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The Lower Bound Theorem for polytopes
that approximate C1-convex bodies
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Abstract. The face numbers of simplicial polytopes that approximate C1-convex bodies in the Hausdorff metric is
studied. Several structural results about the skeleta of such polytopes are studied and used to derive a lower bound
theorem for this class of polytopes. This partially resolves a conjecture made by Kalai in 1994: if a sequence {Pn}∞n=0

of simplicial polytopes converges to a C1-convex body in the Hausdorff distance, then the entries of the g-vector of
Pn converge to infinity.

Résumé. Nous etudions les nombres de faces de polytopes simpliciaux qui se rapprochent de C1-corps convexes
dans la métrique Hausdorff. Plusieurs résultats structurels sur le skeleta de ces polytopes sont recherchées et utilisées
pour calculer un théorème limite inférieure de cette classe de polytopes. Cela résolut partiellement une conjecture
formulée par Kalai en 1994: si une suite (Pn)

∞
n=0 de polytopes simpliciaux converge vers une C1-corps convexe dans

la distance Hausdorff, puis les entrées du g-vecteur de Pn convergent vers l’infini.

Keywords: Geometric Combinatorics, f -vector theory, Polytopes, Approximation theory, Lower bound theorem,
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1 Introduction
The g-theorem was conjectured by McMullen (1971) and is one of the most celebrated theorems in the
theory of convex polytopes. Billera and Lee (1980) proved the sufficiency, and Stanley (1980) proved
the necessity of McMullen’s conditions. It gives a complete characterization of the set of f -vectors of
simplicial polytopes that makes it easy to verify computationally whether an integer vector is the f -vector
of a simplicial polytope. To accomplish this, one transforms the f -vector into the g-vector, a certain vector
with fewer entries that contains the same information as the f -vector.

The necessity part of the proof of this remarkable theorem uses heavy algebraic machinery: in one form
or another, it invokes a Hard Lefschetz Theorem, either for the toric variety associated with a rational
simplicial polytope (cf. Stanley (1980)), or for McMullen’s weight algebra (cf. McMullen (1993)). In
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short, the known proofs of the g-theorem do not seem to be using a particular geometric realization of the
polytope (apart from requiring that the realization be rational). Intuitively, metric properties coming from
a specific embedding of a polytope are obstructions to getting certain shapes of f -vectors.

We will study a particular effect of geometry on the f -vector: if a polytope is close to a convex body
whose boundary is sufficiently smooth, then the shape of the g-vector, and hence also of the f -vector
is subject to additional constraints stronger than the ones of the general g-theorem. In particular, we
resolve a part of a conjecture of Kalai (1994) asserting that any polytope that is a good approximation of
a C1-convex body is far away from being extremal for any of the inequalities of the g-theorem.

Conjecture 1.1 (Kalai (1994)) Let M be a C1-convex body and let {Pn}∞n=1 be a sequence of convex
simplicial polytopes that converges to M in the Hausdorff metric. Then

(i) limn→∞ gk(Pn) =∞ for k = 1, 2, . . . , bd2c, and

(ii) limn→∞
(
gk(Pn)− ∂k+1gk+1(Pn)

)
=∞ for k = 1, 2, . . . , bd2c.

We will prove part (i) of Kalai’s conjecture whenever 2k < d. We furthermore announce a solution to
the case 2k = d, which requires a different method; the details of this proof, however, are too complicated
to be included here.

2 Preliminaries
2.1 Polytopes and discrete geometry
A polytope P is the convex hull of finitely many points in a Euclidean space; equivalently it is a bounded
intersection of finitely many closed half-spaces. A face of a polytope P is the intersection of a supporting
hyperplane of P with P . The dimension of a face is the dimension of its affine span. Assume that P is
d-dimensional. The f -vector of P is the vector fP := (f−1, f0, f1, . . . , fd−1) where fi is the number
of i-dimensional faces of P . A simplex is the convex hull of a set of affinely independent points, and a
k-dimensional simplex has k+1 vertices. A polytope P is simplicial if all proper faces of P are simplices.
We denote the set of proper faces of P by ∂P and call it the boundary of P .

A (geometric) simplicial complex ∆ is a finite family of simplices such that (i) if F is in ∆ and G
is a face of F , then G is also in ∆, and (ii) for any two elements F and H of ∆, F ∩ H is a face of
both F and H . Note that a polytope P is simplicial if and only if the boundary of P is a simplicial
complex. The elements of a simplicial complex are also called faces and the dimension of a simplicial
complex is the maximal dimension of a face. As in the case of polytopes we may define the f -vector of
∆, f∆ := (f−1, f0, . . . , fd−1), to be the vector such that fi is the number of faces of dimension i. When
working with a simplicial complex ∆, one sometimes needs to consider the set of faces of ∆ of dimension
at most i for some fixed i. This subcomplex of ∆ is called the i-th skeleton of ∆ and is denoted by ∆(i).
The set of 0-dimensional faces is denoted by V (∆) and is called the set of vertices of ∆.

The link of a face F of ∆, denoted by link∆(F ), or short link(F ), is the set of all faces G of ∆, such
that F ∩G = ∅ and G is contained in a face that contains F . It is straightforward (see Ziegler (1995)) that
for every face F of a polytope P the link of F in the boundary of P is combinatorially isomorphic to the
boundary of some polytope. The link of a vertex is sometimes called a vertex figure.

From now on P denotes a simplicial polytope and slightly abusing notation, we write fP for f∂P .
The f -polynomial of P is the generating function of the f -vector, given by the polynomial fP (x) =
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j=0 fj−1x

j . Sometimes it is convenient to consider the h-polyomial, hP (x) := (1 − x)dfP

(
x

1−x

)
.

The h-vector (h0, h1, . . . , hd) of P is the vector of coefficients of the h-polynomial, that is, hP (x) =∑d
i=0 hix

i. Knowing the h-vector is equivalent to knowing the f -vector. The Dehn-Sommerville relations
(see Klee (1964)) assert that hi = hd−i, and so for a simplicial polytope P the first half of the entries of
the f -vector P determine the entire f -vector of P .

The celebrated classification by Stanley (1980) and Billera and Lee (1980) of the f -vectors of simplicial
polytopes is known as the g-theorem and is usually stated in terms of the g-vector (g0, g1, . . . , gb d2 c

),
where g0 := h0 = 1 and gi = hi − hi−1 for 1 ≤ i ≤ bd2c. To state this theorem define two operators,
denoted by <k> and ∂k, that act on the set of positive integers and output non-negative integers. For any
n, k > 0 there exist unique i > 0 and ak > ak−1 > · · · > ai ≥ i > 0 such that

n =

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
ai
i

)
. (1)

Using (1) we can define the following two operations:

∂k(n) :=

(
ak − 1

k − 1

)
+

(
ak−1 − 1

(k − 1)− 1

)
+ · · ·+

(
ai − 1

i− 1

)
,

n<k> :=

(
ak + 1

k + 1

)
+

(
ak−1 + 1

(k − 1) + 1

)
+ · · ·+

(
ai + 1

i+ 1

)
.

Theorem 2.1 (g-theorem) An integer vector (g0, g1, . . . , gb d2 c
) is the g-vector of a simplicial d-polytope

if and only if the following holds:

(i) g0 = 1 and gk ≥ 0 for 1 ≤ k ≤ bd2c.

(ii) g<k>k ≥ gk+1 for 1 ≤ k ≤ bd2c − 1.

Condition (ii) can equivalently be replaced by: gk ≥ ∂k+1gk+1 for 1 ≤ k ≤ bd2c − 1. The extremal
polytopes which achieve some of the lower bounds in (i) are well studied and understood. This is a part
of the generalized lower bound conjecture that was recently settled by Murai and Nevo (2013). On the
other hand, not much is known about the polytopes achieving some of the upper bounds, except that if a
polytope P is s-neighbourly then all inequalities in (ii) for k ≤ s− 1 occur as equalities.

The description of polytopes with gk = 0 for some k is given in terms of triangulations. A triangulation
of a polytope P is a simplicial complex Σ such that the set of vertices of Σ coincides with the set of
vertices of P and such that the union of the simplices of Σ is P . A simplicial polytope P is said to be
r-stacked if there exists a triangulation Σ of P such that Σ(d−1−r) = P (d−1−r). The following result was
known as the generalized lower bound theorem of McMullen and Walkup (1971).

Theorem 2.2 (Murai and Nevo (2013)) Let P be a simplicial d-polytope and 2 ≤ k ≤ bd2c. The following
are equivalent:

(i) gk(P ) = 0,

(ii) P is (k − 1)-stacked.
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For a simplicial d-polytope P with boundary complex ∆, consider the set of simplices

∆(k) :=
{
F ⊆ V (∆) : |F | = d+ 1, F (k) ⊆ ∆(k)

}
.

Murai and Nevo (2013) showed that if gk(P ) = 0, then ∆(d−1−k) is a triangulation of P ; it the followed
from a combination of results of McMullen (2004) and Bagchi and Datta (2011) that if gk(P ) = 0 then
∆(d− 1− k) is a unique (k − 1)-stacked triangulation of P .

The f -vector of a simplicial polytope can be expressed in terms of the f -vectors of vertex links. To
state this result, define the short h-vector of ∆ to be the vector h̃ := (h̃0, h̃1, . . . , h̃d−1), where

h̃i =
∑

v∈V (∆)

hi(link(v)). (2)

It is a lemma of McMullen (1970) that

h̃j−1 := jhj + (d+ 1− j)hj−1 for all 1 ≤ j ≤ d. (3)

Similarly, we can define the short g-vector g̃ = (g̃0, g̃1, . . . , g̃d−1) by g̃0 := h̃0 and g̃i := h̃i− h̃i−1 for
i = 1, 2, . . . , d− 1. We then have

g̃i =
∑

v∈V (∆)

gi(link(v)). (4)

2.2 Convex bodies and the Hausdorff metric
A more general class of convex sets in Rd that contains all d-polytopes is the family of convex bodies. A
convex body K in Rd is a convex compact subset of Rd with non-empty interior. The typical example of
a convex body is the euclidean closed ball. A convex body K is said to be of type Ck if its topological
boundary ∂K is locally the graph of a Ck-function. Alternatively, K is a convex Ck-embedding of the
closed ballB1(0). All our results will hold for bodies of classC1 and we will call themC1-convex bodies.
Notice that standard balls fall into the class of C1-convex bodies, while polytopes are not in this class.

For a point x ∈ Rd and A ⊂ Rd define d(x,A) := infa∈A |x − a| to be the distance from x to A
in the usual Euclidean metric. Based on this definition of the distance between a point and a set we can
define a metric on the space of compact subsets of Rd. Let A,B be two bounded subsets of Rd. Define
the Hausdorff distance between A and B by:

δH(A,B) := max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

It is easy to verify that δH defines a metric on the space of compact subsets of Rd that restricts to a metric
on the space of convex bodies in Rd.

3 Simplices and C1-convex bodies
We will use some technical results about 1-skeleta of polytopes that approximate C1-convex bodies.
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X

Fig. 1: The boundary of a simplex that contains x is far from ∂M

Lemma 3.1 Let M ⊆ Rd be a C1-convex body and let x be a point in the interior of M . Let A be the
family of all d-simplices that contain x. Then

Ψ(x) := inf
Γ∈A

sup
z∈Γ(1)

d(z, ∂M) > 0. (5)

Proof Sketch: Assume without loss of generality that x = 0. Consider the set A′ of all d × (d + 1)
matrices such that each column vector belongs to M and 0 is a convex combination of columns. This is
a closed and bounded subset of the space of d × (d + 1) matrices, hence it is compact with respect to
the standard topology. Now consider the map ϕ : A′ → R that maps a matrix M with column vectors
v1, . . . , vd+1 to maxi 6=j supλ∈[0,1] d(λvi + (1 − λ)vj , ∂M). As the map ϕ is continuous, it attains a
minimum in A′. This minimum, denote it by m, is strictly positive: indeed if we consider the convex hull
P of the columns of a matrix X with ϕ(X) = m, then ϕ(X) = 0 would imply that P (1) ⊆ ∂M . This,
however, is impossible, since P is not completely contained in ∂M (it contains 0) and ∂M is C1 (vertices
of P would be singularities of ∂M ).

Furthermore, notice that if Γ is a d-simplex that contains 0 and has vertices v1, . . . , vd+1, and if Y
is a matrix with columns v1, v2, . . . , vd+1, then Y ∈ A′ and ϕ(Y ) = supz∈Γ(1) d(z, ∂M). Thus by the
previous paragraph we obtain that supz∈Γ(1) d(z, ∂M) ≥ ϕ(X) > 0. It follows the infimum over all the
d-simplices that contain 0 is bounded below by ϕ(X) > 0 as desired. 2

We now note that Ψ(x) restricted to the interior of M is a continuous function: if x and y are close
enough then the family of simplices that contain x is close to the family of simplices that contain y.

Corollary 3.2 If M is a C1-convex body and C is a compact subset of the interior of M , then

inf
x∈C

Ψ(x) > 0. (6)

For ε > 0 let
Mε := {x ∈M | inf

z∈∂M
|z − x| ≥ ε}.

It is easy to show that Mε is a convex body contained in the interior of M whenever ε is sufficiently small.
We use these bodies to show that if P is sufficiently close to a C1-convex body M , then P (1) is close to
∂M .
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M

P

(1-ℇ)M

Fig. 2: We can slightly shrink M and get a body contained in P

Lemma 3.3 Let M ⊆ Rd be a C1-convex body. For every ε > 0 there is a δ > 0 such that if P ⊆M is a
polytope with δH(P,M) < δ then

sup
x∈P (1)

d(x, ∂M) ≤ ε. (7)

Proof: Assume without loss of generality that 0 is in the interior ofM . It follows from the definitions that
if δH(M,P ) < ε then Mε ⊆ P . Also, each y in the interior of M belongs to Mt for every sufficiently
small t. Now consider the map h : [0, 1] → [0, 1] defined by t 7→ sup{x |xM ⊆ Mt}. It is easy to see
that h is continuous, decreasing, and h(0) = 1. By definition of h, we have that if δH(M,P ) < t then
h(t)M ⊆ P . Now take a t < 1 such that |x−tx| < ε for every x ∈ ∂M ; such a t exists by our assumption
that M is bounded. Letting δ = h−1(t) yields the result: indeed if δH(P,M) < δ then tM ⊆ P ⊆ M ,
and so P (1) ⊆M\int(tM). Let x ∈ P (1) and let f(x) be the intersection of the ray from 0 to x with ∂M .
Then x lies in the segment [tf(x), f(x)], hence |x− f(x)| < |f(x)− tf(x)| < ε, and the supremum over
the x ∈ P (1) is at most ε. 2

The following lemma provides a relationship between simplices whose 1-skeleton is contained in the
boundary of a polytope and good approximations of a convex body.

Lemma 3.4 Let M be a C1-convex body. For every ε > 0 there exists δ > 0 such that if P is a polytope
with δH(P,M) ≤ δ and Γ ⊆M is a simplex with Γ(1) ⊆ P (1), then Γ ⊂M\Mε.

Proof: As Mε is a compact set contained in the interior of M , there is ε′ > 0 such that if Σ is a d-simplex
that intersects Mε then supx∈Σ(1) d(x, ∂M) ≥ infx∈Mε Ψ(x) > ε′. On the other hand, there is δ > 0,
such that if δH(P,M) < δ, then supx∈P (1) d(x, ∂M) ≤ ε′. It follows that supx∈Γ(1) d(x, ∂M) ≤ ε′,
which implies that Γ does not intersect Mε. 2

4 Short g-vectors and local properties of good approximations
Here we prove part (i) of Kalai’s conjecture for the case when 2k < d. In particular, we show that if P
is close enough to M and gk(P ) is small, then there is a simplex Γ whose 1-skeleton is contained in the
1-skeleton of P and such that Γ intersects Mε for a certain ε that depends only on gk. This contradicts
Lemma 3.4.
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Lemma 4.1 Let g ≥ 0 be an integer and let d, k be positive integers with 2k < d. There exists a constant
C := C(g, d, k) such that if P is a simplicial d-polytope with gk(P ) ≤ g then all but C vertices of P
have (k − 1)-stacked links.

Proof: We mimic a trick of Swartz (2008). We have:

g̃k = h̃k − h̃k−1

= ((k + 1)hk+1 + (d− k)hk)− (khk + (d+ 1− k)hk−1)

= (k + 1)gk+1 + (d+ 1− k)gk

≤ (k + 1)g<k>k + (d+ 1− k)gk

≤ (k + 1)g<k> + (d+ 1− k)g.

Here the second step follows from equation (3), the fourth step is a consequence of the g-theorem and the
last step follows from the monotonicity of the operator <k>.

DefineC(g, d, k) := (k+1)g<k>+(d+1−k)g. Note that (8) implies thatC ≥
∑
v∈V (P ) gk(link(v)).

Since all vertex links of a simplicial polytope are isomorphic to boundaries of polytopes, the g-theorem
implies that all the summands in this sum are nonnegative. Hence at most C of them are positive. Then
by Theorem 2.2 almost all links are (k − 1)-stacked, as desired. 2

From now on P is a simplicial polytope with the boundary complex of P denoted by ∆. If the number
of vertices of P is large and gk is small, we use the generalized lower bound theorem to triangulate many
links and produce a large family of simplices whose 1-skeleton is contained in the 1-skeleton of P . For
a vertex v of P , we let ∆v := link(v) to make the notation cleaner. The previous lemma along with
Theorem 2.2 implies that if gk(P ) < c, then for most vertices of P , ∆v(d− 2− k) gives a triangulation
of ∆v(that is, ∆v(d− 2− k) is a simplicial complex homeomorphic to a ball, whose boundary is ∆v .

Let Vk(P ) be the set of vertices v of P such that gk(∆v) = 0. Now consider the following collection
(i)

∆′(k) = {Γ |Γ is a face of v ∗∆v(d− 2− k) for v ∈ Vk(P )}. (8)

Here v ∗ L denotes the cone over a (d − 1)-dimensional simplicial complex L with apex v. Denote by
|∆′(k)| the union of all the simplices in ∆′(k). Then |∆′(k)| is a subset of P . We will show that if P has
enough vertices, gk(P ) < g, and P is contained in a C1-convex body M , then there is a compact subset
C contained in the interior of M that depends only on g and M , and such that |∆′(k)| ∩ C 6= ∅.

For this we need a “separation theorem” for a finite set of points inside a C1-convex body. For an affine
hyperplane H and a normal vector direction, let H+ be the strictly positive side of H and H− the weakly
negative side of H . We say that a hyperplane is generic with respect to a finite set of points B if it does
not contain the affine span of any subset of B.

Theorem 4.2 Let M be a C1-convex body and let c > 0 be a positive integer. There exists ε > 0 such
that for every A ⊆M with |A| < c and every finite set of points B, there is a hyperplane H generic with
respect to A ∪B , such that A ⊆ H+ and

sup
x∈∂M∩H−

d(x,M ∩H) ≥ ε. (9)
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H

ℇ(k)

Fig. 3: Any set of k points is far away from some piece of the boundary

Proof: Let P be the family of polytopes that have at most c vertices and are contained in M . We claim
that there exists ε > 0 such that δH(P,M) > 2ε for all P ∈ P . Consider the set A(M, c) of all n × c
matrices all of whose column vectors lie in M . The set A(M, c) is compact. Let Conv be the map from
A(M, c) to the space of bounded subsets of Rd that maps X to the convex hull of the column vectors of
X . This map is continuous, so the map ϕ : A(M, c)→ R given by ϕ(X) = supx∈∂M d(x,Conv(X)) is
continuous as well, and by compactness it achieves a minimum value m. Let X be such that f(X) = m.
This value m is not 0 since ∂M is not contained in Conv(X). Let ε = m

4 .
We claim that ε a a suitable number. Let A be a set of at most c points of M and let Y ∈ A(M, c)

be such that Conv(Y ) is the convex hull of the points of A. There exists a point x ∈ ∂M and a point
y ∈ Conv(Y ) such that |x − z| ≥ |x − y| ≥ 2ε for every z ∈ Conv(Y ). Let H̃ an affine hyperplane
orthogonal to the line between x and y that passes through x+y

2 . Perturb slightly the normal vector of this
affine hyperplane to obtain a generic hyperplane H that passes through x+y

2 . If the perturbation is small
enough then H is a suitable hyperplane.

2

We now use Theorem 4.2 to find a ‘big’ region of M that only contains vertices of Vk(P ) and study
properties of ∆′(k) restricted to the vertices contained in this region. More precisely we have the follow-
ing result.

Theorem 4.3 Let M be a C1-convex body in Rd and let g > 0 be an integer. There exists ε > 0 such that
for every simplicial polytope P ⊂ M with gk(P ) ≤ g, there exists a hyperplane satisfying the inequality
supx∈∂M∩H− d(x,M ∩H) ≥ ε and such that H ∩ P = H ∩ |∆′(k)|.

Proof: Let P ⊂ M be a simplicial polytope such that gk(P ) ≤ g and let c := C(g, d, k). Let ε be
the real number given by Theorem 4.2 with the constant c and let H be a hyperplane obtained from
Theorem 4.2 when A = V (P ) − Vk(P ) and B = V (P ). Since |∆′(k)| ⊆ P it suffices to show that
P ∩ H ⊆ |∆′(k)| ∩ H . Since H is generic it contains none of the faces of P nor faces of any of the
simplices of ∆′(k). Now pick a generic point x in P ∩H , that is, a point that is not contained in a face
of dimension at most d − 1. Then pick a generic line ` that passes through x and is contained in H . By
generic we mean that ` intersects no d-simplex of ∆′(k) of dimension at most d− 2.
(i) It can be shown using results of Bagchi and Datta (2011), that ∆′(k) is a simplicial complex, but this is not necessary in the

following arguments.
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Fig. 4: Take H far from the compliment of Vk(P )

We claim that |∆′(k)|∩ ` = P ∩ `. To establish this, note that `∩P is a closed line segment and admits
a continuous parametrization γ : [0, 1] → ` ∩ P . Assume that there is x ∈ P ∩H that is not in |∆′(k)|.
Let s = inf{t ∈ [0, 1] | γ(t) 6∈ |∆′(k)|}. The set |∆′(k)| is a compact set, and so γ(s) ∈ |∆′(k)| as long
as ` ∩ |∆′(k)| is not empty. The set P ∩H is not empty, hence γ(0) is in a facet of P and this facet has
one vertex in Vk(P ), as it must have a vertex v in H−. This facet belongs to a simplex of v ∗∆v(d− k),
and so γ(s) ∈ |∆′(k)|. Now γ(s) is in ` so it belongs to the (relative) interior of a d- or (d− 1)-simplex
of ∆′(k). The former is not possible because then x would be in the interior of |∆′(k)|, hence it would be
in the interior of |∆′(k)| ∩ `. In the latter case we will show that γ(s) is in the interior of |∆′(k)| unless
it is in ∆. The reason for this is the following: let Γ be a (d − 1)-simplex of ∆′(k) that contains γ(s).
Then Γ contains a vertex v ∈ H− such that Γ is in v ∗∆v(d − 2 − k). Thus x ∈ v ∗ Σ = Γ where Σ is
a ridge of ∆v(d− r). The ridge Σ is contained in exactly two facets F1, F2 of ∆v(d− 2− k) unless it is
on the boundary of P . In the first case we obtain that γ(s) is in the interior of v ∗ F1 ∪ v ∗ F2, thus it is
also in the interior of |∆′(k)|. In the second case γ(s) ∈ ∆ hence s = 1, which is impossible since s is
an infimum. It follows that `∩P ⊆ `∩ |∆′(k)|, so in particular x ∈ |∆′(k)| ∩H . Now the set of generic
points of P ∩ H is dense in P ∩ H and is contained in |∆′(k)| ∩ H . Thus taking closure of the set of
generic points yields the result. 2

We are ready to prove the main result of the paper.

Theorem 4.4 (Adiprasito and Samper (2014)) Part (i) of Conjecture 1.1 holds whenever 2k < d.

Proof: Assume that {Pn}∞n=1 is a sequence of polytopes that converges to M and such that gk(Pn) ≤ g
for all n. Let ε be given by Theorem 4.3. If n is sufficiently large then Pn contains Mε in its interior. For
any such n letHn be a hyperplane given by Theorem 4.3. Notice that there is at least one x ∈ Hn∩Mε ⊆
Hn∩Pn = Hn∩|∆′(k)(Pn)|. It follows that there is a simplex Γ in |∆′(k)(Pn)| that intersectsMε. This
however contradicts Lemma 3.4, as Γ(1) ⊆ P (1). 2

5 The case 2k = d
If k equals d

2 , then our method of the proof for Theorem 4.4 breaks down: the k-th entry of the short
g̃-vector of any 2k-polytope equals 0. Nevertheless, the theorem holds for k = d

2 :

Theorem 5.1 (Adiprasito and Samper (2014)) Part (i) of Conjecture 1.1 holds whenever 2k ≤ d.
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The main tool is an extension of the theorem of Murai–Nevo: we provide several quantitative forms of
their generalized lower bound theorem, among them the following result.

Theorem 5.2 (Adiprasito and Samper (2014)) Let M denote an arbitrary C1-convex body in R2k, and
let c denote any non-negative integer. Then, there are ε, δ > 0 such that for every polytope P with
(1− ε)M ⊂ P ⊂M and gk(P ) ≤ c, there exists a hyperplane H such that

(i) sup
x∈∂M∩H−

d(x,M ∩H) ≥ δ > 0,

(ii) there is a simplicial complex Γ such that P ∩H− = Γ ∩H−, and

(iii) Γ(d−1−k) ∩H− = P (d−1−k) ∩H−.

One can derive Theorem 5.1 from Theorem 5.2 in a way analogous to how we derived Theorem 4.4 from
Lemma 3.1. However, the vanishing of g̃k makes it unfeasible to construct the complex Γ by constructing
it in every link. Instead, we use a careful generalization of the methods of Murai and Nevo (2013): As a
candidate for Γ, we still consider the complex ∆(k) = {F : F (k) ⊂ ∆(k)}, where ∆ = ∂P . This complex
clearly satisfies property (iii) (regardless of the hyperplane H chosen). Proving (i) and (ii), however, is
considerably harder; to prove these claims, we consider (2k−1)-dimensional disksD in the boundary ∂P
of P cut out by halfspaces H+. Associated to this pair (∂P,D) is a (Cohen–Macaulay) Stanley–Reisner
module M(∂P,D) := ID/I∂P . We then use the crystallization principle of Green (1998) to show that,
for a suitable choice of H satisfying (i), the module M(Γ,Γ|D) (where Γ|D := {F : F (k) ⊂ D(k)}) is
Cohen-Macaulay of dimension 2k, thereby establishing also (ii).
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