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Abstract. We review and introduce several approaches to the study of centralizer algebras of the infinite symmetric
group S∞. Our work is led by the double commutant relationship between finite symmetric groups and partition
algebras; in the case of S∞, we obtain centralizer algebras that are contained in partition algebras. In view of the
theory of symmetric functions in non-commuting variables, we consider representations of S∞ that are faithful and
that contain invariant elements; namely, non-unitary representations on sequence spaces.

Résumé. Nous étudions les algèbres du centralisateur du groupe symétrique infini S∞, passant en revue certaines
approches et en introduisant de nouvelles. Notre travail est basé sur la relation du double commutant entre le groupe
symétrique fini et les algèbres de partition; dans le cas de S∞, nous obtenons des algèbres du centralisateur con-
tenues dans les algèbres de partition. Compte tenu de la théorie des fonctions symétriques en variables non com-
mutatives, nous considérons les représentations de S∞ qui sont fidèles et contiennent les invariants; c’est-à-dire, les
représentations non unitaires sur les espaces de suites.
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1 Introduction
Classical Schur-Weyl duality relates the representation theory of the general linear group GLn(C) and
the finite symmetric group Sk via their commuting actions on a common vector space. Namely, if V ∼=
Cn, then the diagonal action of GL(V ) ∼= GLn(C) on the algebraic k-fold tensor product V ⊗k fully
centralizes the permutation action of Sk on the tensor factors:

CSk ∼= EndGL(V )(V
⊗k) when n = dim(V ) ≥ k. (1)

In [VT07], Tsilevich and Vershik extend this setting to study the infinite symmetric group S∞ by creating
an infinite tensor power V ⊗∞ on which GL(V ) and S∞ share commuting actions. In contrast, we let V
have infinite dimension which allows for faithful actions of S∞ on its finite tensor powers.

The group GLn(C) naturally contains Sn as the set of n × n permutation matrices; in particular, any
V ∼= Cn can be viewed as an Sn-module. The centralizer of the corresponding diagonal action of Sn
on V ⊗k is called the partition algebra Pk(n). The partition algebras arose independently in the studies
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of Martin [Mar91, Mar94, Mar96, Mar00] and Jones [Jon94] as generalizations of the Temperley-Lieb
algebras and the Potts model in statistical mechanics, respectively. Their work coalesces the study of
several tensor power centralizer algebras, including the group algebras of finite symmetric groups, the
Temperley-Lieb algebras, the Brauer algebras, and the algebras of uniform block permutations; all of
these are examples of diagram algebras, which we discuss in Section 2.

In [SS13], Sam and Snowden provide a first approach for treating CS∞ as a finite tensor power cen-
tralizer algebra. Their work arrives amongst a recently rejuvenated effort to understand representation-
theoretic stability of chains of groups, most salient being the chain of finite symmetric groups S1 ↪→
S2 ↪→ S3 ↪→ · · · . For instance, Bowman, De Visscher, and Orellana [BdVO] use the representation-
theoretic duality between Sn and Pk(n) to study stability in decomposition numbers of representations
of symmetric groups. Church, Ellenberg, and Farb [CEF12] use category-theoretic methods to create
corresponding chains of modules, all of whose structures are tied together into a single FI-module. Sam
and Snowden’s approach is related, but they additionally make the connection to Schur-Weyl duality, and
treat other examples of groups. Of interest to us is their consideration of the action of S∞ on a countable-
dimensional vector space V ∼= C(N), as reviewed in Section 3.2. This gives rise to the downwards and
upwards partition categories, whose homogeneous degree k components form subalgebras of partition
algebras that we call the bottom-propagating and top-propagating partition algebras, respectively.

Another motivation for the study of S∞ originates from the connections between Hopf algebras and
symmetric functions. An influential result of Gessel [Ges84] says that the Hopf algebra structure of the
Solomon descent algebra is in duality with the algebraic structure of the quasi-symmetric functions, and
vice versa. In [MR95], Malvenuto and Reutenauer revisit this connection by essentially using the classical
relationship between GLn(C) and Sk as given in (1); they exploit the Hopf algebra structure of the tensor
algebra

T (V ) =

∞⊕
k=0

V ⊗k, where V ∼= Cn, (2)

as well as its bi-module structure for GL(V ) and
⊕

k≥0 CSk, which restricts to the work of Gessel.
In [AO08], Aguiar and Orellana generalize [MR95] by drawing on the centralizer relationship between
the complex reflection groups Cr o Sn, which assume the role of GLn(C), and the subalgebra Uk of the
partition algebra spanned by uniform block permutations, introduced in [Tan97]. Their result is a graded
Hopf algebra U =

⊕
k≥0 Uk, which also contains the Hopf algebra NCSym of symmetric functions in

non-commuting variables. However, there is a subtlety in the centralizer relationship between Cr o Sn
and Uk necessitating r and n to be kept large relative to k. This suggests that a study of the entire Hopf
algebra U at once might involve S∞.

The above-mentioned approach of Sam and Snowden [SS13] cannot facilitate this role for S∞ since it is
missing the S∞-invariant structure crucial for applications to symmetric functions. Namely, consider first
the finite-dimensional case, where V has basis {v1, . . . , vn} over C. Then, V ⊗k can be canonically iden-
tified with the space of homogeneous polynomials of degree k in non-commuting variables v1, . . . , vn;
the tensor algebra in (2) is isomorphic to the full polynomial ring. The symmetric functions NCSym cor-
respond to the elements of this algebra that are invariant under the permutation action of Sn on v1, . . . , vn;
in each homogeneous degree k, symmetric functions correspond to the invariant elements of V ⊗k. For
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example,

(V )
Sn = C

{ n∑
i=1

vi

}
and (V ⊗ V )

Sn = C
{ n∑
i=1

vi ⊗ vi,
n∑

i,j=1

vi ⊗ vj
}
.

In order to treat all symmetric functions at once, one passes to the case of countably many non-commuting
variables {vi}i∈N = {v1, v2, . . .}, on which S∞ acts on subscripts. If V has the countable basis {vi}i∈N
as in [SS13], then there are no non-trivial S∞-invariants in its tensor powers V ⊗k since every element in
these vector spaces is a finite linear combination of the basis elements.

In Section 4, we present two choices for the representation space V that feature the desired invariant
structure. In each case, V contains a countable linearly independent subset whose image determines the
endomorphisms under consideration. In Section 4.1, we equip N with a weighted counting measure, and
let V be the corresponding Banach space of p-power summable sequences. The measure is chosen so
that V and all of the Banach space completions V ⊗k of its finite tensor powers contain the desired S∞-
invariants. Theorem 2 states that the centralizer of the action of S∞ on V ⊗k inside the set of bounded
endomorphisms is the algebra Uk used in [AO08]. In Section 4.2, we let V be the Banach space `∞ of
bounded sequences, and we use suitable replacements for its algebraic tensor powers and the endomor-
phisms under consideration. Again, the corresponding faithful representations of S∞ contain the desired
invariants, and Theorem 5 states that the corresponding centralizer algebras of CS∞ are subalgebras of
partition algebras, namely, the top-propagating partition algebras.

It is noteworthy that the inclusion of non-trivial S∞-invariants into the representation space comes at
a cost; namely, the representations studied in Section 4 are not unitary. The non-unitary representation
theory of wild groups, of which S∞ is an example, is largely intractable; we refer to [Oko97] for a survey
of the representation theory of S∞. By including the desired S∞-invariants, we acquire representations
which are reducible, by design, but not fully decomposable. This is reflected in the fact that the centralizer
algebras of the actions of S∞ in Section 4 are small in the sense that the double commutant property
present in classical Schur-Weyl duality does not hold here, as discussed in Remark 3.

We intend this document as an extended abstract of the full paper of the same title. We therefore omit
or sketch proofs of our main results.

Acknowledgements: Author Z. Daugherty would like to thank Aaron Lauve for bringing to her atten-
tion the link between diagram Hopf algebras and symmetric functions in non-commuting variables, thus
inspiring the question of how to place such functions into a centralizer algebra framework.

2 Diagram algebras
A set partition of a set S is a set of pairwise disjoint subsets of S, called blocks, whose union is S. Fix
k ∈ N = {1, 2, . . .}, and denote

[k] = {1, . . . , k} and [k′] = {1′, . . . , k′},

so that [k] ∪ [k′] = {1, . . . , k, 1′, . . . , k′} is formally a set with 2k elements. To each set partition of
[k] ∪ [k′], we associate an equivalence class of graphs, called a (k-)diagram, as follows. Consider the
set of graphs with vertices [k] ∪ [k′], and let two graphs be equivalent if they have the same connected
components. To each diagram d associate the set partition of [k] ∪ [k′] determined by the connected
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components of any of its representatives. For example,

1

1′

2

2′

3

3′

4

4′

and

1

1′

2

2′

3

3′

4

4′

are equivalent, and both represent diagrams for the set partition {{1, 2, 1′}, {3}, {4, 2′, 3′, 4′}}. Let Dk

be the set of k-diagrams.
The product d1∗d2 of two diagrams d1 and d2 is defined as the concatenation of d1 above d2, where one

identifies the bottom vertices of d1 with the top vertices of d2, and removes any components consisting
only of middle vertices. This defines the partition monoid, which can be extended to an algebra as follows.
Let C(x) be the field of rational functions with complex coefficients in an indeterminate x. If there are
m middle components in the concatenation of d1 and d2, let d1d2 = xmd1 ∗ d2, and extend linearly over
C(x). For example,

· = x · .

This product is associative and independent of the graphs chosen to represent the partition diagrams.
The partition algebra Pk(x) is the span over C(x) of the setDk of k-diagrams equipped with this prod-

uct, where P0(x) = C(x). It is an associative algebra with identity given by the diagram corresponding
to {{1, 1′}, . . . , {k, k′}}. The dimension of Pk(x) is the number of set partitions of 2k elements, that is,
the Bell number B(2k).

Each partition algebra contains many important subalgebras, including group algebras of finite sym-
metric groups, Brauer algebras, and Temperley-Lieb algebras; see [HR05, Section 1]. In later sections,
we will encounter the subalgebras Uk, TPk, and BPk of Pk(x) that share the property that concatenating
diagrams in each of these algebras does not lead to middle components; in particular, these algebras can be
defined over C. The algebra Uk of uniform block permutations is spanned by the set of diagrams d ∈ Dk

satisfying
|B ∩ [k]| = |B ∩ [k′]| for every block B ∈ d.

For example,
1

1′

2

2′

3

3′

4

4′

∈ U4, but

1

1′

2

2′

3

3′

4

4′

/∈ U4.

The algebra Uk appears in Section 4.1; we refer to Remark 4 in particular. In the following, we say that
a block of a diagram is propagating if it contains vertices in both the top and bottom row of the diagram.
The top-propagating partition algebra TPk is spanned by the set of diagrams in Dk all of whose blocks
that contain top vertices are propagating, that is,

TPk = C{d ∈ Dk | for every block B ∈ d : B ∩ [k] 6= B}. (3)
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Similarly, the bottom-propagating partition algebra BPk is spanned by the set of diagrams in Dk with no
blocks isolated to the bottom row. For example,

1′

1

2′

2

3′

3

4′

4

∈ TP4 and

1

1′

2

2′

3

3′

4

4′

∈ BP4.

The algebras TPk and BPk appear in Sections 3.2 and 4.2, respectively.

3 Vector spaces of finite or countable dimension as permutation
modules

3.1 Finite symmetric group Sn and its action on (Cn)⊗k

Let V denote the n-dimensional permutation representation of the symmetric group Sn. That is, let V
have basis {v1, . . . , vn}, on which Sn acts by σ · vi = vσ(i) for σ ∈ Sn. For i = (i1, . . . , ik) ∈ [n]k, a
k-tuple of integers in {1, . . . , n}, and σ ∈ Sn, we let

vi = vi1 ⊗ · · · ⊗ vik ∈ V ⊗k and σ(i) = (σ(i1), . . . , σ(ik)) ∈ [n]k.

Let Sn act diagonally on the basis {vi}i∈[n]k of V ⊗k, that is,

σ · vi = vσ(i),

and extend this action linearly to V ⊗k. Thus, V ⊗k becomes a module for Sn.
As in Section 2, arrange the vertices of a k-diagram reading 1, . . . , k from left to right in the top row

and 1′, . . . , k′ from left to right in the bottom row. For each k-diagram d and each pair of k-tuples
(i1, . . . , ik), (i1′ , . . . , ik′) ∈ [n]k, we define

d
(i1,...,ik)
(i1′ ,...,ik′ )

=

{
1 if i` = im whenever vertices ` and m are connected in d,
0 otherwise.

(4)

For example, ( 1

1′

2

2′

)(3,7)

(3,5)

= 0 and

( 1

1′

2

2′

)(3,7)

(3,3)

=

( 1

1′

2

2′

)(4,4)

(4,4)

= 1.

The algebra Pk(n) acts on V ⊗k; namely, for each d ∈ Pk(n) and i ∈ [n]k, we define

d · vi =
∑

j∈[n]k
djivj,

and extend linearly. For example, we have the following identities in the action of P2(n) on V ⊗2

· (vi ⊗ vj) = δijvi ⊗ vi, · (vi ⊗ vj) = vj ⊗ vi,

· (vi ⊗ vj) = δij
n∑̀
=1

v` ⊗ v`, and · (vi ⊗ vj) =
(

n∑̀
=1

v`

)
⊗ vi.
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Theorem 1 ([Jon94]) Sn and Pk(n) generate full centralizers of each other in End(V ⊗k). In fact,

1. Pk(n) generates EndSn
(V ⊗k), and when n ≥ 2k, we have Pk(n) ∼= EndSn

(V ⊗k);

2. Sn generates EndPk(n)(V
⊗k).

The proofs of Theorems 2 and 5 are based on the main calculation of Theorem 1, so let us review. Let
A ∈ End(V ⊗k) be given by the matrix (Aj

i)i,j∈[n]k such that for each i ∈ [n]k,

A(vi) =
∑

j∈[n]k
Aj

ivj.

If σ ∈ Sn, and σA = Aσ in End(V ⊗k), then for each i ∈ [n]k,

σA(vi) =
∑

j∈[n]k
Aj

ivσ(j) equals Aσ(vi) =
∑

j∈[n]k
Aj
σ(i)vj =

∑
j∈[n]k

A
σ(j)
σ(i)vσ(j), (5)

since σ is a bijection of [n]k. So for every σ ∈ Sn, we have

σA = Aσ if and only if A
σ(j)
σ(i) = Aj

i for every i, j ∈ [n]k.

Thus, A ∈ EndSn
(V ⊗k) if and only if the entries of (Aj

i)i,j∈[n]k are uniform on Sn-orbits, which de-
scribes exactly those endomorphisms that come from Pk(n).

Note that there are two bases indexed by diagrams commonly arising in the literature. One is the
set of matrices with 1’s on a single orbit and 0’s elsewhere (e.g. the maps xd in [HR05]). The second,
given in (4), is a triangular combination of the first, and has the advantage of multiplying by diagram
concatenation.

3.2 Infinite symmetric group S∞ and its action on (C(N))⊗k

Embed Sn ↪→ Sn+1 as the subgroup which fixes n + 1. Then, let S∞ be the direct limit of {Sn}n∈N,
that is, the permutations of N which fix all but finitely many elements. Let V be a countable-dimensional
vector space with basis {vi}i∈N, that is,

V = C{vi}i∈N =

{∑
i∈N

aivi

∣∣∣∣ ai = 0 for all but finitely many i

}
∼= C(N).

As observed in [SS13], the same calculation as in (5) leads to the same conclusion; namely, A ∈
EndS∞(V

⊗k) if and only if the entries of its matrix representation (Aj
i)i,j∈Nk with respect to {vi}i∈Nk

are uniform on S∞-orbits. However, since elements of V ⊗k are finite linear combinations of basis ele-
ments, we have for every i ∈ Nk the set {j ∈ Nk | Aj

i 6= 0} is finite. Hence, using (4), EndS∞(V
⊗k) is

spanned by endomorphisms corresponding to top-propagating diagrams, i.e. EndS∞(V
⊗k) ∼= TPk, the

top-propagating partition algebra defined in (3).
In [SS13], Sam and Snowden study the endomorphisms of the tensor algebra

T (V ) =

∞⊕
k=0

V ⊗k
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generated by (k, `)-diagrams with vertices [k] ∪ [`′], where k, ` ∈ N are not necessarily equal, and with
no blocks isolated to the top row. Multiplication between a (k1, `1)-diagram and a (k2, `2)-diagram is
defined as concatenation when `1 = k2, and as zero otherwise. Since no middle components arise in
resolving concatenations, this multiplication involves no parameter. It gives rise to the so-called upwards
partition algebra UP , which is the span over C of the set of (k, l)-diagrams. In contrast to Sam and
Snowden [SS13], we write all actions as left actions, for which reason our use of upwards and downwards
is opposite to theirs. The top-propagating partition algebra TPk is exactly the homogeneous degree k
component of UP .

4 Sequence spaces as permutation modules
The study of symmetric functions in countably many variables requires to leave the finite-dimensional
realm and instead consider vector spaces V that contain countable linearly independent subsets {vi}i∈N.
With an eye toward studying S∞-invariants as mentioned in Section 1, we require

∑∞
i=1 vi to be inter-

pretable as an element of V . This rules out the possibility of {vi}i∈N being a Hamel basis of V as in
Section 3.2, in which case every vector has a unique expression as a finite linear combination of the basis
vectors {vi}i∈N. We propose the following approach:

Choose a vector space V containing a countable linearly independent subset {vi}i∈N and a vector∑∞
i=1 vi that is invariant under CS∞, which is considered as a subalgebra of an algebra of endomor-

phisms of V that are determined by their images on {vi}i∈N.

4.1 p-power summable sequences
We recall definitions from Banach space theory that will be used throughout this section. A sequence
{w`}`∈N in a normed vector space V is called a Cauchy sequence, if for every ε > 0 there exists L ∈ N
such that for all integers `,m > L, we have ‖w`−wm‖ < ε. A normed vector space V is called a Banach
space if every Cauchy sequence {w`}`∈N in V converges to some vector w = lim`→∞ w` in V , meaning
lim`→∞ ‖w − w`‖ = 0. A sequence {vi}i∈N in a Banach space V is called a Schauder basis if for every
v ∈ V there exist unique scalars {ai}i∈N such that

v =

∞∑
i=1

aivi = lim
`→∞

∑̀
i=1

aivi meaning lim
`→∞

∥∥∥∥v − ∑̀
i=1

aivi

∥∥∥∥ = 0; (6)

qualitatively, a Schauder basis is a linearly independent set such that every element of V can be written
uniquely as in (6). A Schauder basis {vi}i∈N is called unconditional if for every v ∈ V the convergence
in (6) is unconditional. If now A is a continuous endomorphism on V , and if v =

∑∞
i=1 aivi, then

{A(vi)}i∈N determines A(v) since

A(v) = A

(
lim
`→∞

∑̀
i=1

aivi

)
= lim
`→∞

A

(∑̀
i=1

aivi

)
= lim
`→∞

∑̀
i=1

aiA(vi).

We therefore study the following special case of the above-mentioned approach:

Choose a Banach space V with a countable Schauder basis {vi}i∈N such that
∑∞
i=1 vi converges,

and study CS∞ as a subalgebra of the algebra of continuous endomorphisms of V .
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To this end, we consider Lp-spaces of sequences of the form

V = Lp(N, µp) =

{
v = (a1, a2, . . .) ∈ CN

∣∣∣∣ ‖v‖p = ∞∑
i=1

|ai|pµpi <∞

}
, (7)

where 1 ≤ p < ∞, and µp is a weighted counting measure on N, which is determined by a sequence
(µi)i∈N with µi > 0 for all i ∈ N via µp({i}) = µpi . The space `∞ = L∞(N, µ) of bounded sequences
will be dealt with in Section 4.2. The normed vector space (7) is a Banach space that has unconditional
Schauder bases such as {vi}i∈N given by vi = (δij)j∈N, that is, v1 = (1, 0, 0, . . .), v2 = (0, 1, 0 . . .), etc..
In particular, v = (a1, a2, . . .) ∈ V if and only if

∑
i∈N aivi converges unconditionally to v in V . This

allows to introduce the notation
∑
i∈N aivi for arbitrary (a1, a2, . . .) ∈ CN so that

V =

{
v =

∑
i∈N

aivi ∈ CN
∣∣∣∣ ‖v‖p = ∞∑

i=1

|ai|pµpi <∞

}
.

In order to ensure that
∑
i∈N vi = (1, 1, 1, . . .) ∈ V , we henceforth require that (µi)i∈N ∈ `p, that is,∑∞

i=1 µ
p
i <∞.

We turn to the algebraic k-fold tensor product V ⊗k = (Lp(N, µp))⊗k, and note that it carries a canon-
ical cross norm so that its completion V ⊗k is isomorphic to V [DF93, Chapter 7]; namely,

V ⊗k = Lp(Nk, (µp)×k) =

{
v =

∑
i∈Nk

aivi ∈ CNk

∣∣∣∣ ‖v‖p = ∑
i∈Nk

|ai|pµpi <∞

}
,

where
∑

i∈Nk aivi represents the function v : Nk → C given by v(i) = ai, and for i = (i1, . . . , ik) ∈ Nk,

vi = vi1 ⊗ · · · ⊗ vik and µi =

k∏
`=1

µi` = ‖vi‖.

In particular, {vi}i∈Nk is an unconditional Schauder basis of V ⊗k, and V ⊗k can be identified with the
dense subset of linear combinations of vectors of the form

∑
i=(i1,...,ik)∈Nk

(
k∏
`=1

a`i`

)
vi =

(∑
i1∈N

a1i1vi1

)
⊗ . . .⊗

(∑
ik∈N

akikvik

)
with sup

1≤`≤k

∞∑
i`=1

|a`i` |pµ
p
i`
<∞.

A linear operator on a Banach space, say A : V ⊗k → V ⊗k, is continuous if and only if it is bounded,
meaning it maps bounded sets to bounded sets. This happens precisely if it has finite operator norm,

‖A‖ = sup
v∈V ⊗k : ‖v‖≤1

‖A(v)‖.

Moreover, the set of bounded operators

B(V ⊗k) =
{
A ∈ End(V ⊗k)

∣∣∣ ‖A‖ <∞}
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is a Banach space with respect to the operator norm.
We let S∞ act diagonally on the basis {vi}i∈Nk of V ⊗k so that for σ ∈ S∞ and i = (i1, . . . , ik) ∈ Nk,

σ · vi = vσ(i), where σ(i) = (σ(i1), . . . , σ(ik)),

and we extend linearly. In other words, if σ ∈ S∞ and v =
∑

i∈Nk aivi ∈ V ⊗k, then

σ · v =
∑
i∈Nk

aivσ(i) =
∑
i∈Nk

aσ−1(i)vi ∈ V ⊗k.

Each σ ∈ S∞ gives rise to a continuous endomorphism since it fixes all but finitely many of the vectors
{vi}i∈Nk . Thus, CS∞ can be regarded as a subalgebra of B(V ⊗k).

Theorem 2 The centralizer of CS∞ in B(V ⊗k) is isomorphic to the finite-dimensional algebra Uk of
uniform block permutations.

Proof: (A sketch.) Every A ∈ B(V ⊗k) is determined by its images on {vi}i∈Nk , which we arrange in a
matrix (Aj

i)i,j∈Nk ∈ CNk×Nk

such that for each i ∈ Nk,

A(vi) =
∑
j∈Nk

Aj
ivj ∈ V ⊗k.

Then using a similar calculation to (5), we determine that A is in the centralizer of CS∞ if and only if A
can be represented as a partition diagram. Then an analysis of which of those operators are bounded (and
therefore continuous) operators restricts us to Uk. 2

Remark 3 The group algebra CS∞ does not satisfy the double commutant property in B(V ⊗k), that
is, the centralizer of Uk in B(V ⊗k) strictly contains CS∞. For example, when k = 1, the centralizer
of CS∞ in B(V ⊗1) = B(V ) is U1 = C{idV }; but the centralizer of C{idV } is all of B(V ). This
results from the fact that the action of S∞ on B(V ) is not semisimple. In fact, the S∞-invariant subspace
C{
∑
i∈N vi} does not have a closed CS∞-invariant complement, so that all projection operators with

range C{
∑
i∈N vi} are unbounded. In particular, V = V ⊗1 is not fully decomposable as a CS∞-module.

A similar argument applies for k > 1.

In view of the connection to symmetric polynomials, we define for each set partition π of [k],

π(i1,...,ik) =

{
1 if i` = im whenever ` and m are in the same block of π,
0 otherwise,

and let
mπ =

∑
i∈Nk

πivi ∈ CNk

. (8)

For example,

m{{1,2,3}} =
∑
i∈N

vi ⊗ vi ⊗ vi and m{{1,3},{2}} =
∑
i,j∈N

vi ⊗ vj ⊗ vi.
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These elements correspond to the so-called monomial symmetric functions of degree k in NCSym, which
form a basis for the space of homogeneous symmetric functions of degree k in non-commuting variables.
It is straightforward to check that, just as is the case with countable-dimensional vector spaces, the vector
space (V ⊗k)S∞ has {mπ | π a set partition of [k]} as a basis.

Remark 4 Despite the delicate properties of the action of S∞ on V ⊗k mentioned in the previous remark,
Theorem 2 frames the vector space (V ⊗k)S∞ of S∞-invariant vectors as a natural module for the algebra
Uk of uniform block permutations. In fact, in [AO08], Aguiar and Orellana study the combinatorial Hopf
algebra of uniform block permutations, and find that the ring of symmetric functions in non-commuting
variables naturally lives in their algebra. A priori, this may be surprising since in their setting, Uk arises
as the centralizer of the seemingly unrelated complex reflection group Cr o Sn on a permutation-like
module, as shown in [Tan97]. However, there is a subtlety in the centralizer relationship depending on
the values of k and r. One can use the action of Cr oSn on Cn as defined in [AO08, Section 3.1], calculate
the corresponding commutation conditions as in (5), and take the limit as r, n → ∞ to obtain the same
commutation conditions as in the proof of Theorem 2. In light of this observation, the results of Aguiar and
Orellana connecting the Hopf algebra of uniform block permutations and the ring of symmetric functions
in non-commuting variables appear natural.

4.2 Bounded sequences
In the following, we consider the Banach space of bounded sequences

`∞ =

{
v = (a1, a2, . . .) ∈ CN

∣∣∣∣ ‖v‖∞ = sup
i∈N
|ai| <∞

}
.

Recall that `∞ is not separable, meaning that it has no countable dense subsets. In particular, `∞ has no
countable Schauder bases. For example, if {vi}i∈N is given by vi = (δij)j∈N, then {

∑`
i=1 vi}`∈N is not

a Cauchy sequence even though (1, 1, 1, . . .) ∈ `∞. Therefore, we no longer use the notation
∑
i∈N aivi

for (a1, a2, . . .) ∈ CN. Following the previous section, we regard (`∞)⊗k as a subspace of

`∞(Nk) =
{
v = (ai)i∈Nk ∈ CNk

∣∣∣∣ ‖v‖∞ = sup
i∈Nk

|ai| <∞
}

such that for i = (i1, . . . , ik) ∈ Nk,

vi = vi1 ⊗ · · · ⊗ vik = (δij)j∈Nk , where δij =

{
1 if i = j,

0 otherwise.

Note that (`∞)⊗k is not dense in `∞(Nk) if k > 1. Again, {vi}i∈Nk is not a Schauder basis, and bounded
operators are not generally determined by their images on {vi}i∈Nk . Thus, we restrict our consideration
to operators A on `∞(Nk) which are determined by their associated matrix with entries Aj

i = (A(vi))j
for i, j ∈ Nk. To this end, let

BMat(`
∞(Nk)) =

{
A = (Aj

i)i,j∈Nk ∈ CNk×Nk

∣∣∣∣ ‖A‖Mat = sup
j∈Nk

{∑
i∈Nk

|Aj
i|
}
<∞

}
.
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If A = (Aj
i)i,j∈Nk ∈ BMat(`

∞(Nk)) and v = (bi)i∈Nk ∈ `∞(Nk), we define for each j ∈ Nk,

(A(v))j =
∑
i∈Nk

Aj
ibi, (9)

which converges absolutely since∑
i∈Nk

|Aj
i||bi| ≤

∑
i∈Nk

|Aj
i|‖v‖∞ ≤ ‖A‖Mat‖v‖∞.

Hence, A(v) ∈ `∞(Nk), and A gives rise to an operator on `∞(Nk) with norm bounded by ‖A‖Mat. The
norm ‖A‖∞ of each A ∈ BMat(`

∞(Nk)) as an operator on `∞(Nk) equals ‖A‖Mat, and BMat(`
∞(Nk)) is

a subalgebra of B(`∞(Nk)). Thus this set of operators is a viable space for our study.
We define a norm-preserving action of S∞ on `∞(Nk) by

σ · (ai)i∈Nk = (aσ−1(i))i∈Nk for σ ∈ S∞,

so that for each i ∈ Nk, σ · vi = vσ(i). As in the p-power summable sequences case, the vector space
(`∞(Nk))S∞ of S∞-invariant elements in `∞(Nk) has the functions {mπ | π a set partition of [k]} de-
fined by (8) as a basis.

Theorem 5 The centralizer of CS∞ in BMat(`
∞(Nk)) is isomorphic to the finite-dimensional bottom-

propagating partition algebra BPk.

Proof: (A sketch.) First show that A = (Aj
i)i,j∈Nk ∈ BMat(`

∞(Nk)) is in the centralizer of CS∞ if and
only if it is a linear combination of the finitely many diagram matrices defined by (4). The claim now
follows from the observation that if A = (Aj

i)i,j∈Nk is such a linear combination, then {i ∈ Nk | Aj
i 6= 0}

is finite for every j ∈ Nk if and only if A is a linear combination of matrices corresponding to diagrams
with no blocks isolated to the bottom row, that is, diagrams in BPk. 2

Remark 6 As in Section 4.1, S∞ is strictly contained in its double commutant; see Remark 3. Similarly to
Remark 4, the vector space (`∞(Nk))S∞ becomes a natural module forBPk, and it has a basis consisting
of elements which may be identified with monomial symmetric functions. Of course, the entire partition
algebra Pk(x) has a natural action on the set of set partitions of [k] obtained by identifying each set
partition π with the diagram d = π ∪ {{1′}, . . . , {k′}}; these diagrams form a left ideal in Pk(x). One
might expect an action of Pk(x) on the basis {mπ | π a set partition of [k]} of (`∞(Nk))S∞ . Recall that
in Theorem 1, x must be specialized to the number n of basis vectors on which Sn acts. The transition
x→∞ can be carried out rigorously only if middle components are avoided in diagram concatenations,
in this case by restricting to BPk.
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