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Generalized Polarization Modules (extended
abstract)

Héctor Blandin 1†

Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM), UQÀM, Canada1

Abstract. This work enrols the research line of M. Haiman on the Operator Theorem (the old operator conjecture).
This theorem states that the smallest Sn-module closed under taking partial derivatives and closed under the action
of polarization operators that contains the Vandermonde determinant is the space of diagonal harmonics polynomials.
We start generalizing the context of this theorem to the context of polynomials in ` sets of n variables xij with
1 ≤ i ≤ ` et 1 ≤ j ≤ n. Given a Sn-stable family of homogeneous polynomials in the variables xij the smallest
vector space closed under taking partial derivatives and closed under the action of polarization operators that contains
F is the polarization module generated by the family F . These polarization modules are all representation of the direct
product Sn × GL`(C). In order to study the decomposition into irreducible submodules, we compute the graded
Frobenius characteristic of these modules. For several cases of Sn-stable families of homogeneous polynomials in n
variables, for every n ≥ 1, we show general formulas for this graded characteristic in a global manner, independent
of the value of `.

Résumé. Ce travail s’inscrit dans la lignée de recherche des travaux de M. Haiman sur le théorème de l’opérateur (ex-
conjecture de l’opérateur). Ce théorème affirme que le plus petit Sn-module clos par dérivation partielle et clos par
l’action des opérateurs de polarisation qui contient le déterminant de Vandermonde est l’espace des polynômes har-
moniques diagonaux. On commence par généraliser le contexte du théorème de l’opérateur au contexte de polynômes
à ` ensembles de n variables xij avec 1 ≤ i ≤ ` et 1 ≤ j ≤ n. Étant donnée une famille Sn-stable F des polynômes
homogènes en les variables xij , le plus petit espace vectorielMF clos par dérivation partielle et clos par l’action des
opérateurs de polarisation contenant F est le module de polarisation engendré par la famille F . Les modulesMF

sont tous des représentations du produit direct Sn×GL`(C). Dans le but d’étudier la décomposition en sous-modules
irréductibles on calcule la caractéristique de Frobenius graduée de ces modules. Pour plusieurs cas de familles ho-
mogènes Sn-stables constituées des polynômes homogènes à n variables, pour tout n ≥ 1, on démontre des formules
générales pour cette caractéristique graduée de façon globale, indépendante de la valeur de `.

Keywords: Algebraic Combinatorics, symmetric functions, diagonally symmetric polynomials, representation the-
ory, polarization operators.

1 Introduction
This work is inspired by the Operator Theorem (ex-operator conjecture) of M. Haiman (see (8)). This the-
orem states that the smallest subspace of C[x1, . . . , xn] closed under taking partial derivatives ∂

∂xi
, closed
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under the action of generalized polarization operators, Ep =
∑n
j=1 yj

∂p

∂xpj
, that contains the Vander-

monde determinant ∆n(x) :=
∏

1≤i<j≤n(xi−xj), coincides with the spaceDn of diagonal harmonics
polynomials of Sn. The space Dn consist of all polynomials f in the variables x1, . . . , xn, y1, . . . , yn
killed by the power sum differential operators

∑n
j=1

∂h

∂xhj

∂k

∂ykj
with 1 ≤ h + k ≤ n. In others words

this space is generated by the Vandermonde determinant as a module over the algebra of operators
C
[
∂
∂x1

, . . . , ∂
∂xn

, E1, . . . , En−1

]
. In this work we generalize this construction by considering polyno-

mials in ` sets of n variables, that is, polynomials in the variables x11, . . . , x1n, . . . , x`1, . . . , x`n. We are
interested in the decomposition into irreducible submodules of these spaces.

We start by generalizing the context of the Operator Theorem to the context of polynomials in the matrix
variables X = (xij), with 1 ≤ i ≤ ` and 1 ≤ j ≤ n. The diagonal action of Sn on this polynomials in
` sets of n variables is defined by permuting the columns of X , that is, for any permutation σ ∈ sn we
replace the variable xij by xiσ(j). We say that a family F of homogeneous polynomials (in X = (xij))
is Sn-stable if F is closed under the diagonal action of Sn. Given any such a family F , we define the
polarization module generated by the family F as the smallest vector space closed under taking partial
derivatives ∂

∂xij
, closed under the action of generalized polarization operators E(p)

i,k =
∑n
j=1 xij

∂p

∂xpkj
,

that contains F . The diagonal action of Sn makes MF an Sn-module. The closure by the action
of polarization operators E(p)

i,k is equivalent to the closure by the action xij 7−→
∑`
k=1mikxkj where

M = (mij) ∈ GL`(C) (see (11, 13)). Then, with this actionMF is also a polynomial representation of
GL`(C). The two actions of Sn and GL`(C) commutes and this implies thatMF is a representation of
the direct product Sn × GL`(C). In particular, when the family F is the orbit of a single homogeneous
polynomial f , that is, F = {σ · f | σ ∈ Sn} we denote the polarization module generated by F simply
asMf . Also, we callMf the polarization module generated by f .

Particular cases of this construction correspond to certain important spaces in Combinatorics (see (2))
and Algebraic Geometry (see (6)). For instance, when ` = 1 (1 set of variables x = x1, . . . , xn) and
f = ∆n(x) we get the space Hn of harmonics polynomials of the group Sn, that is, the space of
polynomials zeros of the power sum differential operators

∑n
i=1

∂
∂xki

with k such that 1 ≤ k ≤ n,
(see (1)). It’s remarkable that the dimension of the space Hn is n! (see (9)). As we already said, the
case ` = 2 and f = ∆n(x) gives us the space Dn of diagonal harmonics polynomials. It’s also a
remarkable fact that dim(Dn) = (n + 1)n−1 (the number of parking functions) (see (8)). The space of
trivariate diagonal harmonics D(3)

n consist of polynomials zeros of the polarized power sums operators∑n
j=1

∂a

∂xja
∂b

∂yjb
∂c

∂zjc
(see (3)), where 1 ≤ a + b + c ≤ n. M. Haiman conjectured that this space

coincides with the polarization module generated by the Vandermonde determinant when ` = 3 (see (7))
this is still an open problem. Also, M. Haiman conjectured that dim(D(3)

n ) = 2n(n+ 1)n−2. F. Bergeron
extended this conjecture to the spaceH(r)

n of higher diagonal harmonics polynomials which has dimension
dim(H(r)

n ) = (r+1)n(rn+1)n−2 ((3)). Also, F. Bergeron extend Haiman’s conjecture concerning to the
identification of the space D(`)

n of multivariate diagonal harmonics polynomials with polarization module
generated by the Vandermonde determinant for ` > 3.

The goal of this paper is to study the decomposition into irreducible submodules under the action of
Sn × GL`(C) of polarization modules MF . To do this we compute explicitly the graded Frobenius
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characteristic ofMF in the form

MF (q,w) =
∑
λ`n

∑
|µ|≤d

bλ,µsµ(q)sλ(w) (1)

where bλ,µ ∈ N, q = q1, q2, . . . , q`, w = w1, w2, . . ., and d is the maximal degree of polynomials in F .
Here the Schur functions sµ(q) encodes irreducible forGL`(C) while sλ(w) encodes irreducible for Sn.
The coefficients bλ,µ are the multiplicities of irreducible submodules under the action of Sn × GL`(C).
A theorem of F. Bergeron shows that this coefficients are independent of `, in others words, the value of `
only affects the formula (1) giving the numbers of q variables appearing in sµ(q) (see (2)). Furthermore,
he shows in (2) that µ has at most n parts. This leads us to obtain a general formula for (1) that holds for
any ` ≥ 1 if we can compute it for every ` ≤ n.

In this paper we completely describe the decomposition into irreducible submodules of the polarization
modules generated by each of the polynomials pd1, pd, and ed for any d ≥ 1. We construct an explicit linear
basis of each module and then we compute the graded Frobenius characteristic ofMpd1

,Mpd andMed .
We propose a conjectural formula for the graded Frobenius series of the polarization module generated
by the monomial symmetric function m(2,1d−2), in any degree d. For instance, we also conjecture that,
for d ≥ 5 we must haveMed−1,1

∼= Mm
(2,1d−2)

as Sn × GL`(C)-modules. We believe that these are
modules are the elementary building blocks for a general classification of polarization modules generated
by a given homogeneous symmetric polynomial in any number of variables n. Experimental evidence has
shown that the last assertion is true up to degree 5 and n ≤ 6. In particular, we completely determine the
classification of polarization modules generated by a single homogeneous symmetric polynomial when
the degree is 2 or 3. For the case of degree 4 and 5 we have a conjectural classification that seems to be
complete. This framework lead us to think that the Hilbert series of the polarization modules generated
by a single homogeneous symmetric polynomial, in any degree, is always h-positive (see Conjecture 5.8).

Obviously, we have Mf
∼= Mk·f for every scalar k. In order to classify up to isomorphism polar-

ization modules generated by a given homogeneous symmetric polynomial of any degree d, we iden-
tify any non zero homogeneous symmetric polynomial f of degree d, written in the monomial basis as
f =

∑
λ`d cλmλ, with a point in the real projective space RPp(d)−1, where p(d) is the number of

integer partitions of d. The homogeneous coordinates of the corresponding point are ordered according
to the following order on integer partitions of d: (d), (d− 1, 1), (d− 2, 2), (d− 2, 1, 1),. . ., (1, 1, . . . , 1).
In degree 2, we show that there are two types of polarization modulesMp21

andMp2 up to isomorphism.
More precisely, if [a : b] ∈ RP1 and f = a · m2 + b · m11 thenMf

∼= Mp21
when [a : b] = [1 : 2],

while [a : b] 6= [1 : 2] impliesMf
∼=Mp2 . Notice that the last statement is independent on the number

of variables n. The situation when the degree is 3 is more complicated, in this case, we will need to
introduce the notion of n-exception to completely classify these polarization modules. Let n ≥ 3, a point
[a : b : c] ∈ RP2 is a n-exception if and only if [a : b : c] 6= [1 : 3 : 6] and 6a(2b+(n−2)c) = 4(n−1)b2.
When n = 2, [a : b : c] is a 2-exception if and only if b = 0 or b = 3a. There are three types of po-
larization modules generated by a single polynomial of the form f = a · m3 + b · m21 + c · m111. If
[a : b : c] = [1 : 3 : 6] thenMf

∼= Mp31
; if [a : b : c] is a n-exception thenMf

∼= Mp3 ; otherwise,
Mf

∼= Mh3
. These results are valid for any ` (the number of sets of n variables). Also, we will see

that n-exceptions appear in any degree d ≥ 3. Characterize n-exceptions for degrees higher than 3 is a
problem for the future.

For particulars Sn-stable families of homogeneous polynomials we completely describe the graded
Frobenius characteristic of the associated polarization module. In particular, we have open problems
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about the constraints for the multiplicities of irreducible submodules of polarization modules generated
by any Sn-stable family consisting of homogeneous polynomials of degree at most 2. Similarly, for any
Sn-stable families of homogeneous polynomials of degree at most 3. More precisely, we compute the
graded Frobenius characteristic of polarization modules generated by the family Td of all monomials of
degree d, when d = 2, 3 in any number of variables n. If F is any set of polynomials of degree d at most,
thenMF ⊆MTd . This implies that the multiplicities of irreducible Sn ×GL`(C)-modules ofMF are
least or equal to the corresponding multiplicities inMTd .

2 Preliminaries
Let X := (xij)i,j be a ` × n matrix of commuting and independent variables xij For any i, we call the
ith-row of X , denoted by xi := (xi1, . . . , xin), the ith set of variables. For any j, Xj denotes the jth

column of X . The same convention is adopted for any `× n non negative integer matrix of exponents A.
Then the monomials are defined as follows:

XA := xa1111 · · ·x
aij
ij · · ·x

a`n
`n . (2)

these monomials form a linear basis of the C-vector spaceR(`)
n = C[X] of polynomials in ` sets of n vari-

ables. The (vector) degree deg
(
XA
)

lies in N` and is given by deg
(
XA
)

:=
(∑n

j=1 a1j , . . . ,
∑n
j=1 a`j

)
.

For each d ∈ N`, we denote byR(`)
n,d the span of degree d monomials inR(`)

n . ThenR(`)
n is a N`-graded,

that is, R(`)
n =

⊕
d∈N` R

(`)
n,d. We will consider homogeneous subspace V of R(`)

n , the degree d homo-

geneous component of V is denoted by Vd. Recall that, Vd := V ∩ R(`)
n,d and the Hilbert series of V is

V(q) :=
∑

d∈N` dim(Vd)qd, where q := (q1, . . . , q`) and qd := qd11 · · · q
d`
` .

On V we consider two linear group actions:

1. The (left) diagonal action of Sn, σ ·XA := xa111σ(1) · · ·x
aij
iσ(j) · · ·x

a`n
`σ(n), ∀σ ∈ Sn.

2. The (right) action ofGL`(C), XA·M := (MX)A, ∀M ∈ GL`(C), that is, xij 7−→
∑`
k=1mikxkj ,

for every matrix M = (mij) ∈ GL`(C).

These two group actions on V commute and then we can consider V as a representation of the direct
product Sn ×GL`(C), with the (left) action, (σ,M) ·XA := σ · (M−1X)A. Then we have a direct sum
decomposition of the form (see (14, 5, 13))

V =
⊕
λ`n

⊕
µ

bλ,µWµ ⊗ Uλ, (3)

where bλ,µ ∈ N, the Uλ are irreducible Sn-modules and theWµ are irreducible polynomial representa-
tions of GL`(C). The graded Frobenius characteristic of V is defined as follows

V(q,w) :=
∑
d∈N`

(
1

n!

∑
σ∈Sn

χVd(σ) p
λ(σ)

(w)

)
qd, (4)
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whereχVd is the Sn-character of Vd and pλ(σ)(w) := p1(w)c1(σ) · · · pn(w)cn(σ). It’s well known (see
(2)) that the graded Frobenius characteristic of V has the following form (not depending on `):

V(q,w) =
∑
λ`n

∑
µ

bλ,µsµ(q)sλ(w), (5)

where bλ,µ are the multiplicities in (3). `(µ) ≤ n (see (2) for more details). The Schur functions sµ(q)
encode the irreducible polynomial representations of GL`(C) in V of type µ, and the Schur functions
Sλ(w) encodes the irreducible Sn-modules in V of type λ. Recall that the Hilbert Series of V is obtained
by replacing sλ(w) by fλ (the Hook length formula) for every λ in formula 5.

3 Definitions and discussions
We denote the partial derivative operator on R(`)

n by ∂ij :=
∂

∂xij
. We use the generalized polarization

operators E(p)
i,k : R(`)

n −→ R(`)
n given by E(p)

i,k :=

n∑
j=1

xij∂
p
kj where 1 ≤ i, k ≤ ` and p ≥ 1. Clearly the

operators E(p)
i,k depend on the choice of (i, k, p). For p = 1 we simply write Ei,k := E

(1)
i,k (see, (15, 10),

and (13) for more details).

3.1 Generalized Polarization Modules
We say that a subspace V ofR(`)

n is closed under derivatives if for every g ∈ V we have ∂ij(g) ∈ V , for
all (i, j) such that 1 ≤ i ≤ ` and 1 ≤ j ≤ n. We say that V is closed under polarization if E(p)

i,k (g) ∈ V
for all g ∈ V and all suitable triple (i, k, p). Since any intersection of closed under derivatives subspaces
is closed under derivatives we define the derivative closure D(V) of V as the smallest subspace of R(`)

n

closed under derivatives that contains V . Similarly, we define the polarization closure E(V) of V . It’s
not hard to show the following result (proofs will be avaible in a complete version of this paper, see (4)):

Lemma 3.1 Let V be a homogeneous subspace ofR(`)
n then E(D(V)) = D(E(V)).

We set P(V) := E(D(V)). A subset F of R(`)
n is called a homogeneous stable family if the following

conditions holds:

1. F consist only of homogeneous polynomials,

2. F is stable (or Sn-stable w.r.t. the diagonal action of Sn), that is, for any permutation σ ∈ Sn we
have σ · g ∈ F , for all g ∈ F .

Definition 3.1 For a given homogeneous stable family F , we setMF to be the smallest R-vector space
closed under derivatives and closed under polarization containing the family F . We call the vector space
MF the polarization module generated by the family F .

We can describe the polarization module generated by F asMF := P
(
R · F

)
, where R · F denotes the

real vector space spanned by F .

Remark 3.1 When the family F consist of only one homogenous polynomial f ∈ R(`)
n , we denote byMf

the polarization module generated by the family {σ · f | σ ∈ Sn}. In symbols,

Mf := P
(
R · {σ · f | σ ∈ Sn}

)
.
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3.2 Properties of Polarization Modules
The closure under polarization operators property implies that any polarization modules is a polynomial
representation of GL`(C) with the (right) action f(X) ·M := f(MX). In fact

Lemma 3.2 (see C. Procesi, (13)) A subspace V ofR(`)
n is closed under the action of polarization oper-

ators Ei,k (when p = 1) if and only if V is a GL`(C)-module with the action XA ·M = (MX)A.

For any g ∈ R(`)
n we have the identities: σ · E(p)

i,k (g) = E
(p)
i,k (σ · g) and σ · ∂ij(g) = ∂i,σ(j)(σ · g). These

identities implies the following assertions for any family F

Lemma 3.3 MF is a representation of Sn with the diagonal action of Sn.

Recall that the two actions of Sn and GL`(C) onR(`)
n commutes and so, we can assert that

Lemma 3.4 MF is a Sn × GL`(C)-module with the action (σ,M) · f(X) := f(M−1Xσ), where
Xσ := (xiσ(j))i,j .

4 Frobenius characteristics of some polarization modules
In the following lines we use the notation of Macdolnald’s book (12). The proofs of the following results
will be available in a complete version of this paper (see (4)).

Theorem 4.1 Let d be a positive integer. The following formulas holds for any ` ≥ 1

Med1
(q,w) =

 d∑
j=0

sj(q)

 sn(w) =

 d∑
j=0

hj(q)

hn(w). (6)

Mpd(q,w) =

 m∑
j=0

sj(q)

 sn(w) +

m−1∑
j=1

sj(q)

 sn−1,1(w) (7)

=
(
1 + hd(q)

)
hn(w) +

d−1∑
j=1

hj(q)

hn−1,1(w). (8)

Med(q,w) =

bd/2c∑
i=0

d−i∑
j=i

sj(q)

 sn−i,i(w) (9)

=

b d2 c∑
i=0

hn−i,i(w)hi(q) +

d∑
i=b d2 c+1

hn−d+i,d−i(w)hi(q). (10)

Theorem 4.2 The graded Frobenius characteristic of the families A and B are given by

MA(q,w) =

 d∑
j=0

sj(q)

 sn(w) +

 d∑
j=1

sj(q)

 sn−1,1(w).
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MB(q,w) =

d−1∑
j=0

sj(q)

 sn(w) +

 d∑
j=1

sj(q)

 sn−1,1(w).

Theorem 4.3 Let f(x1) be a symmetric polynomial of degree 2 in n ≥ 2 variables x1 = x11, x12, . . . , x1n.
Suppose that f(x1) is given in the monomial basis as follows:

f(x1) = a ·m2(x1) + b ·m1,1(x1), (11)

then the Frobenius characteristic of the spaceMf is given by one of the following two cases:

Mf (q,w) =


(
1 + h1(q) + h2(q)

)
· hn(w) if

[
a : b

]
=
[
1 : 2

]
,(

1 + s1(q) + s2(q)
)
· sn(w) + s1(q) · sn−1,1(w)

=
(
1 + h2(q)

)
· hn(w) + h1(q) · hn−1,1(w) otherwise.

(12)

Corollary 4.1 If f is a homogeneous symmetric polynomial of degree 2, then the associated Sn-module
Mf is isomorphic as an Sn ×GL`(K)-module to one of the two modulesMp21

,Mp2 .

4.1 Exceptions
Recall that, we identify f = a ·m3 + b ·m21 + c ·m111, (a,b,c in R) with it’s homogeneous coordinates
[f ] := [a : b : c] ∈ RP2. For instance p31 is the point [1 : 3 : 6], p21 is [1 : 1 : 0] and h3 is the point
[1 : 1 : 1].

Definition 4.1 We say that an homogeneous symmetric polynomial f in R[x11, . . . , x1n] is a n-exception
if

dim
(
R{∂11(f), . . . , ∂1n(f), E

(2)
1,1(f)}

)
= n.

In others words, f is a n-exception if the dimension of the real linear span of its first order partial
derivatives ∂11(f), . . . , ∂1n(f) and the polynomial E(2)

1,1(f) has dimension n.

For example, the points [1 : 0 : 0] ( f = p3 ) and [0 : 0 : 1] ( f = e3) are n-exceptions for every n ≥ 2. For
instance, [3 : 3 : −2] is a 3-exception, [9 : 21 : 28] is a 4-exception, [2 : 3 : 2] is a 5-exception, [4 : −3 : 4]

is a 5-exception. Another example is [1, 1, 0] which is a 4-exception, because E(2)
1,1p21 =

∑4
j=1 ∂1jp21.

For instance, for every n ≥ 3, the point [1 : 1 : 1] (f = h3) is not an n-exception, the point [0 : 1 : 0]
(f = m21) is not an n-exception. En degree 4, the point [5 : 14 : 21 : 28 : 35] is a 11-exception.

Theorem 4.4 Let f be a homogeneous symmetric polynomial of degree 3 in R[x11, . . . , x1n]. If [f ] 6=
[1 : 3 : 6] then

dim
(
R{∂11(f), . . . , ∂1n(f), E

(2)
1,1(f)}

)
≥ n.

Theorem 4.5 Suppose that n ≥ 3 and f(x1) = a ·m3(x1) + b ·m21(x1) + c ·m111(x1), (a,b,c dans R).
Then f is a n-exception if and only if [a : b : c] 6= [1 : 3 : 6] and 6a(2b+ (n− 2)c) = 4(n− 1)b2. When
n = 2, [a : b : c] is a 2-exception if and only if b = 0 or b = 3a.

Theorem 4.6 Let f be a homogeneous symmetric polynomial of degree 3 in n ≥ 2 variables. Suppose
that f ∈ R[x11, . . . , x1n] and [f ] = [a : b : c], then the Frobenius characteristic of the Sn-moduleMf is
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given by one of the following three cases:

(
1 + h1(q) + h2(q) + h3(q)

)
· hn(w) if

[
a : b : c

]
=
[
1 : 3 : 6

]
,(

1 + h3(q)
)
· hn(w) +

(
h1(q) + h2(q)

)
hn−1,1(w)

= (1 + s1(q) + s2(q) + s3(q)) · sn(w) + (s1(q) + s2(q)) · sn−1,1(w) if
[
a : b : c

]
is an n-exception,(

1 + h2(q) + h3(q)
)
· hn(w) +

(
h1(q) + h2(q)

)
· hn−1,1(w)

= (1 + s1(q) + 2s2(q) + s3(q)) · sn(w) + (s1(q) + s2(q)) · sn−1,1(w) otherwise.
(13)

Corollary 4.2 Le f be a homogeneous symmetric polynomial of degree 3. There are three types of polar-
ization modulesMp31

,Mp3 orMh3 .

5 Open problems
In the following lines we present several open problems for the future

Problem 5.1 For any degree d ≥ 6, f = p2p
d−2
1 is a (d + 1)-exception (this is already settled for

d = 2, 3, 4, 5).

In the following, we will write sj := sj(q) for short.

Problem 5.2 Let d ≥ 3 be an integer. Suppose that m211···1 is the monomial symmetric function indexed
by the partition of d µ = (2, 1d−2). If n ≥ d we have

Mm
(2,1d−2)

(q,w) =

1 + s1 + 2 ·
d−1∑
j=2

sj + sd

 sn(w) +

b d2 c−1∑
i=1

si + 2 ·
d−i−1∑
j=i+1

sj + sd−i

 sn−i,i(w)

+

d−b d2 c∑
j=b d2 c

sj

 sn−b d2 c,b
d
2 c

(w).

Also, if d ≥ 5, we believe that the following isomorphism as a representation of Sn ×GL`(C) holds

Mm2,1,1,1,···1
∼=Med−1,1

.

Consider the following Sn-stable families of homogeneous polynomials in the variables x11, . . . , x1n
A :=

{
xd1j
∣∣ 1 ≤ j ≤ n},B :=

{
xd1,i−xd1,j

∣∣ 1 ≤ i < j ≤ n
}

and C :=
{∏

a∈A x1,a
∣∣ A ⊆ [n], |A| = d

}
.

Problem 5.3 The graded Frobenius characteristic of the family C is

MC (q,w) =

 d∑
j=0

sj(q)

 sn(w) +

bn/2c∑
i=1

min(d,n−i)∑
j=i

sj(q)

 sn−i,i(w).

In particular, the Hilbert series is MC (q) =

d∑
k=0

(
n

k

)
sk(q).
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Problem 5.4 Let T2 be the family of all monomials of total degree 2 in the variables x11, . . . , x1n. Then
the graded Frobenius characteristic of its associated polarization module is

MT2(q,w, n) =


(1 + s1 + s2)s1(w) if n = 1,

(1 + s1 + 2 s2)s2(w) + (s1 + s2)s1,1(w) if n = 2,

(1 + s1 + 2 s2)s3(w) + (s1 + 2 s2)s2,1(w) if n = 3,

(1 + s1 + 2 s2) sn(w) + (s1 + 2 s2) sn−1,1(w) + s2 sn−2,2(w) ∀n ≥ 4.

When the total degree 3, we have the following conjecture verified up to n = 6 and ` = 3:

Problem 5.5 Le T3 be the family of all monomials of total degree 3 in the variables x11, . . . , x1n. Then
the graded Frobenius characteristic of the associated polarization module is given by table 1

Tab. 1: Frobenius series for the family of monomials of degree 3

(1 + s1 + s2 + s3)s1(w) n = 1

(1 + s1 + 2 s2 + 2 s3)s2(w) + (s1 + s2 + s1,1 + 2 s3)s1,1(w) n = 2

(1 + s1 + 2 s2 + 3 s3)s3(w) + (s1 + 2 s2 + s1,1 + 3 s3)s2,1(w)
+(s1,1 + s3)s1,1,1(w)

n = 3

(1 + s1 + 2 s2 + 3 s3) s4(w) + (s1 + 2 s2 + s1,1 + 4s3) s3,1(w)
+(s2 + s3)s2,2(w) + (s1,1 + s3)s2,1,1(w)

n = 4

(1 + s1 + 2 s2 + 3 s3) s5(w) + (s1 + 2 s2 + s1,1 + 4s3) s4,1(w)
+(s2 + 2 s3)s3,2(w) + (s1,1 + s3)s3,1,1(w)

n = 5

(1 + s1 + 2 s2 + 3 s3) sn(w) + (s1 + 2 s2 + s1,1 + 4s3) sn−1,1(w)
+(s2 + 2 s3)sn−2,2(w) + (s1,1 + s3)sn−2,1,1(w) + s3 sn−3,3(w) ∀n ≥ 6.

Corollary 4.1, Corollary 4.2 and independent verifications with Maple and Sage, lead us to establish the
following questions about the Frobenius characteristic ofMf when f is homogeneous of degree 4 or 5:

Problem 5.6 The classification given by tables 2 and 3 is complete (up to n-exceptions), that is, if f is
any homogeneous diagonally symmetric polynomial of degree 4 (respectively, degree 5) then the Frobenius
characteristic of the moduleMf is one of the formulas in the table 2 (respectively, table3).

Looking at tables 2 and 3 we are lead to think that



790 Héctor Blandin

Problem 5.7 If f is an homogeneous symmetric polynomial of degree d. Then, there exist a monomor-
phism ϕ :Mf −→Mhm .

A description of Hilbert series of polarization modules and further research directions are available in (4).
The next conjecture is already settled for degree 2 and 3, in higher degree, we believe that

Problem 5.8 Let f be any homogeneous symmetric polynomial. The Hilbert series of the moduleMf is
h-positive, that is, there are aµ ∈ N such thatMf (q) =

∑
µ aµhµ(q). where the sum runs over the set

of partitions µ of integers less or equal to deg(f).

Problem 5.9 Let f be a homogeneous symmetric polynomial of degree d in R[x11, . . . , x1n]. If f is not a
scalar multiple of pd1 then

dim
(
R{∂11(f), . . . , ∂1n(f), E

(2)
1,1(f)}

)
≥ n.

6 Tables for the graded Frobenius characteristic

Tab. 2: Frobenius characteristic for degree 4

(1 + s1 + s2 + s3 + s4)sn(w) p41

(1 + s1 + s2 + s3 + s4)sn(w) + (s1 + s2 + s3)sn−1,1(w) p4

(1 + s1 + s2 + s3 + s4)sn(w) + (s1 + s2 + s3)sn−1,1(w) + s2sn−2,2(w) e4

(1 + s1 + 2s2 + 2s3 + s4)sn(w) + (s1 + 2s2 + s3)sn−1,1(w) e
31

(1 + s1 + 2s2 + 2s3 + s4)sn(w) + (s1 + 2s2 + s3)sn−1,1(w) + s2sn−2,2(w)
s211
h

22

m
211

(1 + s1 + 2s2 + 2s3 + s21 + s4)sn(w) + (s1 + s2 + s11 + s3)sn−1,1(w)
p211

e
211

h
211

(1 + s1 + 2s2 + 2s3 + s21 + s4)sn(w) + (s1 + 2s2 + s11 + s3)sn−1,1(w)
h31

m
31

p
31

(1 + s1 + 2s2 + s3 + s21 + s4)sn(w) + (s1 + 2s2 + s11 + s3)sn−1,1(w) + s2sn−2,2(w) m
22

(1 + s1 + 2s2 + 2s3 + s21 + s4)sn(w) + (s1 + 2s2 + s11 + s3)sn−1,1(w) + s2sn−2,2(w)

s4
s
31

s
22

e
22

p
22
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Tab. 3: Frobenius characteristic for degree 5

(1 + s1 + s2 + s3 + s4 + s5)sn(w) p51

(1 + s1 + s2 + s3 + s4 + s5)sn(w) + (s1 + s2 + s3 + s4)sn−1,1(w) p5

(1 + s1 + s2 + s3 + s4 + s5)sn(w) + (s1 + s2 + s3 + s4)sn−1,1(w) + (s2 + s3)sn−2,2(w) e5

(1 + s1 + 2s2 + 2s3 + 2s4 + s5)sn(w) + (s1 + 2s2 + 2s3 + s4)sn−1,1(w) + (s2 + s3)sn−2,2(w)
m2111

s2111
e41

(1 + s1 + 2s2 + 2s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + 2s2 + s11 + 2s3 + s21 + s4)sn−1,1(w)
+(s2 + s3)sn−2,2(w)

s221

(1 + s1 + 2s2 + 2s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + 2s2 + s11 + 2s3 + s21 + s4)sn−1,1(w)
m41

p41

(1 + s1 + 2s2 + 3s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + 2s2 + s11 + 3s3 + s21 + s4)sn−1,1(w)
+(s2 + s3)sn−2,2(w)

h5

h41

h32

h221

p221
s41
s32
s311
e221
m311

(1 + s1 + 2s2 + 2s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + 2s2 + s11 + 3s3 + s21 + s4)sn−1,1(w)
+(s2 + s3)sn−2,2(w)

p32
e32
m32

m221

(1 + s1 + 2s2 + 2s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + s2 + s11 + s3 + s21 + s4)sn−1,1(w)
p2111
h2111

e2111

(1 + s1 + 2s2 + 3s3 + s21 + 2s4 + s31 + s5)sn(w) + (s1 + 2s2 + s11 + 2s3 + s21 + s4)sn−1,1(w)
e311
h311

p311
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[3] F. Bergeron and L.-F. Préville-Ratelle. Higher trivariate diagonal harmonicis via tamari posets.
Journal of Combinatorics, 3(3):317–341, 2012.

[4] H. Blandin. Generalized Polarization Modules. In preparation, 2015.

[5] W. Fulton and J. Harris. Representation Theory A First Course. Graduate Texts in Mathematics 129,
Springer Velarg, 2004.

[6] A. Geramita, A. Hoefel, and D. Wehlau. Hilbert functions of Sn-stable artinian gorenstein ideals.
arXiv:1407.7228 [math.AC], preprint. Submitted 2014.

[7] M. Haiman. Conjectures on the quotient ring by diagonal invariants. 3(1):17–76, 1994.

[8] M. Haiman. Vanishing theorems and character formulas for the hilbert scheme of points of the plane.
Invent. Math, (149):371–407, 2002.

[9] J. Humphreys. Reflections groups and Coxeter groups. Cambridge Uiversity Press, 1997. Cambridge
Studies in Advanced Mathematics 29.

[10] M. Hunziker. Classical invariant theory for finite reflection groups. Transformations Groups, 2(2):
147–163, 1997.

[11] H. Kfrat and C. Procesi. Classical Invariant Theory A primer. 1996. preliminary version July 1996.

[12] I. G. Macdonald. Symmetric functions and Hall polynomials Second edition. Oxford University
Press Inc, New York, 1995.

[13] C. Procesi. Lie Groups An Approach through Invariants and Representations / Claudio Procesi.
2007. (Universitex UTX), Springer.

[14] B. Sagan. The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Func-
tions (Second Edition). Springer, 2001. Graduate Texts in Mathematics 203.

[15] H. Weyl. The Classical Groups: Their Invariants and Representations. Princeton University Press,
Princeton-New York, 1939.


	Introduction
	Preliminaries
	Definitions and discussions
	Generalized Polarization Modules
	Properties of Polarization Modules

	Frobenius characteristics of some polarization modules
	Exceptions

	Open problems
	Tables for the graded Frobenius characteristic

