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Abstract. We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids
introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing
partition on the ground set, and then freely placing the structure of a connected positroid on each of the blocks of the
partition. We use this to enumerate connected positroids, and we prove that the probability that a positroid on [n] is
connected equals 1/e2 asymptotically. We also prove da Silva’s 1987 conjecture that any positively oriented matroid
is a positroid; that is, it can be realized by a set of vectors in a real vector space. It follows from this result that the
positive matroid Grassmannian (or positive MacPhersonian) is homeomorphic to a closed ball.

Résumé. Nous étudions le rôle des partitions sans croisements dans l’étude des positroı̈des, une classe de matroı̈des
introduite par Postnikov. On montre que chaque positroı̈de peut être construit de manière unique par le choix d’une
partition sans croisements de l’ensemble [n] ainsi que le choix d’un positroide connexe pour chacun des blocs de
la partition. Nous utilisons ce résultat pour énumérer les positroı̈des connexes, et nous prouvons que la probabilité
qu’un positroı̈de sur [n] soit connexe est asymptotiquement égale à 1/e2. Nous prouvons aussi une conjecture de
1987 dûe à da Silva : tout matroı̈de orienté positivement est un positroı̈de; autrement dit, il peut être réalisé par un
ensemble de vecteurs dans un espace vectoriel réel. Il découle de ce résultat que la Grassmannienne matroı̈de positive
(ou MacPhersonienne positive) est homéomorphe à un boule fermée.

Keywords: positroid, non-crossing partition, matroid polytope, oriented matroid, matroid Grassmannian.

1 Introduction
Matroid theory was introduced in the 1930s as a combinatorial model that keeps track of, and abstracts,
the dependence relations among a set of vectors. It has become an extremely powerful model in many
other contexts, but its connections to linear algebra are still the subject of very interesting research today.
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Not every matroid arises from linear algebra, and one of the early hopes in the area was to discover the
“missing axiom” which characterizes the matroids that can be realized by a set of vectors. It is now
believed that this is not a reasonable goal [MNW, Vám78], or in Vámos’s words, that “the missing axiom
of matroid theory is lost forever”.

A positroid is a matroid on an ordered set which can be realized by the columns of a full rank d × n
real matrix such that all its maximal minors are nonnegative. Such matroids were first considered by Post-
nikov [Posb] in his study of the totally nonnegative part of the Grassmannian. He unveiled their elegant
combinatorial structure, and showed they are in bijection with several interesting classes of combinatorial
objects, including Grassmann necklaces, decorated permutations,

Γ

-diagrams, and equivalence classes of
plabic graphs. They have recently been found to have very interesting connections with cluster algebras
[Sco06] and quantum field theory [AHBC+].

In this extended abstract we investigate the role that non-crossing partitions play in the study of positroids.
In Theorem 3.2 we prove that the connected components of a positroid form a non-crossing partition of
its ground set. Conversely, each positroid on [n] can be uniquely constructed by choosing a non-crossing
partition (S1, . . . , St) of [n], and then putting the structure of a connected positroid on each block Si. The
first statement was also discovered in [OPS], where it is stated without proof, and in [For].

Our structural result allows us to enumerate connected positroids, as described in Theorem 4.6. Along
the way, we show in Corollary 3.8 that the connected positroids on [n] are in bijection with the stabilized-
interval-free permutations on [n]; that is, the permutations π such that π(I) 6= I for all intervals I ( [n].
We then show in Theorem 4.7 that the proportion of positroids on [n] which are connected is equal to
1/e2 asymptotically. This result is somewhat surprising in light of the conjecture [MNWW11] that “most
matroids are connected”; more specifically, that as n goes to infinity, the ratio of connected matroids on
[n] to matroids on [n] tends to 1.

We also investigate matroid polytopes associated to positroids. A general matroid polytope for a ma-
troid on the ground set [n] can be described by using 2n inequalities; in contrast, a positroid polytope for a
rank d positroid on [n] can be described using dn+n inequalities. In Theorem 2.5 we prove a characteri-
zation of positroid polytopes, which we learned from Alex Postnikov [Posa] and will also appear in [LP].
More strongly, we show in Theorem 3.11 that the face poset of a positroid polytope naturally embeds in a
poset of weighted non-crossing partitions.

Oriented matroid theory was introduced in the 1970s as a model for real hyperplane arrangements; or
equivalently, for the dependence relations among a set of real vectors together with their signs. Again,
the problem of characterizing which oriented matroids actually come from real hyperplane arrangements
is intractable. Even for orientations of uniform matroids, there is no finite set of excluded minors for
realizability [BS89] [BLVS+99, Theorem 8.3.5].

The problem of (oriented) matroid realizability over the field Q of rational numbers is particularly hard.
Sturmfels proved [Stu87] that the existence of an algorithm for deciding if any given (oriented) matroid
is realizable over Q is equivalent to the existence of an algorithm for deciding the solvability of arbitrary
Diophantine equations within the field of rational numbers. It is also equivalent to the existence of an
algorithm that decides if a given lattice is isomorphic to the face lattice of a convex polytope in rational
Euclidean space. Despite much interest, all of these problems remain open.

Positively oriented matroids were introduced by Ilda da Silva in 1987. They are oriented matroids
for which all bases have a positive orientation. The motivating example is the uniform positively oriented
matroid Cn,r, which is realized by the vertices of the cyclic polytopeCn,r [Bla77, LV75]. Da Silva studied
the combinatorial properties of positively oriented matroids, and proposed the following conjecture.
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Conjecture 1.1 (da Silva, 1987 [dS87]) Every positively oriented matroid is realizable.

Every positroid gives rise to a positively oriented matroid, and da Silva’s Conjecture 1.1 is the converse
statement. This is one of our main theorems.

Theorem 5.5 Every positively oriented matroid is a positroid, and is therefore realizable over Q.

There is a natural partial order on oriented matroids called specialization. In [Mac93], motivated by his
theory of combinatorial differential manifolds, MacPherson introduced the matroid Grassmannian (also
called the MacPhersonian) MacP(d, n), which is the poset of rank d oriented matroids on [n] ordered
by specialization. He showed that MacP(d, n) plays the same role for matroid bundles as the ordinary
Grassmannian plays for vector bundles, and pointed out that the geometric realization of the order complex
‖MacP(d, n)‖ of MacP(d, n) is homeomorphic to the real Grassmannian Gr(d, n) if d equals 1, 2, n−2,
or n− 1. “Otherwise, the topology of the matroid Grassmannian is mostly a mystery.”

Since MacPherson’s work, some progress on this question has been made, most notably by Anderson
[And99], who obtained results on homotopy groups of the matroid Grassmannian, and by Anderson and
Davis [AD02], who constructed maps between the real Grassmannian and the matroid Grassmannian –
showing that philosophically, there is a splitting of the map from topology to combinatorics – and thereby
gained some understanding of the mod 2 cohomology of the matroid Grassmannian. However, many open
questions remain.

We define the positive matroid Grassmannian or positive MacPhersonian MacP+(d, n) to be the poset
of rank d positively oriented matroids on [n], ordered by specialization. By Theorem 5.5, each positively
oriented matroid can be realized by an element of the positive Grassmannian Gr+(d, n). Combining this
fact with results of the third author [Wil07], we obtain the following result.

Theorem 6.4 The positive matroid Grassmannian ‖MacP+(d, n)‖ is homeomorphic to a closed ball.

2 Positroids and matroid polytopes
A matroid is a combinatorial object that unifies several notions of independence. Among the many equiv-
alent ways of defining a matroid we will adopt the point of view of bases, which is one of the most
convenient for the study of positroids and matroid polytopes. We refer the reader to [Oxl92] for a more
in-depth introduction to matroid theory.

Definition 2.1 A matroid M is a pair (E,B) consisting of a finite set E and a nonempty collection of
subsets B = B(M) of E, called the bases of M , which satisfy the basis exchange axiom:

• If B1, B2 ∈ B and b1 ∈ B1 −B2, then there exists b2 ∈ B2 −B1 such that (B1 − b1) ∪ b2 ∈ B.

Example 2.2 Let A be a d × n matrix of rank d with entries in a field K, and denote its columns by
a1,a2, . . . ,an ∈ Kd. The subsets B ⊆ [n] for which the columns {ai | i ∈ B} form a linear basis for
Kd are the bases of a matroid M(A) on the set [n]. Matroids arising in this way are called realizable,
and motivate much of the theory of matroids.

The following geometric representation of a matroid will be useful in our study of positroids.

Definition 2.3 Given a matroid M = ([n],B), the (basis) matroid polytope ΓM of M is the convex hull
of the indicator vectors of the bases of M :

ΓM := convex{eB | B ∈ B} ⊂ Rn,
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where eB :=
∑

i∈B ei, and {e1, . . . , en} is the standard basis of Rn.

We now introduce a special class of realizable matroids studied by Postnikov in [Posb].

Definition 2.4 SupposeA is a d×nmatrix of rank d with real entries such that all its maximal minors are
nonnegative. Such a matrix A is called totally nonnegative, and the realizable matroid M(A) associated
to it is called a positroid. In fact, it follows from the work of Postnikov that any positroid can be realized
by a totally nonnegative matrix with entries in Q [Posb, Theorem 4.12].

We will make use of the following notation. Given k, ` ∈ [n], we define the (cyclic) interval [k, `] to be
the set

[k, `] :=

{
{k, k + 1, . . . , `} if k ≤ `,
{k, k + 1, . . . , n, 1, . . . , `} if ` < k.

We will often put a total order on a cyclic interval in the natural way.
The following key result gives a characterization of positroids in terms of their matroid polytopes. It

will also appear in an upcoming preprint of Lam and Postnikov [LP].

Theorem 2.5 A matroid M of rank d on [n] is a positroid if and only if its matroid polytope ΓM can be
described by the equality x1 + · · ·+ xn = d and inequalities of the form∑

`∈[i,j]

x` ≤ aij , with i, j ∈ [n].

3 Positroids, connected positroids, and non-crossing partitions
In this section we illustrate the role that non-crossing partitions play in the theory of positroids.

Definition 3.1 We say that two disjoint subsets T and T ′ of [n] are non-crossing if there is a cyclic interval
of [n] containing T and disjoint from T ′ (and vice versa). If S is a partition [n] = S1 t · · · tSt of [n] into
pairwise disjoint non-empty subsets, we say that S is a non-crossing partition if any two parts Si and Sj

are non-crossing. Let NCn denote the set of non-crossing partitions of [n].

Theorem 3.2 Let M be a positroid on [n] and let S1, S2, . . . , St be the ground sets of the connected
components of M . Then ΠM = {S1, . . . , St} is a non-crossing partition of [n], called the non-crossing
partition of M . Conversely, if S1, S2, . . . , St form a non-crossing partition of [n] and M1, M2, . . . , Mt

are connected positroids on S1, S2, . . . , St, respectively, then M1 ⊕ · · · ⊕Mt is a positroid.

The first half of Theorem 3.2 was also stated without proof by Oh, Postnikov, and Speyer in [OPS], and
will also appear in Ford’s preprint [For].

In his study of the totally nonnegative part of the Grassmannian [Posb], Postnikov showed that positroids
are in bijection with certain combinatorial objects called decorated permutations.

Definition 3.3 A decorated permutation of the set [n] is a bijection π : [n] → [n] whose fixed points are
colored either “clockwise” or “counterclockwise.”

The following results, describing direct sums and connectivity in terms of decorated permutations, are
also anticipated in [OPS].
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Definition 3.4 Suppose S1 and S2 are disjoint sets. If π1 is a decorated permutation of S1 and π2 is a
decorated permutation of S2, the direct sum π1 ⊕ π2 is the decorated permutation of the set S1 t S2 such
that π|S1 = π1 and π|S2 = π2.

Proposition 3.5 Let M1, . . . ,Mt be positroids on the ground sets S1, . . . , St, respectively, and suppose
{S1, . . . , St} is a non-crossing partition of [n]. Let πi be the decorated permutation of Si associated to
Mi, for i = 1, . . . , t. Then the decorated permutation associated to the positroid M1 ⊕ · · · ⊕Mt is the
direct sum π1 ⊕ · · · ⊕ πt.

Corollary 3.6 LetM be a positroid on [n], and let π be is its corresponding decorated permutation. Then
the non-crossing partition ΠM associated toM is the finest non-crossing partition of [n] such that for any
i ∈ [n], the numbers i and π(i) are in the same block of ΠM .

Note that if we represent a decorated permutation of [n] by means of its “chord diagram” (see Fig-
ure 1), Corollary 3.6 says that the blocks of its corresponding non-crossing partition are the connected
components of the diagram.
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Fig. 1: The chord diagram of a decorated permutation of [10] and its corresponding non-crossing partition.

As a corollary, we obtain a bijection between connected positroids on [n] and an interesting class of
permutations of [n].

Definition 3.7 [Cal04] A stabilized-interval-free (SIF) permutation π of [n] is a permutation which does
not stabilize any proper interval of [n]; that is, π(I) 6= I for all intervals I ( [n].

Corollary 3.8 For n ≥ 2, the number of connected positroids on [n] equals the number of SIF permuta-
tions on [n].

Having explained the role that non-crossing partitions play in the connectivity of positroids, we use
that knowledge to show that the face poset of a positroid polytope lives inside the poset of weighted
non-crossing partitions.

Definition 3.9 A weighted non-crossing partition Sw of [n] is a non-crossing partition S of [n], say [n] =
S1 t · · · t St, together with a weight vector w = (w1, . . . , wt) ∈ (Z≥0)t of integer weights w1 =
w(S1), . . . , wt = w(St) with 0 ≤ wi ≤ |Si| for i = 1, . . . , t. The weight of the partition Sw is
w1 + · · ·+ wt.

The set NCn of non-crossing partitions of [n] is partially ordered by refinement; this poset has many
interesting properties and connections to several fields of mathematics. We extend that order to the context
of weighted non-crossing partitions.
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Definition 3.10 Let NCd
n be the poset of non-crossing partitions of [n] of weight d, where the cover

relation is given by Sw l T v if
• T = {T1, . . . , Tt} and S = {T1, . . . , Th−1, A, Th − A, Th+1, . . . , Tt} for some index 1 ≤ h ≤ t and
some proper subset ∅ ( A ( Th, and
• v(Th) = w(A) + w(Th −A) and v(Tj) = w(Tj) for all j 6= h.
Let NCd

n ∪ {0̂} be this poset with an additional minimum element 0̂.

The poset NCd
n is ranked of height n. It has a unique maximal element 1̂ corresponding to the trivial

partition of [n] into one part of weight d.

Theorem 3.11 If M is a rank d positroid on [n] then the face poset of the matroid polytope ΓM is an
induced subposet of NCd

n ∪ {0̂}.

Figure 2 shows the positroid polytope ΓM for the positroid M whose bases are {12, 13, 14, 23, 24}. It
is a square pyramid. It also shows the face poset of ΓM , with each face labeled with the corresponding
weighted non-crossing partition of [4].
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Fig. 2: The face poset of the square pyramid inside NC2
4 .

4 Enumeration of connected positroids
In this section we use Theorem 3.2, together with a result of the third author [Wil05], to enumerate
connected positroids.

Definition 4.1 Let p(n) be the number of positroids on [n] and pc(n) be the number of connected positroids
on [n]. Let

P (x) = 1 +
∑
n≥1

p(n)xn and Pc(x) = 1 +
∑
n≥1

pc(n)xn.

Many combinatorial objects (such as graphs or matroids) on a set [n] decompose uniquely into con-
nected components S1, . . . , Sk, where the partition [n] = S1t· · ·tSk has no additional structure. In that
case, the Exponential Formula [Sta99, Theorem 5.1.3] tells us that the exponential generating functions



Positroids, non-crossing partitions, and positively oriented matroids 661

Et(x) and Ec(x) for the total number of objects and the total number of connected objects are related by
the formula Ec(x) = logEt(x). In our situation, where the connected components of a positroid form a
non-crossing partition, we need the following “non-crossing” analog of the Exponential Formula:

Theorem 4.2 [Bei85, Spe94] Let K be a field. Given a function f : Z>0 → K define a new function
h : Z>0 → K by

h(n) =
∑

{S1,...,Sk}∈NCn

f(#S1)f(#S2) · · · f(#Sk), (1)

where we are summing over all the non-crossing partitions of [n]. Define F (x) = 1 +
∑

n≥1 f(n)xn and
H(x) = 1 +

∑
n≥1 h(n)xn. Then

xH(x) =

(
x

F (x)

)〈−1〉
,

where G(x)〈−1〉 denotes the compositional inverse of G(x).

Corollary 4.3 The generating functions for positroids and connected positroids satisfy:

xP (x) =

(
x

Pc(x)

)〈−1〉
.

Enumeration of general positroids has been previously studied by the third author in [Wil05].

Theorem 4.4 We have

P (x) =
∑
k≥0

k!
xk

(1− x)k+1
, p(n) =

n∑
k=0

n!

k!
, lim

n→∞

p(n)

n!
= e.

The following formula also follows easily from the above.

Proposition 4.5 [Posb, Prop. 23.2] The exponential generating function for p(n) is

1 +
∑
n≥1

p(n)
xn

n!
=

ex

1− x
.

The sequence {p(n)}n≥1 is entry A000522 in Sloane’s Encyclopedia of Integer Sequences [Slo94].
The first few terms are 2, 5, 16, 65, 326, 1957, 13700, . . . .

Theorem 4.6 The number pc(n) of connected positroids on [n] satisfies

pc(n) =
[xn]P (x)1−n

1− n
,

pc(n) = (n− 1)pc(n− 1) +

n−2∑
j=2

(j − 1)pc(j)pc(n− j) for n ≥ 2, and

lim
n→∞

pc(n)

n!
=

1

e
.
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The sequence {pc(n)}n≥1 is, except for the first term, equal to entry A075834 in Sloane’s Encyclopedia
of Integer Sequences [Slo94]. The first few terms are 2, 1, 2, 7, 34, 206, 1476, . . . .

Theorem 4.7 If p(n) is the number of positroids on [n] and pc(n) is the number of connected positroids
on [n], then

lim
n→∞

pc(n)

p(n)
=

1

e2
≈ 0.1353.

This result is somewhat surprising in view of the conjecture that most matroids are connected:

Conjecture 4.8 (Mayhew, Newman, Welsh, Whittle, [MNWW11]) If m(n) is the number of matroids on
[n] and mc(n) is the number of connected matroids on [n], then

lim
n→∞

mc(n)

m(n)
= 1.

Theorem 4.7 should not be seen as evidence against Conjecture 4.8. Positroids possess strong structural
properties that are quite specific to them. Furthermore, they are a relatively small family of matroids:
compare the estimate log2 log2m(n) ∼ n due to Knuth [Knu74] and Bansal, Pendavingh, and van der
Pol [BPvdP] with the estimate p(n) ∼ n! e, which gives log2 log2 p(n) ∼ log2 n.

5 Every positively oriented matroid is realizable
An oriented matroid is a signed version of the notion of matroid. Just as for matroids, there are several
equivalent points of view and axiom systems. For a thorough introduction to the theory of oriented
matroids, see [BLVS+99].

Example 5.1 Let A be a d × n matrix of rank d with entries in an ordered field K. For a d-element
subset I of [n] we let ∆I(A) denote the determinant of the d×d submatrix of A consisting of the columns
indexed by I . We obtain a chirotope χA :

(
[n]
d

)
→ {−1, 0, 1} by setting

χA(I) =


0 if ∆I(A) = 0,

1 if ∆I(A) > 0,

−1 if ∆I(A) < 0.

(2)

An oriented matroidM = ([n], χ(A)) arising in this way is called realizable over the field K.

Definition 5.2 IfM = (E,χ) is an oriented matroid, its underlying matroidM is the (unoriented) ma-
troidM := (E,B) whose bases B are precisely the sets {b1, . . . , bd} such that χ(b1, . . . , bd) is nonzero.

Definition 5.3 If M = (E,χ) is an oriented matroid, any A ⊆ E induces a reorientation −AM :=
(E, −Aχ) ofM, where −Aχ is the chirotope

−Aχ(y1, . . . , yd) := (−1)|A∩{y1,...,yd}| · χ(y1, . . . , yd).

This can be thought of as the oriented matroid obtained fromM by “changing the sign of the vectors in
A”.

The following definition introduces the class of oriented matroids that is central for our study.
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Definition 5.4 LetM = (E,χ) be an oriented matroid of rank d on a setE with a linear order<. We say
M is positively oriented with respect to < if there is a reorientation −Aχ that makes all bases positive;
that is,

−Aχ(I) := −Aχ(i1, i2, . . . , id) ≥ 0

for every d-element subset I = {i1 < i2 < . . . < id} ⊆ E.

The main result of this section is the following. It answers Conjecture 1.1 in an affirmative way.
Its proof is based on Theorem 2.5, which gives a characterization positroids in terms of their matroid
polytopes.

Theorem 5.5 Every positively oriented matroid is realizable over Q. Equivalently, the underlying ma-
troid of any positively oriented matroid is a positroid.

6 The positive matroid Grassmannian is homeomorphic to a ball
In [Mac93], MacPherson introduced the notion of combinatorial differential manifold, a simplicial pseu-
domanifold with an additional discrete structure – described in the language of oriented matroids – to
model “the tangent bundle.” He also developed the bundle theory associated to combinatorial differen-
tial manifolds, and showed that the classifying space of matroid bundles is the matroid Grassmannian
or MacPhersonian. The matroid Grassmannian therefore plays the same role for matroid bundles as the
ordinary Grassmannian plays for vector bundles.

We now introduce the matroid Grassmannian and define its positive analogue. The main result of this
section is that the positive matroid Grassmannian is homeomorphic to a closed ball.

There is a natural partial order on oriented matroids called specialization.

Definition 6.1 Suppose thatM = (E,χ) andM′ = (E,χ′) are two rank k oriented matroids on E. We
say thatM′ is a specialization ofM, denotedM ;M′, if (after replacing χ with −χ if necessary) we
have that

χ(y1, . . . , yk) = χ′(y1, . . . , yk) whenever χ′(y1, . . . , yk) 6= 0.

Definition 6.2 The matroid Grassmannian or MacPhersonian MacP(k, n) of rank k on [n] is the poset of
rank k oriented matroids on the set [n], whereM≥M′ if and only ifM;M′.

One often identifies MacP(k, n) with its order complex. When we speak of the topology of MacP(k, n),
we mean the topology of (the geometric realization of) the order complex of MacP(k, n), denoted
‖MacP(k, n)‖.

MacPherson [Mac93] pointed out that ‖MacP(k, n)‖ is homeomorphic to the real Grassmannian
Gr(k, n) if k equals 1, 2, n − 2, or n − 1, but that “otherwise, the topology of the matroid Grassman-
nian is mostly a mystery.” As mentioned in the introduction, Anderson [And99], and Anderson and Davis
[AD02] made some progress on this question, obtaining results on the homotopy groups and cohomology
of the matroid Grassmannian. However, it is still open whether MacP(k, n) is homotopy equivalent to
Gr(k, n).

We now introduce a positive counterpart MacP+(k, n) of the matroid Grassmannian. This space turns
out to be more tractable than MacP(k, n); we can completely describe its homeomorphism type.

Definition 6.3 The positive matroid Grassmannian or positive MacPhersonian MacP+(k, n) of rank k
on [n] is the poset of rank k positively oriented matroids on the set [n], where M ≥ M′ if and only if
M;M′.
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For convenience, we usually augment MacP+(k, n) by adding a least element 0̂. Our main theorem on
the topology of MacP+(k, n) is the following.

Theorem 6.4 MacP+(k, n) is the face poset of a regular CW complex homeomorphic to a ball. It follows
that:

• ‖MacP+(k, n)‖ is homeomorphic to a ball.

• For eachM ∈ MacP+(k, n), the closed and open intervals ‖[0̂,M]‖ and ‖(0̂,M)‖ are homeo-
morphic to a ball and a sphere, respectively.

• MacP+(k, n) is Eulerian.

The positive analogue of the real Grassmannian is the positive Grassmannian (also called the totally
non-negative Grassmannian). The positive Grassmannian is an example of a positive flag variety, as
introduced by Lusztig in his theory of total positivity for real flag manifolds [Lus98], and its combinatorics
was beautifully developed by Postnikov [Posb]. The positive Grassmannian has recently received a great
deal of attention because of its connection with scattering amplitudes [AHBC+].

Definition 6.5 The positive Grassmannian Gr+(k, n) is the subset of the real Grassmannian where all
Plücker coordinates are non-negative.

While it remains unknown whether ‖MacP(k, n)‖ is homotopy-equivalent to Gr(k, n), the positive
analogue of that statement is true.

Theorem 6.6 The positive matroid Grassmannian ‖MacP+(k, n)‖ and the positive Grassmannian
Gr+(k, n) are homotopy-equivalent; more specifically, both are contractible, with boundaries homotopy-
equivalent to a sphere.

Our proofs of Theorems 6.4 and 6.6 are based on the following results on the positive Grassmannian
[Posb, Wil07, RW10].

Let B ⊆
(
[n]
k

)
be a collection of k-element subsets of [n]. We define

Stnn
B = {A ∈ Gr+(k, n) |∆I(A) > 0 if and only if I ∈ B}.

Theorem 6.7 [Posb] Each subset Stnn
B is either empty or a cell. The positive Grassmannian Gr+(k, n)

is therefore a disjoint union of cells, where Stnn
B′ ⊂ Stnn

B if and only if B′ ⊆ B.

LetQ(k, n) denote the poset of cells of Gr+(k, n), ordered by containment of closures, and augmented
by a least element 0̂.

Theorem 6.8 [Wil07] The poset Q(k, n) is graded, thin, and EL-shellable. It follows that Q(k, n) is the
face poset of a regular CW complex homeomorphic to a ball, and that it is Eulerian.

Theorem 6.9 [RW10] The positive Grassmannian Gr+(k, n) is contractible, and its boundary is homotopy-
equivalent to a sphere. Moreover, the closure of every cell is contractible, and the boundary of every cell
is homotopy-equivalent to a sphere.

We have the following result.

Proposition 6.10 For any k ≤ n, MacP+(k, n) and Q(k, n) are isomorphic as posets.

Theorem 6.4 follows from Proposition 6.10 and Theorem 6.8, while Theorem 6.6 follows from Propo-
sition 6.10 and Theorem 6.9.
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