable
neighborly polytopes.

Lemma 5.4 Every Gale sewn neighborly polytope is inscribable.

As a corollary of this lemma combined with [Pad13a, Theorem 6.8], which estimates the number of
Gale sewn polytopes, we obtain the following bound for inscribable neighborly d-polytopes with n ver-
tices. The asymptotic lower bound n

d
2n(1+o(1)) as n →∞ also holds when d is odd, by taking pyramids

(cf. [Pad13a, Corollary 6.10]).

Theorem 5.5 For even d, inp(n, d), the number of different labeled combinatorial types of inscribable
neighborly d-polytopes with n vertices, fulfills

inp(n, d) ≥
d
2∏

i=1

(n− d− 1 + 2i)!

(2i)!

≥ (n− 1)(
n−1
2 )

2

(n− d− 1)(
n−d−1

2 )
2

d(
d
2 )

2

e
3d(n−d−1)

4

≥
(
n− 1

e3/2

) 1
2d(n−d−1)

= n
d
2n(1+o(1)).
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