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Combinatorial Realization of the Hopf Algebra
of Sashes

Shirley Law�

Washington College, USA

Abstract. A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer
Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically
in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a par-
ticular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell
permutations. The Pell permutations are in bijection with combinatorial objects that we call sashes, that is, tilings of
a 1 by n rectangle with three types of tiles: black 1 by 1 squares, white 1 by 1 squares, and white 1 by 2 rectangles.
The bijection induces a Hopf algebra structure on sashes. We describe the product and coproduct in terms of sashes,
and the natural partial order on sashes. We also describe the dual coproduct and dual product of the dual Hopf algebra
of sashes.

Résumé. Une construction générale dans la théorie des treillis dû à Reading construit des sous-algèbres de Hopf de
l’algèbre de Hopf de permutations de Malvenuto et Reutenauer (MR). Les produits et coproduits de ces sous-algèbres
de Hopf sont définis extrinsèquement en termes du plongement dans MR. Le but de cette communication est de
trouver une description combinatoire intrinsèque d’une de ces sous-algèbres de Hopf en particulier. Cette algèbre
Hopf a une base naturelle donnée par des permutations que nous appelons permutations Pell. Les permutations Pell
sont en bijection avec des objets combinatoires que nous appelons écharpes, c’est-à-dire des pavages d’un rectangle
1-par-n avec trois espèces de tuiles: des carrés noirs 1-par-1, des carrés blancs 1-par-1, et des rectangles blancs 1-
par-2. La bijection induit une structure d’algèbre de Hopf sur les écharpes. On décrit le produit et le coproduit en
termes d’écharpes, et l’ordre partiel naturel sur les écharpes. On décrit également le coproduit dual et le produit dual
de l’algèbre de Hopf dual des écharpes.
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1 Introduction
The focus of this research is on combinatorial Hopf algebras: Hopf algebras such that the basis elements
of the underlying vector space are indexed by a family of combinatorial objects. For each n ¥ 0, let On
be a finite set of “combinatorial objects”. We define a graded vector space over a field K, such that for
each grade n the basis vectors of the vector space are indexed by the elements of On. That is, the graded
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vector space is: KrO8s �
À

n¥0 KrOns. For simplicity, we refer to a basis element of this vector space
by the combinatorial object indexing it. There is a more sophisticated approach for defining combinatorial
Hopf algebras. For more information see [1].

Let Sn be the group of permutations of the set of the first n integers rns � t1, 2, . . . , nu. Also define
rn, n1s � tn, n� 1, . . . , n1u for n1 ¥ n. For x � x1x2 � � �xn P Sn, an inversion of x is a pair pxi, xjq
where i   j and xi ¡ xj , and the inversion set of x is the set of all such inversions. The weak order
is the partial order on Sn with x ¤ x1 if and only if the inversion set of x is contained in the inversion
set of x1. The weak order is a lattice. The inverse x�1 of a permutation x P Sn is the permutation
x�1 � y � y1 � � � yn P Sn such that yi � j when xj � i.

Let T be a set consisting of integers t1   t2   � � �   tn. Given a permutation x P Sn, the notation
pxqT stands for the permutation of T whose one-line notation has tj in the ith position when xi � j. On
the other hand, given a permutation x of T , the standardization, stpxq, is the unique permutation y P Sn
such that pyqT � x.

Now let T be a subset of rns. For x P Sn, the permutation x|T is the permutation of T obtained by
removing from the one-line notation for x all entries that are not elements of T .

Example 1.1. Let x � 31254, T1 � t2, 3, 6, 8, 9u, and T2 � t2, 3, 5u. Then, pxqT1
� 62398 and thus

stp62398q � 31254. Also, x|T2
� 325.

The Malvenuto-Reutenauer Hopf algebra MR is a graded Hopf Algebra pKrS8s, ,∆q. Let KrS8s �À
n¥0 KrSns be a graded vector space. Let x � x1x2 � � �xp P Sp and y � y1y2 � � � yq P Sq . Define

y1 � y11 � � � y
1
q to be pyqrp�1,p�qs so that y1i � yi � p. A shifted shuffle of x and y1 is a permutation z P Sn

where n � p� q, z|rps � x and z|rp�1,ns � y1. From [3], the product of x and y in MR is the sum of all
the shifted shuffles of x and y. Equivalently,

x  y �
¸
rx � y1, y1 � xs (1)

where x � y1 is the concatenation of the permutations x and y1, and
°
rx � y1, y1 � xs denotes the sum of all

the elements in the weak order interval rx � y1, y1 � xs. The poset induced on Sn by the weak order is a
lattice (also denoted by Sn). The coproduct in MR is:

∆pxq �
p̧

i�0

stpx1 � � �xiq b stpxi�1 � � �xpq (2)

where stpx1 � � �x0q and stpxp�1 � � �xpq are both interpreted as the empty permutation H.
Define the map Inv : Sn Ñ Sn by Invpxq � x�1 and extend the map linearly to a map Inv : KS8 Ñ

KS8. MR is known to be self dual [4] and specifically Inv is an isomorphism from pKrS8s, ,∆q to the
graded dual Hopf algebra pKrS8s,∆�,m�q. Let x P Sp, y P Sq , and z P Sn, where p� q � n. Given a
subset T of p elements of rns, TC denotes the complement of T in rns. The dual product is given by:

∆�pxb yq � Invpx�1  y�1q �
¸

T�rns,
|T |�p

pxqT � pyqTC , (3)

and the dual coproduct is:

m�pzq � pInvb Invqp∆pz�1qq �
ņ

i�0

z|ris b stpz|ri�1,nsq (4)
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where z|r0s and z|rn�1,ns are both interpreted as the empty permutation H.
Now that we have explicitly described both the Hopf algebra of permutations and the dual Hopf algebra

of permutations, we will present a family of Hopf subalgebras that are defined by a particular pattern-
avoidance condition. We give more detail on the particular pattern-avoidance condition below, but in
general the condition requires patterns of length k to have k and 1 adjacent. This family of Hopf algebras
is defined by Reading [5].

For some k ¥ 2, let V � r2, k� 1s such that |V | � j and let V C be the complement of V in r2, k� 1s.
A permutation x P Sn avoids the pattern V pk1qV C if for every subsequence xi1xi2 � � �xik of x with
ij�2 � ij�1 � 1, the standardization stpxi1xi2 � � �xikq is not of the form vpk1qv1 for any permutation v
of the set V and any permutation v1 of V C . In the notation of Babson and Steingrimsson [2] avoiding
V pk1qV C means avoiding all patterns of the form v1�� � ��vj�k1�v11�� � ��v

1
k�j�2, where v1 � � � vj

is a permutation of V and v11 � � � v
1
k�j�2 is a permutation of V C .

Let U be a set of patterns of the form V pk1qV C , where |V | and k can vary. Define Avn to be
the set of permutations in Sn that avoid all of the patterns in U . We define a graded Hopf algebra
pKrAv8s, Av,∆Avq as a graded Hopf subalgebra of MR. Let KrAvns be a vector space, over a field
K, with basis vectors indexed by the elements of Avn, and let KrAv8s be the graded vector spaceÀ

n¥0 KrAvns. The product and coproduct on KrAv8s are described below.
We define a map πÓ : Sn Ñ Avn recursively. If x P Avn then define πÓpxq � x. If x P Sn, but

x R Avn, then x contains an instance of a pattern V pk1qV C in U . That is, there exists some subsequence
xi1xi2 � � �xik of x, where ij�2 � ij�1 � 1 and j � |V |, such that stpxi1xi2 � � �xikq � vk1v1 for some
permutations v and v1 of V and V C . Exchange xij�1 and xij�2 in x to create a new permutation x1,
calculate πÓpx1q recursively and set πÓpxq � πÓpx

1q. The recursion must terminate because an inversion
of x is destroyed at every step, and because the identity permutation is in Avn. The map πÓ is well-defined
as explained in [5, Remark 9.5]. We emphasize that the definition of πÓ is dependent on U .

The map πÓ defines an equivalence relation with permutations x, x1 P Sn equivalent if and only if
πÓpxq � πÓpx

1q. The set Avn is a set of representatives of these equivalence classes. This equivalence
relation is a lattice congruence on the weak order. Therefore the poset induced on Avn by the weak order
is a lattice (also denoted by Avn) and the map πÓ is a lattice homomorphism from the weak order to Avn.
The congruence classes defined by πÓ are intervals, and πÓ maps an element to the minimal element of
its congruence class. Let πÒ be the map that takes an element to the maximal element of its congruence
class.

The following proposition is a special case of [5, Proposition 2.2]. The congruence on Sn defined by
πÓ is denoted by Θ. For x P Sn, the congruence class of x mod Θ is denoted by rxsΘ.

Proposition 1.2. Given Sn a finite lattice, Θ a congruence on Sn, and x P Sn, the map y Ñ rysΘ restricts
to a one-to-one correspondence between elements of Sn covered by πÓpxq and elements of Avn covered
by rxsΘ.

Both πÓ and πÒ are order preserving and πÒ � πÓ � πÒ and πÓ � πÒ � πÓ. A πÓ-move is the result
of switching two adjacent entries of a permutation in the manner described above. That is, it changes
� � � k1 � � � to � � � 1k � � � for some pattern in U . A πÒ-move is the result of switching two adjacent entries of
a permutation in a way such that a πÒ-move undoes a πÓ-move. That is, it changes � � � 1k � � � to � � � k1 � � � .

We define a map r : KrS8s Ñ KrAv8s that identifies the representative of a congruence class. Given
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x P Sn,

rpxq �

#
x if x P Avn

0 otherwise.

Similarly, we define a map c : KrAv8s Ñ KrS8s that takes an avoider to the sum of its congruence
class:

cpxq �
¸

y such that
πÓpyq�x

y.

We now describe the product and coproduct in pKrAv8s, Av,∆Avq. Let x P Avp, and let y P Avq .
Then:

mAvpxb yq � x Av y � rpx  yq. (5)

Just as the product in MR is
°
rx � y1, y1 � xs, we can view this product as:

x Av y �
¸
rx � y1, πÓpy

1 � xqs, (6)

where rx � y1, πÓpy1 � xqs is an interval on the lattice Avn.
The coproduct is:

∆Avpzq � pr b rqp∆pcpzqqq. (7)

We now describe the Hopf algebra pKrAv8s,∆
�
Av, 

�
Avq that is dual to pKrAv8s, Av,∆Avq. We

extend the map πÓ linearly, so πÓ is a map from KrS8s to KrAv8s. The map that is dual to the map c
is c� : KrS8s Ñ KrAv8s, where c�pxq � πÓpxq for x P KrS8s. The map that is dual to the map r is
r� : KrAv8s Ñ KrS8s, where r�pxq � x for x P KrAv8s.

Let z P Avn, where n � p� q. The dual coproduct is given by dualizing Equation (5), so that:

m�
Avpzq � m�pzq. (8)

The dual product ∆�
Av is given by dualizing Equation (7):

∆�
Avpxb yq � πÓ∆

�pxb yq. (9)

Combining Equation (9) with Equation (3), we have:

∆�
Avpxb yq �

¸
T�rns
|T |�p

πÓppxqT � pyqTC q (10)

Equation (10) leads to the following order theoretic description of the coproduct ∆Av, which was
worked out jointly with Nathan Reading.

Given z P Avn, a subset T � rns is good with respect to z if there exists a permutation z1 � z11 � � � z
1
n

with πÓpz1q � z such that T � tz11, . . . , z
1
|T |u. Suppose T is good with respect to z, let p � |T | and let

q � n� p. Let zmin be minimal, in the weak order on Sn, among permutations equivalent to z and whose
first p entries are the elements of T . Let zmax be maximal, in the weak order, among such permutations.
Define IT to be the sum over the elements in the interval rstpzmin|T q, πÓ stpzmax|T qs in Avp and define
JT to be the sum over the elements in the interval rstpzmin|TC q, πÓ stpzmax|TC qs in Avq .
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Theorem 1.3. Let z P Avn. Then

∆Avpzq �
¸

T is good

IT b JT

where IT �
°
rstpzmin|T q, πÓ stpzmax|T qs, JT �

°
rstpzmin|TC q, πÓ stpzmax|TC qs.

To prove Theorem 1.3, we first need several lemmas.

Lemma 1.4. The elements in the interval rzmin, zmaxs are equivalent to z and their first p entries are the
elements of T .

Lemma 1.5. Suppose T � rns with |T | � p. Let q � n�p. Suppose also that x1 ¤ x2 ¤ x3 in Avp, and
that y1 ¤ y2 ¤ y3 in Avq . If πÓppx1qT �py1qTC q � πÓppx3qT �py3qTC q � z, then πÓppx2qT �py2qTC q � z.

Lemma 1.6. Suppose x1, x2 P Sp and y1, y2 P Sq . Suppose T � rns, where n � p�q, and with |T | � p.
The following identities hold:

px1qT � py1qTC _ px2qT � py2qTC � px1 _ x2qT � py1 _ y2qTC

px1qT � py1qTC ^ px2qT � py2qTC � px1 ^ x2qT � py1 ^ y2qTC

The proof of Theorem 1.3 begins by defining termspz, T q to be the set txby : πÓppxqT � pyqTC q � zu,
and showing that termspz, T q is nonempty if and only if T is good with respect to z. Next, we show
that for each good subset T , the set termspz, T q is of the form IT b JT . This proof also establishes the
following more detailed statement.

Proposition 1.7. For some T � rns, x b y P termspz, T q if and only if x b y is a term of IT b JT in
∆Avpzq.

Proof: Since x b y P termspz, T q means that πÓ
�
pxqT � pyqTC

�
� z, we see from Equation(10) and

Theorem 1.3 that for a fixed set T , xb y is a term of the summand indexed by T in ∆Avpzq if and only if
z is the summand indexed by T in ∆�

Avpxb yq.

2 Pell Permutations and Sashes
Given a permutation x � x1x2 � � �xn P Sn, for each i P rn � 1s, there is a nonzero integer j such that
xi � xi�1 � j. If j ¡ 0, then there is an descent of size j in the ith position of x. A Pell permutation is a
permutation of rns with no descents of size larger than 2, and such that for each descent xi � xi�1 � 2,
the element xi�1 � 1 is to the right of xi�1. We write Pn for the set of Pell permutations in Sn.

Let us consider how many Pell permutations of length n there are. Given x P Pn�1, we can place n at
the end of x or before n � 1. We can also place n before n � 2, but only if n � 1 is the last entry of x.
Therefore |Pn| � 2|Pn�1| � |Pn�2|. This recursion, with the initial conditions |P0| � 0 and |P1| � 1,
defines the Pell numbers as defined by [6, Sequence A000129].

Lemma 2.1. Pn � Avn for U � t2p31q, p41q23u.

Proof: Suppose x P Pn. Since x does not have any descents larger than 2, it avoids p41q23. For each
descent xi � xi�1 � 2 in x, the element xi�1 � 1 is to the right of xi�1. Thus x also avoids 2p31q.
Now suppose x P Avn. Suppose x has a descent xi � xi�1 � j. Because x avoids 2p31q, the entries
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Fig. 1: The elements of Σ3 (left) and Σ4 (right).

xi�1 � 1, ..., xi�1 � j � 1 are to the right of the xi�1. Thus, since x avoids p41q23 we see that j ¤ 2 and
conclude that x P Pn.

The poset induced on Pn by the weak order is a lattice (also denoted by Pn). As a consequence of
Lemma 2.1, there is a Hopf algebra pKrAv8s, Av,∆Avq of Pell permutations. For the rest of this paper
we fix U � t2p31q, p41q23u.

There is a combinatorial object in bijection with Pell permutations that will allow us to have a more
natural understanding of the Hopf algebra of Pell permutations.

A sash of length n is a tiling of a 1 � n rectangle by black 1 � 1 squares, white 1 � 1 squares, and/or
white 1 � 2 rectangles. The set of sashes of length n is called Σn. There are no sashes of length -1 so

Σ�1 � H, and there is one sash of length 0, a 1 by 0 rectangle denoted || , so |Σ0| � 1. There are two
sashes of length 1: and . The five sashes of length 2 and the twelve sashes of length 3 are shown in
Figure 1. The poset structure of these sashes will be explained later in this section.

A sash of length n starts with either a black square, a white square, or a rectangle. Thus |Σn| �
2|Σn�1| � |Σn�2|. Since |Σ�1| � 0 and |Σ0| � 1, there is a bijection between Pell permutations of
length n and sashes of length n � 1. We now describe a bijection that we use to induce a Hopf Algebra
structure on sashes.

Definition 2.2. We define a map σ from Sn to Σn�1. Let x P Sn. We build a sash σpxq from left to right
as we consider the entries in x from 1 to n � 1. For each value i P rn � 1s, if i � 1 is to the right of i,
place a black square on the sash, and if i� 1 is to the left of i, place a white square on the sash. There is
one exception: If i� 1 is to the right of i, and i� 2 is to the left of i (and of i� 1), then place a rectangle

in the ith and pi� 1qst positions of the sash. We also define σp1q � || and σpHq � H.

From the definition of the map σ we see that σ sometimes involves replacing an adjacent black square
and white square by a rectangle. Later, we will sometimes break a rectangle into a black square and a
white square.

Example 2.3. Here is the procedure for computing σp421365q.
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2 is to the left of 1 Ñ

3 is to the right of 2 Ñ

4 is to the left of 3 and also to the left of 2 Ñ

5 is to the right of 4 Ñ

6 is to the left of 5 but to the right of 4 Ñ

Let T be a set of n integers and let x be a permutation of T . We define σpxq � σpstpxqq.

Example 2.4. σp742598q � σpstp742598qq � σp421365q �

Definition 2.5. We define a map η : Σn�1 Ñ Pn. To calculate ηpAq for a sash A P Σn�1, we place the
numbers 1 through n one at a time. Place the number 1 to begin and let i run from 1 to n � 1. If A has
either a black square or the left half of a rectangle in the ith position, place i � 1 at the right end of the
permutation. If A has either a white square or the right half of a rectangle in the ith position, place i� 1

immediately to the left of i or i� 1 respectively. We also define ηp|| q � 1 and ηpHq � H.

It is immediate that this construction yields a Pell permutation because the output has no descents of
size larger than 2, and for each descent of size 2, the value in between the values of the descent is to the
right of the descent.

Example 2.6. Here are the steps to calculate ηpAq for A � .

Ñ 1
Ñ 21
Ñ 213
Ñ 4213
Ñ 42135
Ñ 421365

Theorem 2.7. The restriction of σ to the Pell permutations is a bijection σ : Pn Ñ Σn�1 whose inverse
is given by η : Σn�1 Ñ Pn.

Theorem 2.7 is proven by showing that σpηpAqq � A and using the fact |Pn| � |Σn�1|.

Proposition 2.8. x, y P Sn are equivalent if and only if σpxq � σpyq.

We prove the forward direction of Proposition 2.8 by considering the case where y is obtained from x
by a single πÓ-move. The reverse direction is shown by contradiction.

The partial order on Σn�1 is such that the map σ : Pn Ñ Σn�1 is an order isomorphism from the
lattice of Pell permutations to Σn�1. We refer to this lattice as Σn�1.

From Proposition 1.2, the cover relations in Σn�1 are exactly the relations σpyq Ì σpxq where x P Pn
and y is covered by x in Sn.

Proposition 2.9. The cover relations on sashes are

1. A B Ì A B for any sash A and for a sash B whose leftmost tile is not a white square

2. A B Ì A B for any sash A and any sash B

3. A B Ì A B for any sash A and any sash B

Example 2.10. See Figure 1 for the poset on Σ3 and Σ4.
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3 The Hopf Algebra (and Dual Hopf Algebra) of Sashes
The bijection σ allows us to carry the Hopf algebra structure on Pell permutations to a Hopf algebra
structure pKrΣ8s, S ,∆Sq on sashes and a dual Hopf algebra pKrΣ8s,∆

�
S ,m

�
Sq on sashes, where KrΣ8s

is a vector space, over a field K, whose basis elements are indexed by sashes. In order to do this, we extend
σ and η to linear maps. For each grade n of the vector space, the basis elements are represented by the
sashes of length n � 1. Recall that the sash of length -1 is represented by H, and the sash of length 0 is

represented by || . Let A, B, and C be sashes. Using σ, we define a product, coproduct, dual product, and
dual coproduct of sashes:

mSpA,Bq � A S B � σ
�
ηpAq Av ηpBq

�
(11)

∆SpCq � pσ b σq
�
∆AvpηpCqq

�
(12)

∆�
SpAbBq � σ

�
∆�

Av

�
ηpAq b ηpBq

�	
(13)

m�
SpCq � pσ b σq

�
m�

AvpηpCqq
�

(14)

These operation definitions are somewhat unsatisfying because they require computing the operation
in MR. That is, calculating a product or coproduct in this way requires mapping sashes to permutations,
performing the operations in MR, throwing out the non-avoiders in the result, and then mapping the re-
maining permutations back to sashes. In the rest of this chapter we show how to compute these operations
directly in terms of sashes.

3.1 Product
Proposition 3.1. The empty sash H is the identity for the product S . For sashes A � H and B � H,
the product A S B equals:

$''&
''%
°�

A B,A1 B
�

if A � A1

°�
A B,A B

�
if A � A1

where
°
rD,Es is the sum of all the sashes in the interval rD,Es on the lattice of sashes.

The case where A � || is an instance of A � A1 , and similarly for B � || . In informal terms, the
product of two sashes is the sum of the sashes created by joining the two sashes with a black square and a
white square, and if by so doing an adjacent black square to the left of a white square is created, then the
product has additional terms with rectangles in the places of the adjacent black square and white square.

The proof is obtained by applying the map σ to the product of Pell permutations which is the sum over
the interval rx�y1, πÓpy1 �xqs in the lattice of Pell permutations, where x P Pp, y P Pq , and y1 � pyqrp�1,ns.
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Example 3.2. Let A � and let B � . Notice that A � A1 , where A1 � , and

B � B1, where B1 � || .

A S B � A B � A B1 � A B � A1 B

S � � � �

3.2 Dual Coproduct
From Equation (8) and Equation (4), it follows that:

m�
SpCq �

ņ

i�0

σ
�
ηpCq|ris

�
b σ

�
ηpCq|ri�1,ns

�
(15)

Proposition 3.3. The dual coproduct on a sash C P Σn is given by:

m�
SpCq �

ņ

i��1

Ci b Cn�i�1

Where Ci P Σi is a sash identical to the first i positions of C (unless C has in position i, in which case
Ci ends with ), and Cn�i�1 P Σn�i�1 is a sash identical to the last n � i � 1 positions of C (unless

C has in position i � 2, in which case Cn�i�1 begins with ), and we define C0 � C0 � || and
C�1 � C�1 � H.

The proof is given by showing that C is a term of A S B if and only if AbB is a term of m�
SpCq.

3.3 Dual Product
From Equation (9), it follows that:

∆�
SpAbBq �

¸
T�rns
|T |�p

σ
��
ηpAqqT � pηpBq

�
TC

	
(16)

We now prepare to describe the dual product ∆�
S directly on sashes.

Definition 3.4. Given a set T � rns such that |T | � p and n � p � q, and given sashes D P Σp�1 and
E P Σq�1, define a sash γT pD b Eq by the following steps. First, write D above E. Then, label D with
T , by placing the elements of T in increasing order between each position of D, including the beginning
and end. Label E similarly using the elements of TC .

Example 3.5. Let T � t1, 2, 4, 7, 8, 9, 12, 13u, D � , and E �

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15
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Next, draw arrows from i to i � 1 for all i P rn � 1s. Lastly, follow the path of the arrows placing
elements in a new sash based on the following criteria:

Place a rectangle in the ith and pi� 1qst positions of the new sash if either of the following conditions
are met:

1. if the ith arrow is from D to E, the pi� 1qst arrow is from E to D, and there is a or in D in
between i and i� 2

2. if the ith arrow is from E to E, the pi� 1qst arrow is from E to D, and there is a or in E in
between i and i� 1

If the above criteria are not met, then the following rules apply:

1. if the ith arrow is from D to D (or from E to E), place whatever is in between i and i� 1 in D (or
in E) in the ith position.

2. if the ith arrow is from D to E, place a black square in the ith position.

3. if the ith arrow is from E to D, place a white square in the ith position.

Note that it may be necessary to replace the left half of a rectangle by a black square or to replace the
right half of a rectangle by a white square (as in the first step of the example below).

Example 3.6. Let T , D, and E be as in Example 3.5. Then we compute γT pD b Eq to obtain:
γt1,2,4,7,8,9,12,13up b q � .

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15

-
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Theorem 3.7. The dual product of sashes D P Σp�1 and E P Σq�1, for p� q � n, is given by:

∆�
SpD b Eq �

¸
T�rns,
|T |�p

γT pD b Eq

3.4 Coproduct
We now describe the coproduct in the Hopf algebra of sashes and we begin with some definitions.

Definition 3.8. For C P Σn�1, a dotting of C is C with a dot in any subset of the n � 1 positions of C.
An allowable dotting of C is a dotting of C that meets all of the following conditions

1. has at least one dot

2. the first dot can be in any position, and dotted positions alternate between a black square (or the left
half of a rectangle) and a white square (or the right half of a rectangle)
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Fig. 2: The allowable dottings of a sash

3. has no instances of or

Figure 2 shows the allowable dottings of the sash .
Consider an allowable dotting d � c1 1 c2 2 � � � cj j cj�1 of a sash C, where each ci is a sub sash of

C without any dots, and i is a single dotted position. If any i is on the right half of a rectangle, then the
the left half of the rectangle in the last position of ci is replaced by a black square. If i and i�1 are in

adjacent positions, then ci�1 � || . (If any i is on the left half of a rectangle, then i�1 is on the right half

of the same rectangle, so ci�1 � || .)
We use C and d to define two objects A and B that are similar to sashes, but have an additional type of

square , which we call a mystery square. If 1 is on a black square or the left half of a rectangle, then
let A be the concatenation of the odd ci with a mystery square in between each ci (where i is odd), and
let B be the concatenation of the even ci with a mystery square in between each ci (where i is even). For
example, if 1 is on a black square and j is even, then A � c1 c3 � � � cj�1 and B � c2 c4

� � � cj . If 1 is on a white square or the right half of a rectangle, then let A be the concatenation of
the even ci with a mystery square in between each ci, and let B be the concatenation of the odd ci with a
mystery square in between each ci.

We use the objects A and B to define four sashes A, A, B, and B.
To compute A, consider each mystery square in A. If the mystery square follows ci and the ith and

pi� 1qst dots of d are on the same rectangle, , then replace the mystery square after ci with a white
square. Otherwise replace the mystery square with a black square.

To compute A, consider each mystery square in A from left to right. If the mystery square follows ci
and the ith and pi� 1qst dots of d are on an adjacent black square and white square, , then we check
to see whether or not the mystery square is followed by a white square. If the mystery square is followed
by a white square (i.e. if ci�2 starts with a white square), then replace the mystery square and the white
square with a rectangle. Otherwise replace the mystery square with a black square. If the mystery square
follows ci and the ith and pi � 1qst dots of d are not on an adjacent black square and white square, then
we check to see whether or not the mystery square is preceded by a black square. If either ci ends in a

black square or ci � || and the previous mystery square has been changed to a black square, then replace
the mystery square after ci and the black square before it with a rectangle. Otherwise replace the mystery
square after ci with a white square.

To compute B, replace all mystery squares of B with black squares.
To compute B, replace all mystery squares of B with white squares, unless the mystery square is

preceded by a black square, in which case replace both the black square and the mystery square with a
rectangle.

Example 3.9. If d � , then c1 � , c2 � c3 � ,

c4 � c5 � c6 � || , c7 � , c8 � , c9 � c10 � c11 � || , and 1 is on a black square. Thus,
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A � c1 c3 c5 c7 c9 c11 and B � c2 c4 c6 c8 c10. Using the rules above to
compute A, B, and the four sashes A, A, B, and B, we have:

A � B �

A � B �

A � B �

Given an allowable dotting d of a sash C we define Id �
°�

A,A
�

and Jd �
°�

B,B
�

for A, A, B,
and B computed as above. Thus the notation Id b Jd denotes

°
DPrA,As

EPrB,Bs

D b E.

Theorem 3.10. Given C P Σn�1:

∆SpCq � Hb C � C bH�
¸

allowable
dottings
d of C

Id b Jd
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